
Network Uncertainty Quantification for Analysis
of Multi-Component Systems

John Tencer
Sandia National Laboratories
Albuquerque, New Mexico
Email: jtencer@sandia.gov

Edward Rojas
Los Alamos National Laboratory

Los Alamos, New Mexico
Email: efrojas@lanl.gov

Benjamin B. Schroeder
Sandia National Laboratories
Albuquerque, New Mexico

Email: bbschro@sandia.gov

In order to impact physical mechanical system design
decisions and realize the full promise of high-fidelity compu-
tational tools, simulation results must be integrated at the
earliest stages in the design process. This is particularly
challenging when dealing with uncertainty and optimizing
for system-level performance metrics, as full-system models
(often notoriously expensive and time-consuming to develop)
are generally required to propagate uncertainties to system-
level quantities of interest. Methods for propagating param-
eter and boundary condition uncertainty in networks of in-
terconnected components hold promise for enabling design
under uncertainty in real-world applications. These meth-
ods avoid the need for time consuming mesh generation of
full-system geometries when changes are made to compo-
nents or subassemblies. Additionally, they explicitly tie full-
system model predictions to component/subassembly valida-
tion data which is valuable for qualification. These methods
work by leveraging the fact that many engineered systems are
inherently modular, being comprised of a hierarchy of com-
ponents and subassemblies that are individually modified or
replaced to define new system designs. By doing so, these
methods enable rapid model development and the incorpo-
ration of uncertainty quantification earlier in the design pro-
cess.

The resulting formulation of the uncertainty propagation
problem is iterative. We express the system model as a net-
work of interconnected component models, which exchange
solution information at component boundaries. We present a
pair of approaches for propagating uncertainty in this type
of decomposed system and provide implementations in the
form of an open-source software library. We demonstrate
these tools on a variety of applications and demonstrate the
impact of problem-specific details on the performance and
accuracy of the resulting UQ analysis. This work represents
the most comprehensive investigation of these network un-

certainty propagation methods to date.

Nomenclature
M deterministic operator
u exogenous input variable
y endogenous input variable
c polynomial chaos expansion coefficients
w quadrature weights
QoI Quantity of Interest
UQ Uncertainty Quantification
PCE Polynomial Chaos Expansion
DD Domain Decomposition
T temperature

1 Introduction
The majority of systems in science and engineering are

intentionally designed as collections of components and sub-
assemblies connected in a tree-like structure. This type of de-
sign is highly advantageous as it allows for interoperability
of components, parallel design efforts, and straightforward
approaches to quality assurance. Unfortunately, the most
common approaches to modeling and simulation in support
of the design of these systems is not similarly constructed.
Often, these modeling efforts are interested in system-level
quantities of interest (QoIs) and the entire system is treated
in a monolithic way. This approach necessitates an unde-
sirable tradeoff: either this monolithic system model is ex-
tremely complicated and expensive to construct and evalu-
ate, or it involves significant simplifying assumptions, such
as neglecting physics and/or geometric features of compo-
nents and subassemblies. This latter approach of using sim-
plified representations of components and subassemblies is
most common.

1 Copyright © by ASME

SAND2022-11945JThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



While in many cases, these simplifying assumptions are
justified and defensible, the impact that these simplifications
have on system-level QoIs is difficult to quantify, represent-
ing a challenge for high consequence applications for which
uncertainty quantification (UQ) is a required piece of the
qualification process. Additionally, these simplified mod-
els represent a break from the more detailed models com-
monly used for the design and qualification of individual
components and subassemblies. This means that the mono-
lithic system-level model must be validated against system-
level test data, which are often very expensive to generate
and thus sparse. System-level validation is also inherently
challenging because it is difficult to determine the source of
any discrepancy. Hierarchical validation allows for discrep-
ancy sources to be more easily isolated. Additional negative
consequences of relying exclusively on system-level valida-
tion data are increased uncertainty in the predictions of the
system-level model and reduced confidence in the resulting
predictions.

Researchers have developed a variety of methods to ad-
dress these challenges [1–3]. In this work, we provide effi-
cient implementations of two of these methods in the form of
an open-source software library, PyNetUQ 1. We publish our
open-source tools for uncertainty propagation in networks
and remark that these tools are extensible to be used with
any simulation tool (including arbitrary surrogate modeling
tools) through the construction of a simple Python interface
class. Additional interface classes for a variety of simula-
tion tools are currently under active development. We evalu-
ate the convergence behavior of these network UQ problems
and the impact of system-level boundary condition types on
this network performance. Finally, we present demonstration
uncertainty propagation results for a series of increasingly
complex exemplar applications.

The engineering exemplar problems used for demon-
stration in this work are finite element models, solving ei-
ther thermal or mechanical responses to stimuli external to
the system. QoIs for such exemplars are either thermal or
mechanical state variables such as temperatures at locations
within the system or spatial deflection. Such state variables
are often of interest for full system analyses because they
can indicate when a component has reached the edge of
its designed performance window. Understanding such re-
sponses often requires a full system model due to the state
variable’s response often being dependent upon the response
of other neighboring components. Uncertain variables uti-
lized in these systems could have included material proper-
ties such as thermal conductivity, specific heat, or emissivity,
or geometric tolerances, but only boundary conditions were
specified as uncertain in the current work.

The remainder of the document will be organized as fol-
lows. Section 2 will introduce the mathematics underpinning
the network based UQ approach, how domain decomposition
is utilized, and the implementation of those two concepts for
the present work. Engineering examples of increasing com-
plexity will then be used in Section 3 to demonstrate the ap-

1https://jtencer.github.io/PyNetUQ/

proach’s performance for different boundary conditions and
equation sets. The UQ approach will also be demonstrated
on a large scale exemplar engineering system within this sec-
tion to show how the approach can apply to relevant appli-
cations. Lastly, conclusions and future plans for the UQ ap-
proach will be presented in Section 4.

2 Methods
We have implemented the network UQ method [1, 4] in

an extensible Python library (PyNetUQ), which interfaces
with a variety of physics simulation tools to evaluate com-
ponent UQ problems. Although the network UQ method is
agnostic to the functional representation used for the under-
lying random variables, we will restrict ourselves to polyno-
mial chaos expansions (PCEs) [5–8].

In the subsections to follow, we will outline the ap-
proach taken and provide some details on the implementa-
tion. Section 2.1 will provide basic background on polyno-
mial chaos and introduce some relevant notation. Section 2.2
will then describe the ways in which the domain is decom-
posed and the two relevant uncertainty propagation methods
implemented in PyNetUQ. Finally, Section 2.3 will contain
a discussion on implementation details.

2.1 Polynomial Chaos Expansions
In the broadest terms, we seek to determine a proba-

bilistic characterization of the system response, QoI, to un-
certainty in parameter values, u. The parameter values are
parametrized using the germ, ξ = {ξ1,ξ2, ...}, a vector of in-
dependent random variables (RVs), such that

u≡ u(ξ). (1)

When using PCEs, we represent the dependence of the
solution on the germ through the series

QoI(ξ)≈∑
k

ckΨk(ξ), (2)

where the Ψk’s are suitably chosen orthogonal functionals
of the random variables and ck are deterministic coefficients
given by

ck =
〈QoI(ξ)Ψk(ξ)〉
〈Ψ2

k(ξ)〉
, (3)

with 〈·〉 an appropriate inner product. The choice of Ψ de-
pends upon the distribution of ξ. For the examples to follow
Hermite polynomials are used, which is appropriate for cases
where ξ is Gaussian. We approximate the inner product in
the numerator using non-intrusive spectral projection (NISP)

2 Copyright © by ASME



and quadrature integration

〈QoI(ξ)Ψk(ξ)〉=
∫

QoI(ξ)Ψk(ξ)π(ξ)dξ

≈∑
q

QoI(ξq)Ψk(ξq)wq
. (4)

This process is visualized for a single-component sys-
tem in Figure 1a. The sampling step corresponds to the se-
lection of the quadrature points ξq in Eq. 4 and the determin-
istic solutions correspond to the evaluations of QoI(ξq). For
domain-decomposed problems, this process becomes some-
what more complicated as shown in Figures 1b and 1c de-
pending upon the approach taken.

2.2 Model Decomposition
In this section, we will describe the domain decomposi-

tion approach used and two different uncertainty propagation
algorithms applicable to domain-decomposed problems. Our
approach is analogous to domain decomposition methods de-
veloped for parallel computing [9, 10] but is implemented in
a less intrusive manner. The ideal monolithic system model
is described by M (u) : u 7→ QoI. As previously described,
this system model is generally impractical to construct for
complex systems. Instead, the system model is decomposed
into a set of n local models Mi : (yi,ui) 7→ xi, i = 1, · · · ,n.
We define ui ⊆ u to be the set of exogenous input parameters
relevant to component i and yi to be the corresponding set
of endogenous inputs. The endogenous inputs are derived
from the outputs xi of neighboring components (e.g., inter-
face conditions).

For all of the results in this paper, an overlapping do-
main decomposition technique with Dirichlet-Dirichlet cou-
pling terms is utilized. However, the PyNetUQ software is
agnostic to the domain decomposition scheme used, work-
ing instead at a higher level of abstraction (inputs/outputs)
and leaving the coupling details to the individual com-
ponent models. As such, the library is also applicable
to non-overlapping domain decomposition techniques with
Dirichlet-Neumann or Robin-Robin coupling terms as well.
More information on the specific coupling scheme used is
proved in Section 2.3.

There are two uncertainty propagation methods applica-
ble to systems decomposed in this way. The first approach,
which we will term deterministic domain decomposition (de-
terministic DD) effectively decouples the domain decompo-
sition algorithm from the uncertainty propagation algorithm.
The second approach, which we term network uncertainty
quantification (NetUQ) combines the domain decomposition
and uncertainty propagation algorithms in order to realize
improved efficiency.

2.2.1 Uncertainty Propagation via Deterministic Do-
main Decomposition

Deterministic domain decomposition (deterministic
DD) is an approach for simulating a large complex physi-

(a) Monolithic

(b) Deterministic Domain Decomposition

(c) NetUQ

Fig. 1: Graphical illustrations of the different approaches
used for uncertainty propagation in this paper

3 Copyright © by ASME



cal system which has been spatially decomposed into a net-
work of interconnected components. The components ex-
change information along their interfaces and the full-system
solution is achieved through iteration. In our implementa-
tion, the forward problems at each iteration for all compo-
nents are solved simultaneously using the additive Schwarz
method [9, 11].

Uncertainty propagation for deterministic DD is per-
formed in exactly the same way as when the ideal monolithic
system model is available. The only difference is the substi-
tution of the alternative deterministic solution method used
for evaluating the simulation outputs at each sample point.
This is seen visually by comparing Figures 1a and 1b. The
domain decomposition is deterministic and the uncertainty
propagation algorithm wraps the deterministic system solu-
tion procedure.

In PyNetUQ, we use a PCE to represent the uncertainty
in any QoIs and utilize a quadrature rule for determining the
sample points. PyNetUQ leverages UQTk [12] to generate
either full or sparse quadrature rules for evaluating Eq. 4.
Since the UQ method wraps around the deterministic DD
algorithm, a single global quadrature rule for integrating over
ξ is defined for the entire system and a separate deterministic
DD iterative solution must be performed at each quadrature
point, ξ(q).

2.2.2 Uncertainty Propagation via NetUQ
In the network UQ (NetUQ) method illustrated in Figure

1c, the interfaces between components are treated as stochas-
tic rather than deterministic [1, 4]. We define ui ⊆ u to be
the set of exogenous input random variables relevant to com-
ponent i and yi to be the corresponding set of endogenous
input random variables. The endogenous inputs are derived
from the outputs xi of neighboring components (e.g., inter-
face conditions). Note that in contrast to the deterministic
DD approach, xi and yi are treated as stochastic in the Ne-
tUQ approach.

We represent each random variable using a PCE. In or-
der to propagate uncertainty through each component, we
define a local quadrature rule for integrating over ξ for each
component. The local quadrature rule allows for different
stochastic representations for different components, adding
flexibility and potentially reducing the number of simula-
tions required. These quadrature points ξ(q) define samples
for both the exogenous inputs u ≈ ∑k(ui)kΨk(ξ

(q)) and en-
dogenous inputs y(q)i ≈ ∑k(yi)kΨk(ξ

(q)). The forward prob-
lem M is then solved for each quadrature point and the re-
sulting outputs x(q)i are used to update the PCE coefficients
using Galerkin projection as in Eq. 3.

The network uncertainty propagation problem for the
full system may be written as a fixed-point problem. We
stack up the inputs and outputs from each component ũ :=[
uT

1 · · ·uT
n
]T , ỹ :=

[
yT

1 · · ·yT
n
]T , and x̃ :=

[
xT

1 · · ·xT
n
]T and

define a full-system uncertainty propagation operator M̃ :
(ỹ, ũ) 7→ x̃. The endogenous outputs of each component are
routed to the appropriate endogenous inputs of neighboring

Fig. 2: Schematic of overlapping domain decomposition
strategy

components. These relationships are encoded into the adja-
cency matrix Iy

x ∈ {0,1}ny×nx , which satisfies

ỹ≡ Iy
x x̃. (5)

nx and ny are the total number of endogenous output and in-
put values respectively across all n components. The result
is the fixed-point problem

x̃ = M (Iy
x x̃, ũ), (6)

which can be solved via Jacobi iteration.
In our implementation, we never explicitly form the ad-

jacency matrix. Rather, it is represented implicitly in the
boundary conditions specified for each component model
Mi. In this way, the PyNetUQ library operates only in terms
of component inputs and outputs.

As long as the fixed-point operator is a contraction, the
fixed-point iterations generated by the Jacobi algorithm con-
verge q-linearly [1]. This is rarely competitive with other
solution methods for nonlinear equations (e.g. Newton’s
method). Thus relaxation methods [13–15] are typically used
only where these types of solvers are not applicable.

In this work, we seek to improve the convergence rate by
employing Anderson acceleration [16–18]. Anderson accel-
eration works by modifying the fixed-point-iteration updates
in a way that is similar to the generalized minimum residual
(GMRES) method for linear problems [19] and multisecant
methods for nonlinear problems [17].

2.3 Implementation
For the results to follow, we exclusively use an overlap-

ping domain decomposition technique with Dirichlet bound-
ary conditions imposed on both sides of the interface. As an
example, consider a system with two components, M1 and
M2 which operate on the domains shown in Figure 2. The
boundary conditions at xL,1 and xR,2 along with any other pa-
rameters comprise potential exogenous inputs u. The bound-
ary conditions at xR,1 and xL,2 are endogenous inputs to M1
and M2 respectively.

For deterministic DD, these are simply the solution vari-
ables of the other component(s) evaluated at the interface lo-
cations. For NetUQ, these are the PCE representations of the
solution variables of the other component(s) evaluated at the
interface locations and sampled at the appropriate quadrature
point.

In the PyNetUQ implementation, each component
model is responsible for extracting its own endogenous

4 Copyright © by ASME



boundary conditions from the outputs of each neighboring
component. At each iteration, the library provides a dummy
version of these neighbors’ outputs populated with the ap-
propriate information for each required point in probability
space and executes the component model. These component
model evaluations are all performed in parallel within each
network iteration.

Iterations continue until either a convergence tolerance
is met

‖x̃i+1− x̃i‖2

‖x̃i‖2
< ε (7)

or until the step size fails to decrease for 10 consecutive it-
erations. In practice, ‖x̃i‖2 will only approach zero in de-
generate cases where the solution is trivial. For the results to
follow, a convergence tolerance of ε = 10−5 is used.

As will be seen, an important parameter for transient
simulations is the output frequency. Since the PyNetUQ li-
brary couples adjacent components using these output files,
the output frequency must be sufficient for time accuracy.
Infrequent outputs result in temporally underresolved bound-
ary conditions for neighboring components. Since each com-
ponent manages its own timestepping scheme and output fre-
quency, care must be taken to ensure that sufficiently re-
solved transient information is made available to the net-
work.

3 Results
Since monolithic system models are difficult to con-

struct, we have chosen simplistic example problems for
which M is easily constructed or have used the determinis-
tic domain decomposition method described in Section 2.2.1
as a substitute for the results to follow. In Section 3.1 we
analyze the effect that different boundary conditions have on
the network convergence for thermal and mechanical prob-
lems by focusing on simple 1D domains. In Section 3.2 we
extend this discussion to the propagation of uncertainty in
a set of increasingly complex thermal systems. The first is
a 1D steady-state linear heat conduction problem, the sec-
ond is a 1D transient heat conduction problem, and the third
is a complex system transient thermal model with multiple
sources on nonlinearity.

3.1 Boundary Condition Effects on Network Conver-
gence

In this section, we apply the network approach to a set
of thermal and mechanical problems to analyze the conver-
gence behavior. Both problems are pseudo-1D in that they
are mathematically one-dimensional but are analyzed using
a 3D finite element mesh. Both problems are also linear and
transient. In all cases, we will apply a fixed Dirichlet bound-
ary condition to one side and vary the boundary condition
applied to the other side in order to determine what effect, if
any, the boundary condition has on the network convergence
behavior.

3.1.1 Mechanical Network Results
For this first example, we analyze a linear elastic can-

tilevered beam with a Young’s modulus of 106 and a Pois-
son’s ratio of 1/4. The beam is 10 units long with a con-
stant square cross-section of unit area. One end of the beam
(x = 0) is held fixed. Dirichlet and Neumann boundary con-
ditions were applied to the other (free, x = 10) end of the
beam in order to investigate the efficiency of the network for
simple systems. The governing equations are given by

(EIuxx)xx +mutt = 0
u(0, t) = 0

ux(0, t) = 0
, (8)

with Young’s modulus E, mass per unit length m, and second
moment of inertia I. For this geometry, I = 1/12.

The Dirichlet boundary condition applied is a linear
ramp from 0 displacement to the maximum tip displacement
over 2 milliseconds, such that

u(L, t) =
umaxt

2×10−6 . (9)

The prescribed displacement is applied quasi-statically. The
solution in this case is given by

u(x, t) =
u(L, t)x2(3L− x)

2L3 (10)

The Neumann boundary condition applied is a constant
load perpendicular to the beam, such that

(EIuxx(L,T ))x = F, (11)

with F being the prescribed load. The solution in this case is
given by

u(x, t) =
Fx2(3L− x)

6EI
. (12)

Our quantities of interest are the tip and mid-point deflec-
tions at the final time step.

Two solution methods were contrasted: (1) a monolithic
approach (labeled “Classic” in the Figures) and (2) the Ne-
tUQ approach described in Section 2.2.2. The monolithic
case is the traditional FEM analysis of a cantilever beam us-
ing a single component meshing scheme. For the NetUQ ap-
proach, the domain is divided into two overlapping regions,
x ∈ [0,5.5] and x ∈ [4.5,10]. The PyNetUQ library is used
to couple separate simulations of the two components. Con-
vergence in this context represents the network’s ability to
approach the monolithic solution within prescribed solution
parameters and will be the main metric when analyzing its
performance and efficiency.

5 Copyright © by ASME



Boundary conditions play a significant role in determin-
ing network convergence behavior for the system. Figure 3
illustrates the difference in behavior of the midpoint and tip
displacements at the final time step of each iteration of the
network analysis of the transient mechanical model when us-
ing either Dirichlet or Neumann boundary conditions. Fig-
ure 3a imposes a linear-in-time displacement resulting in
a unit tip displacement at the final time (2 milliseconds),
whereas Figure 3b imposes a force necessary to create a max-
imum tip deflection of approximately one unit, Figures 3c
and 3d double the imposed conditions from Figures 3a and
3b respectively to correspond to a tip deflection of two.

The Neumann boundary condition converges more
quickly for smaller tip deflections as shown in Figure 3b;
however, for the larger deflections given in Figures 3c and 3d
the network converges more quickly for the Dirichlet bound-
ary condition. For the Dirichlet cases, the tip deflection
is prescribed, forcing the network to initially simulate the
largest deflection at all iterations; the network would then
initially begin with the largest displacement variances and
then slowly try to converge to the appropriate solution. For
small deflections the network initially overestimates the cen-
ter displacement and underestimates for larger deflections,
whereas, the Neumann case always seems to initially un-
derestimate the deflection of the component for similar tip
displacements. (This is related to the boundary condition
used at the component interfaces to initialize the network.)
This will not impact the network extensively; however, for
large deflections this could increase the number of itera-
tions needed to achieve sufficient tolerance and thus slow the
speed of convergence.

Results after imposing an extreme displacement with
Dirichlet boundary condition of 5 are shown in Figure 3e.
Analyzing even a slightly larger tip displacement with the
Neumann boundary conditions presents a convergence er-
ror. In this case, the applied force results in a maximum
tip displacement of ≈ 2.5. Figure 3f shows that although
the system has satisfied the imposed convergence tolerance
the network converges to a slightly different final tip dis-
placement. This was due to the output frequency sensitiv-
ity. The network is not required to communicate information
at every time step for each component within the PyNetUQ
framework. Rather, each component has a defined output
frequency which may be adjusted individually and linear in-
terpolation is used when a neighboring component requires
information at an intermediate time point. Infrequent outputs
(especially early in time) can result in incorrect behavior for
networks with Neumann boundary conditions. Although this
same frequency can produce accurate results for the extreme
Dirichlet condition, it is not sufficient for larger Neumann
boundary conditions. This sensitivity for the Neumann con-
dition highlights the influence the boundary conditions have
on the network.

3.1.2 Thermal network results
In this section, we analyze the network convergence for

a transient linear heat conduction application. The governing

equations are given by

ut −αuxx = 0
u(0, t) = T0

u(L, t) = TL

u(x,0) = Tinit ,

(13)

with Tinit = 300, T0 = 1000, and α = 0.01. TL is considered
a variable boundary condition. The series solution from sep-
aration of variables is

u(x, t) = T0 +
x
L
(TL−T0)+

∞

∑
n=1

BnCn(x, t)

Bn =
4

nπ
(Tinit −T0)−

2
nπ

(−1)n(T0−TL)

Cn(x, t) = sin
(nπx

L

)
exp
(
−αt

L2 (nπ)2
)
,

(14)

Once again, two solution methods are contrasted: (1) a
monolithic approach (labeled “Classic” in the Figures) and
(2) the NetUQ approach described in Section 2.2.2. The
“Classic” approach is verified to agree with the analytical
solution given by Eq. 14 to within the specified tolerances
(10−6 for this example).

The network can more easily solve the thermal case
compared to the mechanical case; a smooth monotonic con-
vergence is seen in Figure 4a. This is due to the different
equations analyzed as the mechanical system requires the so-
lution of a fourth order PDE; whereas, the thermal case is a
second order PDE. Even if a larger temperature gradient is
imposed, the system converges as quickly as the lower tip
temperature condition as shown in Figure 4c.

Varying the Dirichlet boundary conditions on the ther-
mal case seemed to have negligible impacts on the network
performance. Examining the Neumann boundary conditions
revealed a similar lack of sensitivity. Figure 5 shows the re-
sults of applying either a negative (top) or positive (bottom)
heat flux to the right-hand boundary. The network performed
just as well when the fluxes varied from a positive to nega-
tive flux. Figures 5b and 5d show that the network converges
to the monolithic solution in a similar manner as the Dirich-
let boundary conditions; whereas in the mechanical case the
convergence behavior is dependent on the boundary condi-
tions imposed. Thus, we conclude that the network perfor-
mance for thermal systems is not influenced by the type of
boundary conditions imposed on the system.

3.2 Uncertainty Quantification Results
The results from the preceding section confirm that

PyNetUQ provided the correct mean behavior and that the
iterative solvers are (mostly) performing robustly. In this sec-
tion, those results will be expanded upon to demonstrate that
PyNetUQ is correctly propagating uncertainty through the
system. We do this by examining both steady-state and tran-
sient results for linear heat conduction and a transient simu-
lation of a complex thermal model which includes numerous

6 Copyright © by ASME



(a) Dirichlet condition with a final tip displacement of 1 (b) Neumann condition with a final tip displacement of ≈ 1

(c) Dirichlet condition with a final tip displacement of 2 (d) Neumann condition with a final tip displacement of ≈ 2

(e) Dirichlet condition with a final tip displacement of 5 (f) Neumann condition with a final tip displacement of ≈ 2.5

Fig. 3: Dirichlet and Neumann boundary conditions for the mechanical case: (a) small Dirichlet condition, (b) small Neu-
mann condition, (c) medium Dirichlet condition, (d) medium Neumann condition, (d) large Dirichlet Condition, (e) large
Neumann Condition

nonlinearities. In all cases, the uncertain input parameters
are assumed to be Gaussian and PCE coefficients are deter-
mined through NISP using a full quadrature.

3.2.1 Quasi-1D steady-state thermal

First, consider the 1D steady-state linear heat transfer
problem defined by

7 Copyright © by ASME



(a) Midpoint temperature at the final time, U(L/2,500) (b) Transient evolution of the midpoint temperature U(L/2, t) at
different iterations

(c) Midpoint temperature at the final time, U(L/2,500) (d) Transient evolution of the midpoint temperature U(L/2, t) at
different iterations

Fig. 4: Network convergence results for a Dirichlet boundary condition for the thermal case with TR = 500 for (a) and (b)
and TR = 5500 for (c) and (d). For the transient plots, (b) and (d), dark blue lines are early iterations and later iterations
approach a magenta color.

uxx = 0
u(0) = T0

u(L) = TL.

(15)

The resulting solution is

u(x) = T0 +
x
L
(TL−T0). (16)

Let T0 ∼N (µ= 1000, σ2 = 402) and TL ∼N (µ= 500, σ2 =
202). Our quantity of interest is the temperature at the mid-
point of the slab,

u(L/2)∼N
(

µ = 750, σ
2 =

402 +202

4

)
. (17)

A coarse hex mesh (Figure 6a) is used to solve Eq. 15
numerically 3 different ways. First, the monolithic prob-
lem in which the heat equation is solved concurrently on all
3 blocks. Next, the domain is decomposed into two com-
ponents. The first component consisting of the purple and
gray blocks and the second component consisting of the or-
ange and gray blocks. The gray block is the overlap region
shared by both components. The decomposed problem is
then solved using both the deterministic domain decomposi-
tion and NetUQ methods. All forward propagation steps are
computed using SIERRA:Aria [20].

For the monolithic and deterministic domain decompo-
sition approaches, a 3rd order Gauss-Hermite polynomial
chaos is used to represent the uncertainty in the quantity of
interest (the centerpoint temperature). The coefficients of the
PCE are generated through NISP using a full quadrature with
4 points per stochastic dimension. For the NetUQ approach,
both components use a 3rd order Gauss-Hermite polynomial
chaos to represent the solution uncertainty at the endogenous

8 Copyright © by ASME



(a) Midpoint temperature at the final time, U(L/2,500) (b) Transient evolution of the midpoint temperature U(L/2, t) at
different iterations

(c) Midpoint temperature at the final time, U(L/2,500) (d) Transient evolution of the midpoint temperature U(L/2, t) at
different iterations

Fig. 5: Network convergence results for a Neumann boundary condition for the thermal case with (a)(b) a negative flux
applied to the right boundary and (c)(d) a positive flux applied to the right boundary. For the transient plots, (b) and (d), dark
blue lines are early iterations and later iterations approach a magenta color.

(a) (b)

Fig. 6: Meshes used for steady-state verification problems.

nodes. Since the QoI lies within the overlap region, a unique
PCE for the QoI may be extracted from each component.
However, since both components use the same order PCE
these predictions are identical (within the convergence toler-
ance) as shown in Figure 7a.

To demonstrate the flexibility of the overlapping do-
main decomposition approaches, the mesh for the left (pur-

ple+gray) component is changed to a tet mesh (Figure 6b).
The only nodes that are consistent between the hex and tet
meshes are the ones at the 8 corners of the overlap region.
Admittedly, for a 1D problem that’s more than enough to
uniquely specify the temperature throughout the overlap re-
gion, so this is a fairly weak test, but it does test the spatial
interpolation between meshes. The results for this case are
shown in Figure 7b.

3.2.2 Transient Linear Heat Conduction
Consider now the analogous transient thermal prob-

lem. This is the same problem previously described in Sec-
tion 3.1.2. Once again, let T0 ∼N (µ = 1000, σ2 = 402) and
TL ∼N (µ = 500, σ2 = 202). Our quantity of interest is now
the time evolution of the temperature at the midpoint of the
slab, u(L/2, t). The solution is given by

u(L/2, t)∼N
(
µ = µ(t), σ

2 = σ(t)2) , (18)

9 Copyright © by ASME



700 750 800 850
u(L/2)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

PD
F Exact Solution

Monolithic Solution
Deterministic DD Solution
NetUQ Solution

(a) Consistent meshes in the overlap region

(b) Inconsistent meshes in the overlap region

Fig. 7: QoI output PDFs from solving the steady-state linear
heat conduction problem four different ways.

with

µ(t) = 750+
∞

∑
n=1

BnCn(L/2, t), (19)

and

σ(t) =
√

σ2
T0
+σ2

TL

σT0 = 40

(
1
2
−

∞

∑
n=1

(
4

nπ
− 2

nπ
(−1)n

)
Cn(L/2, t)

)

σTL = 20

(
1
2
+

∞

∑
n=1

2
nπ

(−1)nCn(L/2, t)

)
.

(20)

As a demonstration, we solve this transient heat conduc-

Fig. 8: Network of 6 overlapping components.

(a) Expected Value (b) Variance

Fig. 9: Time evolution of the stochastic representation of the
midpoint temperature, u(L/2, t).

tion problem with the more complicated network of compo-
nents shown in Figure 8. The solution, given by Eq. 18 only
varies in the x direction despite the higher-dimensional mesh
and more complex network of components. We also adjust
the time steps for the two components to be different to test
the temporal interpolation.

Figures 9a and 9b illustrate that the results for this prob-
lem are consistent with those generated with the decomposi-
tion shown in Figure 6a as well as the analytical series solu-
tion. This demonstrates the validity of the method for larger
numbers of components that interact with each other in more
complex ways.

3.2.3 U-Bomb
As a final demonstration, a large-scale exemplar prob-

lem was selected for evaluating the PyNetUQ capability. The
PyNetUQ framework was applied to an abnormal thermal
simulation using an unclassified exemplar bomb (U-Bomb)
geometry shown in Figure 10 [21]. The U-Bomb is exam-
ined in two configurations: a simplified low-fidelity con-
figuration and a detailed configuration with enhanced geo-
metric fidelity. The low-fidelity configuration is represented
by a network of 4 components (red, green, blue, and or-
ange). The detailed U-Bomb geometry is divided into 7
components with the forward-most (green) component hav-
ing been subdivided further into 4 separate components as
shown in Figure 11. An uncertain radiative boundary condi-
tion is applied to the exterior surface to approximate a fully
engulfing hydrocarbon fuel fire environment. The radiative

10 Copyright © by ASME



boundary condition is assumed to follow a normal distribu-
tion N (µ = 1000, σ2 = 402).

The outer case is constructed of aluminum 7075. Com-
ponents 1, 2, and 3 are potted with PMDI foam. An or-
ganic material decomposition model [22] is used for these
blocks. Components 1a, 1b, and 1c are constructed of stain-
less steel 304L. All other unnamed internal potted compo-
nents are constructed of either stainless steel 304L or a repre-
sentative laminate with anisotropic thermal conductivity rep-
resentative of a printed circuit board. The thermal properties
of the aluminum and steel are treated as nonlinear functions
of temperature.

Eight different QoIs are defined for the U-Bomb applica-
tion corresponding to temperature-time histories at different
locations of interest within the system. The locations of the
different QoIs are shown in Figure 12. The minimum tem-
perature is selected for the blocks colored purple while the
maximum temperature is selected for blocks colored orange.

A workflow was developed in which a PyNetUQ model
was constructed for the low-fidelity configuration and then
updated to include the added geometric fidelity of the de-
tailed configuration. The components were all meshed in-
dependently with no requirements for mesh consistency at
the component interfaces (although approximate geometric
consistency is required). Component 0 remained unchanged
between configurations. The network was initially solved us-
ing the low-fidelity configuration. The low-fidelity configu-
ration solution was then used to initialize the network for the
detailed configuration. This procedure significantly reduced
the number of iterations required to achieve convergence for
the detailed configuration.

Due to the lack of a conformal mesh for these scenarios,
no monolithic simulation is attempted for validation. Instead,
the network model is analyzed using both the determinis-
tic domain decomposition and NetUQ methods implemented
in the PyNetUQ library. The results of this comparison are
shown in Figure 12. The results agree very well including the
variability. Where the solutions differ, it is expected that the
NetUQ solution is more accurate due to the ability to apply
a tighter convergence tolerance to the NetUQ simulation ow-
ing to its more rapid convergence relative to the deterministic
domain decomposition method.

The faster convergence of the NetUQ method in this
case is due primarily to the fact that Anderson acceleration
is only implemented for the NetUQ method in the PyNetUQ
library. Unfortunately, this lack of consistency within the
library makes apples-to-apples timing comparisons impossi-
ble. However, we can assert that the primary advantage of
the NetUQ approach relative to the deterministic domain de-
composition approach is in terms of flexibility rather than
performance. The NetUQ approach allows for unique uncer-
tainty representations for each component which may allow
for computational savings if e.g. a simple Gaussian is suf-
ficient for capturing the response for a linear or nearly lin-
ear component. For this application, the same uncertainty
representation was used for all components to be consistent
with the results from the deterministic domain decomposi-
tion method.

(a) Low-Fidelity (b) Detailed

Fig. 10: Unclassified bomb geometry. The U-Bomb is exam-
ined in two configurations: a simplified low-fidelity config-
uration (a) and a detailed configuration with enhanced geo-
metric fidelity (b). The detailed U-Bomb geometry is divided
into 7 components for network analysis.

The differences in QoI responses shown in Figure 12
are due to the thermal paths to and through the components,
differences in thermal diffusivities of the blocks, and using
block minimums versus maximums. The large temperature
difference between QoIs seen in Figure 12a is largely due
to the fact that the purple block being composed of a low-
conductivity material, fiberite. As a result, the location of
the minimum temperature of that block (which is surrounded
by low-conductivity PMDI foam encapsulant) is extremely
well-insulated. In contrast, the orange block is in intimate
contact with the metallic case such that its maximum temper-
ature more closely tracks the imposed boundary condition.
Temperatures of the orange and purple blocks in Figure 12b
are much more similar, with the difference being primarily
attributed to the orange block using the maximum tempera-
ture and the purple block using the minimum. Both blocks
shown in Figure 12c are fully suspended in foam encapsu-
lant causing more muted responses. The difference in those
blocks’ responses is mainly due to a difference in thermal
diffusivity. The component in Figure 12d is the orange block
in Figure 12a, with QoIs now being internal blocks within
the component. Note that the thermal responses of the or-
ange blocks in Figures 12a and 12d are nearly identical due
to the orange block in Figure 12d being in contact with the
external face of the component. In order for heat to reach the
purple block within Figure 12d, it primarily travels along a
path through contacting blocks within the component which
significantly delays heat reaching the purple block compared
to the orange block that resides at the start of the path.

The magnitude of variability found for all responses
largely tracks with the temperature reached. Due to nonlin-
earities within the model including internal radiation enclo-
sures, temperature dependent thermal properties, and decom-
posing foam, it is expected that the QoI response distribu-
tions are non-Gaussian. Unfortunately the quadrature results
were no longer available at the time of documentation, so
this expected non-linear distribution propagation could not
be confirmed.

4 Conclusions
A network uncertainty quantification technique was im-

plemented and evaluated using a number of example appli-
cations. This involved the creation of the the open source
PyNetUQ library to facilitate the creation of network models
of surrogate problems of interest. These problems spanned

11 Copyright © by ASME



Fig. 11: Graph representation of detailed U-Bomb geometry

a wide range of complex physics, including thermal and me-
chanical simulations at a range of scales. The library itself
represents a flexible tool for performing network-based un-
certainty propagation and is integrated with a number of pro-
duction codes. Additionally, it is easily extensible to be com-
patible with new physics applications.

Pseudo-1d steady-state and transient thermal problems
were used to verify the network solver implementation and
transient thermal and mechanical problems were used to
evaluate the solver performance. For steady-state thermal
transient thermal problems the network behaves robustly,
but for transient solid mechanics problems the behavior is
more complicated. For solid mechanics problems with fixed-
displacement boundary conditions, the network converges
robustly, but for fixed load boundary conditions, the accu-
racy of the converged solution is dependent on the load ap-
plied and the output frequency of the network components.
Infrequent outputs and large loads result in inaccuracies due
to the linear interpolation in time used between components.
This difficulty may be overcome by increasing the output
frequency during time periods with large temporal solution
variations, particularly at early times.

Additionally, we applied the approach to a complex sys-
tem exemplar model, the U-Bomb. This demonstrated the
applicability of the approach to complex system-scale prob-
lems and highlights some advantages and challenges of the
approach. The network approach essentially decouples the
model development pipelines for different components and
subassemblies. This results in increased agility and the po-
tential to incorporate UQ into the fast-moving design cycle.
Individual component geometries and models may be eas-
ily updated in a modular way, reducing dependencies and
enabling an analyst access to a parallel model development
paradigm. The network approach also directly ties plenti-
ful component and subassembly validation evidence to full-
system model predictions. This approach would result in
fewer simplifications and a more robust credibility package.

Unfortunately, the modularity and flexibility come at a
cost. Network uncertainty quantification techniques are con-
siderably slower (in terms of compute cost) than monolithic
techniques. The advantage lies exclusively in the modularity

and the potential to speed up model development at the ex-
pense of slower model execution. In many applications, this
is a trade well worth making. Additionally, reduced-order
and surrogate models provide an avenue to avoid this sacri-
fice in model execution speed [23–27].

Expensive component models may be seamlessly re-
placed by inexpensive surrogates within the network archi-
tecture without sacrificing accuracy. These surrogates may
either be trained through a bottom-up approach without prior
knowledge of the intercomponent boundary conditions or by
utilizing partially converged network results.

The network uncertainty propagation techniques are
also inherently iterative. This is not itself a problem, but
does pose additional challenges when operating within exist-
ing high performance computing (HPC) infrastructure. The
current HPC paradigm assumes jobs to be independent and
optimizes for high throughput (at the expense of latency).
The iterative nature of these network UQ techniques intro-
duces dependencies between jobs, and long queue times can
be compounded. This can be circumvented by either pack-
aging all of the jobs together when submitting to the HPC
system or eschewing the HPC systems for alternative low-
latency resources.

Acknowledgements

This paper describes objective technical results and
analysis. Any subjective views or opinions that might be ex-
pressed in the paper do not necessarily represent the views of
the U.S. Department of Energy or the United States Govern-
ment. This work was funded by the Advanced Simulation
and Computing program and the Laboratory Directed Re-
search and Development program at Sandia National Lab-
oratories, a multimission laboratory managed and operated
by National Technology and Engineering Solutions of San-
dia, LLC., a wholly owned subsidiary of Honeywell In-
ternational, Inc., for the U.S. Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-
NA-0003525.

This article has been authored by an employee of Na-
tional Technology & Engineering Solutions of Sandia, LLC
under Contract No. DE-NA0003525 with the U.S. Depart-
ment of Energy (DOE). The employee owns all right, ti-
tle and interest in and to the article and is solely responsi-
ble for its contents. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this article or al-
low others to do so, for United States Government purposes.
The DOE will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Public
Access Plan https://www.energy.gov/downloads/doe-public-
access-plan.

12 Copyright © by ASME



(a) (b)

(c) (d)

Fig. 12: Average response and 1-σ uncertainty bounds for 8 different quantities of interest for the U-Bomb problem computed
using both the deterministic domain decomposition and NetUQ approaches. For each component, the minimum temperature
over the purple block provides one quantity of interest, while the maximum temperature over the orange block provides
another.

References
[1] Carlberg, K., Guzzetti, S., Khalil, M., and Sargsyan, K.,

2019. “The network uncertainty quantification method
for propagating uncertainties in component-based sys-
tems”. arXiv:1908.11476 [math.NA].

[2] Liao, Q., and Willcox, K., 2015. “A domain decompo-
sition approach for uncertainty analysis”. SIAM Jour-
nal on Scientific Computing, 37(1), pp. A103–A133.

[3] Martin, J. D., and Simpson, T. W., 2006. “A method-
ology to manage system-level uncertainty during con-
ceptual design”. Journal of Mechanical Design, 128(4),
pp. 959–968.

[4] Rojas, E., and Tencer, J., 2021. “Performance of it-
erative network uncertainty quantification for multi-
component system qualification”. In ASME Interna-
tional Mechanical Engineering Congress and Exposi-
tion, Vol. 85697, American Society of Mechanical En-
gineers, p. V013T14A031.

[5] Le Maı̂tre, O., and Knio, O. M., 2010. Spectral meth-
ods for uncertainty quantification: with applications
to computational fluid dynamics. Springer Science &
Business Media.

[6] Ghanem, R. G., and Spanos, P. D., 2003. Stochastic
finite elements: a spectral approach. Courier Corpora-
tion.

[7] Xiu, D., and Karniadakis, G. E., 2002. “The Wiener–
Askey polynomial chaos for stochastic differential
equations”. SIAM Journal on Scientific Computing,
24(2), pp. 619–644.

[8] Xiu, D., 2010. “Numerical methods for stochastic com-
putations”. In Numerical Methods for Stochastic Com-
putations. Princeton University Press.

[9] Smith, B. F., 1997. “Domain decomposition methods
for partial differential equations”. In Parallel Numeri-
cal Algorithms. Springer, pp. 225–243.

[10] Chan, T. F., and Mathew, T. P., 1994. “Domain decom-
position algorithms”. Acta Numerica, 3, pp. 61–143.

[11] Toselli, A., and Widlund, O., 2004. Domain de-
composition methods-algorithms and theory, Vol. 34.
Springer Science & Business Media.

[12] Sargsyan, K., Safta, C., Johnston, K., Khalil, M.,
Chowdhary, K. S., Rai, P., Casey, T. A., Boll, L. D.,
Zeng, X., and Debusschere, B., 2021. UQTk version
3.1.1 user manual sand2021-3655. Tech. rep., Sandia
National Laboratories.

[13] Yang, X. I., and Mittal, R., 2014. “Acceleration of the
Jacobi iterative method by factors exceeding 100 us-
ing scheduled relaxation”. Journal of Computational
Physics, 274, pp. 695–708.

[14] Pratapa, P. P., Suryanarayana, P., and Pask, J. E.,
2016. “Anderson acceleration of the Jacobi iterative
method: An efficient alternative to Krylov methods for
large, sparse linear systems”. Journal of Computational
Physics, 306, pp. 43–54.

[15] Eyert, V., 1996. “A comparative study on meth-
ods for convergence acceleration of iterative vector se-
quences”. Journal of Computational Physics, 124(2),
pp. 271–285.

13 Copyright © by ASME



[16] Anderson, D. G., 1965. “Iterative procedures for non-
linear integral equations”. Journal of the ACM (JACM),
12(4), pp. 547–560.

[17] Fang, H.-r., and Saad, Y., 2009. “Two classes of multi-
secant methods for nonlinear acceleration”. Numerical
Linear Algebra with Applications, 16(3), pp. 197–221.

[18] Toth, A., and Kelley, C., 2015. “Convergence analysis
for Anderson acceleration”. SIAM Journal on Numeri-
cal Analysis, 53(2), pp. 805–819.

[19] Walker, H. F., and Ni, P., 2011. “Anderson acceleration
for fixed-point iterations”. SIAM Journal on Numerical
Analysis, 49(4), pp. 1715–1735.

[20] SIERRA Thermal/Fluid Development Team, 2019.
SIERRA Multimechanics Module: Aria User Manual
- Version 4.52 SAND2019-3786. Tech. rep., Sandia
National Laboratories.

[21] Schroeder, B., Hetzler, A., Mills, B., and Shelton,
J., 2018. An effort towards a consistent VVUQ ap-
proach for thermal systems analyses SAND2018-5411
PE. Tech. rep., Sandia National Laboratories.

[22] Scott, S. N., Dodd, A. B., Larsen, M. E., Suo-Anttila,
J. M., and Erickson, K. L., 2016. “Validation of heat
transfer, thermal decomposition, and container pres-
surization of polyurethane foam using mean value and
latin hypercube sampling approaches”. Fire Technol-
ogy, 52(1), pp. 121–147.

[23] Benner, P., Gugercin, S., and Willcox, K., 2015. “A sur-
vey of projection-based model reduction methods for
parametric dynamical systems”. SIAM Review, 57(4),
pp. 483–531.

[24] Peherstorfer, B., Willcox, K., and Gunzburger, M.,
2018. “Survey of multifidelity methods in uncertainty
propagation, inference, and optimization”. Siam Re-
view, 60(3), pp. 550–591.

[25] Brunini, V., Parish, E. J., Tencer, J., and Rizzi, F., 2022.
“Projection-based model reduction for coupled conduc-
tion—enclosure radiation systems”. Journal of Heat
Transfer, 144(6).

[26] Gelsomino, F., and Rozza, G., 2011. “Comparison and
combination of reduced-order modelling techniques in
3d parametrized heat transfer problems”. Mathematical
and Computer Modelling of Dynamical Systems, 17(4),
pp. 371–394.

[27] Brunton, S. L., and Kutz, J. N., 2022. Data-driven sci-
ence and engineering: Machine learning, dynamical
systems, and control. Cambridge University Press.

14 Copyright © by ASME


