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Too much data to use it effectively @E:.

Current systems don’t support querying historical data in a timely manner.

Sensors are collecting data at Analytics are starting to ‘3
incredible rates. understand this data
Typically linearly logs with little to no = Typically overwhelmed w/ data

organization for example: cyber

= Stay in RAM and respond quickly
connections or power grid state.

= Use disk and respond in days

Responding at Machine Speed

= Systems that respond and prevent attacks requires
analytics that work at machine speed.

=  Current disk/log based tools take hours.
= Ram based systems loose data quickly

= Low and slow attackers exploit this
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Data Architectures to Bridge this Gap T&=.
Bottom line up front (BLUF)

Use Write Optimized Data Structures (WODS) to build new
architectures to bridge this gap and enable machine speed analytics

= Track data sets far larger than core memory

= Enable sustained long-term low-maintenance operations

g
Data Timely %

Reporting _
> Architecture 4=  Analytic
seconds ,
WODS etc... instead of
. hours

Research Thrusts:
1. New data architectures to support our cyber missions

2. Algorithm research to address known limits, and

3. Rethink how we do analytics using these new capabilities




Memory and Disk access times h

RAM: ~60 nanoseconds per access
Disks: ~6 milliseconds per access.
disk is ~100,000 times slower

Analogy:

 RAM = escape velocity from earth (25,000 mph)

» disk = walking speed of the giant tortoise (0.3mph)
~83,333x slower
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Current Approaches ) .

No capability of timely reporting across data larger than RAM
= One disk write per insert takes ~éms
= Best rates of 200 — 2000 inserts per second
= We see rates of 100K to millions

Clustering?

=" Log processing tools and large scale parallel data stores
(hadoop, Splunk and postgres)

= Cyber responders have long been fighting issues of ingestion

rate, query response and data size.

* They have many parallel machines and lots
of experts to tune the system at some cost.

* In the end they still do grep in parallel across
large logs.
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Standing Queries & Firehose ) e

Window Size: N

- database “Stream” small
Full stream a_ A ’- enough for
Slower human inspection

Wt el
Rk ',,E""' RE

Event Rate: R - = #

Analysts

I
>

Database requirements: Firehose benchmark
= Captures essence of monitoring

=  Sandia + DoD partners

= |nput: stream of (key, value) pairs
" Immediate response preferred = Report a key when seen 24t time.

= No false negatives
= Limited false positives

= Window of size N limits insights
= Rate of R typically means RAM http://firehose.sandia.gov/
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)
Limits of Current RAM Based Analytics

= Tested state of the art analytic, waterslide with firehose
https://github.com/waterslideLTS/waterslide

= Accuracy of cyber-analytics depends on window size
= As the monitored set grew beyond RAM accuracy fell quickly

Analytic| Firehose | Ratio Events
Size Size Found

1048576 1048576 1X 66.04%
1048576 2097152 2X 23.82%
1048576 4194304 4x 0.06%

Its clear we need more space.

How do we integrate storage without loosing performance?
7
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Write Optimized Data Structure

‘Logging

RN
o

Optimal Insert / Query Tradeoff
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B-Tree & B&-Tree

T | B | B-Tree is used to index keys.
thonoc o000 Z
OlogN) | 2 "/ ! .I - I Insert & Lookup take O(logg N)
aa.....an.....az na.....nn....nz Za.....ZN.....72Z
<~ Vo } } } I N
1 000 ... - @ 00 .. 0000

B¢ -Tree buffers inserts at
each layer in the tree to
aggregate writes.

Lookup takes O(logN)

Insert takes 0(@)

Take Away: WODS offers a balance between RAM
and Disk for fast ingestion and organized data.

Inserts upto 100x faster
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Comparing WODS to Traditional B-Trees )

BADGERS 2015 Paper

Insertion Rates B¢ Tree v B- = Compared indexing IP
Tree connections with B-Tree
=== B¢ Tree (WODS) and WODS - B¢ Tree

= B-Tree initial better but

= Quickly reduced to
unsustainable rates.

10E5

Insertion Rate

10E4

= BETree able to sustain
reasonable indexing
throughput

10E3
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Tracking Network Connections at SCinet

Insertions Per Second vs Time in Seconds
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Research Thrusts Going Forward )

Timely
Data Reporting

Architecture H Analytic
seconds .

; WODS etc... ~ instead of
hours

Research Thrusts:

Sensor

1. New data architectures and prototype tools that use WODS to track
real-world events to support our cyber missions

=  Qur Demand gquery tool (DQT) & Standing query tool (SQT) serve as vehicles for
researching advanced architectures and algorithms on real-world data.

2. Algorithm research to address infinite streams of data, including
expiration, sustainability, and adaptability, and

3. Rethink how we do analytics using these new capabilities to support
machine speed consequence mitigation
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Didn’t <Big Tech.com> Already Solve This ™ .

NO.

= Qur problem space needs to ingest millions of events
per second and answer questions in seconds while
maintaining a state space on secondary storage.

= Some indexes the data over night and doesn’t have
to provide answers up to the second

= They work in standing queries are at thousands per
second we’re at 100k--millions.




Conclusion )

Use Write Optimized Data Structures (WODS) to build new
architectures to bridge this gap and enable machine speed analytics

= Track data sets far larger than core memory
= Enable sustained long-term low-maintenance operations

7o 3
= a3, Timely %
A ,__.j ata Data Reporting .
Sensor > Architecture 4=  Analytic
seconds .
WODS etc... instead of
hours

Research Thrusts:
1. New data architectures to support our cyber missions
2. Algorithm research to address known limits, and

3. Rethink how we do analytics using these new capabilities y




Backup Slides ) i,
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Write Optimized B-Tree

We used is a combination called B®Tree
(pronounce B to the epsilon tree) that
balances branching and buffering at
each node.

Aggregates writes with a buffer of size B
at each at each node. e slots are used
as pivots and B-e are used as buffers.

Flush costs O(1) and happens O(1/B). " NN

The result is inserts are now O((logN)/B)

For a large B ~1024 this can be 100x
faster in practice. [Bender 2007]
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Memory and Disk access times

Disks: ~6 milliseconds per access.
RAM: ~60 nanoseconds per access

Analogy:
» disk = distance from home to first base (90 feet)

« RAM = distance from AT&T Park to Kauffman Stadium
(1500 miles)
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What is Happening? .

« Waterslide uses ‘d-left hashing’ ] ]
— Two rows of buckets B B
— Constant-size : :
— Fast
— Waterslide adds LRU
. N I

expiration per bucket

Broder, Andrei, and Michael Mitzenmacher. "Using
multiple hash functions to improve IP lookups."

« 1/16 of all data is always subject INFOCOM 2001
to immediate expiration in
steady state

ven when window size is onl

« As active generator window 4x data structure size, most

grows, FIREHOSE accuracy

eportable data are lost before

. It is reported.
quickly goes to zero 18




