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Too much data to use it effectively

Analytics are starting to 
understand this data
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Sensors are collecting data at 
incredible rates.  
Typically linearly logs with little to no 
organization for example: cyber 
connections or power grid state.

 Typically overwhelmed w/ data
 Stay in RAM and respond quickly
 Use disk and respond in days

Current systems don’t support querying historical data in a timely manner.

Responding at Machine Speed
 Systems that respond and prevent attacks requires 

analytics that work at machine speed. 
 Current disk/log based tools take hours.
 Ram based systems loose data quickly
 Low and slow attackers exploit this



Data Architectures to Bridge this Gap
Bottom line up front (BLUF)

Use Write Optimized Data Structures (WODS) to build new 
architectures to bridge this gap and enable machine speed analytics
 Track data sets far larger than core memory
 Enable sustained long-term low-maintenance operations
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Research Thrusts:
1. New data architectures to support our cyber missions 
2. Algorithm research to address known limits, and 
3. Rethink how we do analytics using these new capabilities
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RAM: ~60 nanoseconds per access
Disks: ~6 milliseconds per access. 
            disk is ~100,000 times slower

 Analogy: 
• RAM = escape velocity from earth (25,000 mph)
• disk = walking speed of the giant tortoise (0.3mph)

~83,333x slower

Memory and Disk access times



Current Approaches

No capability of timely reporting across data larger than RAM
 One disk write per insert takes ~6ms 
 Best rates of 200 – 2000 inserts per second
 We see rates of 100K to millions

Clustering?
 Log processing tools and large scale parallel data stores 

(hadoop, Splunk and postgres)
 Cyber responders have long been fighting issues of ingestion 

rate, query response and data size.
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• They have many parallel machines and  lots 
of experts to tune the system at some cost.

• In the end they still do grep in parallel across 
large logs.
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Standing Queries & Firehose

Database requirements:
 No false negatives
 Limited false positives
 Immediate response preferred
 Window of size N limits insights
 Rate of R typically means RAM

Window Size: N

Event Rate: R

Firehose benchmark
 Captures essence of monitoring 
 Sandia + DoD partners
 Input: stream of (key, value) pairs
 Report a key when seen 24th time.

      http://firehose.sandia.gov/



7

Limits of Current RAM Based Analytics
 Tested state of the art analytic, waterslide with firehose

      https://github.com/waterslideLTS/waterslide

 Accuracy of cyber-analytics depends on window size
 As the monitored set grew beyond RAM accuracy fell quickly

Analytic 
Size

Firehose 
Size

Ratio Events 
Found

1048576 1048576 1x 66.04%
1048576 2097152 2x 23.82%
1048576 4194304 4x 0.06%

Its clear we need more space.
How do we integrate storage without loosing performance?



Write Optimized Data Structure
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Logging

B-Tree

Write Optimized 
Data Structures 

(WODS)



B-Tree & Bε-Tree 
B-Tree is used to index keys.

Insert & Lookup take O(logB N)

Take Away: WODS offers a balance between RAM 
and Disk for fast ingestion and organized data.

O(log1+Bε N)
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Comparing WODS to Traditional B-Trees
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 Compared indexing IP 

connections with B-Tree 
and WODS - Bε Tree 

 B-Tree initial better but
 Quickly reduced to 

unsustainable rates.
 Bε Tree able to sustain 

reasonable indexing 
throughput



Tracking Network Connections at SCinet
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Research Thrusts Going Forward

12

Research Thrusts:
1. New data architectures and prototype tools that use WODS to track 

real-world events to support our cyber missions 
 Our Demand query tool (DQT) & Standing query tool (SQT) serve as vehicles for 

researching advanced architectures and algorithms on real-world data.

2. Algorithm research to address infinite streams of data, including 
expiration, sustainability, and adaptability, and 

3. Rethink how we do analytics using these new capabilities to support 
machine speed consequence mitigation
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Didn’t <Big Tech.com> Already Solve This?
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NO.

 Our problem space needs to ingest millions of events 
per second and answer questions in seconds while 
maintaining a state space on secondary storage.

 Some indexes the data over night and doesn’t have 
to provide answers up to the second

 They work in standing queries are at thousands per 
second we’re at 100k--millions.



Conclusion

Use Write Optimized Data Structures (WODS) to build new 
architectures to bridge this gap and enable machine speed analytics
 Track data sets far larger than core memory
 Enable sustained long-term low-maintenance operations
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Research Thrusts:
1. New data architectures to support our cyber missions 
2. Algorithm research to address known limits, and 
3. Rethink how we do analytics using these new capabilities
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Backup Slides
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Write Optimized B-Tree 

We used is a combination called BeTree 
(pronounce B to the epsilon tree) that 
balances branching and buffering at 
each node.

Aggregates writes with a buffer of size B 
at each at each node.  e slots are used 
as pivots and B-e are used as buffers.

Flush costs O(1) and happens O(1/B).
The result is inserts are now O((logN)/B)

For a large B ~1024 this can be 100x 
faster in practice. [Bender 2007]



Memory and Disk access times
Disks: ~6 milliseconds per access. 
RAM: ~60 nanoseconds per access

 Analogy: 
• disk = distance from home to first base (90 feet) 
• RAM = distance from AT&T Park to Kauffman Stadium 

(1500 miles)
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What is Happening?

• Waterslide uses ‘d-left hashing’
– Two rows of buckets
– Constant-size
– Fast
– Waterslide adds LRU 

expiration per bucket

• 1/16 of all data is always subject 
to immediate expiration in 
steady state

• As active generator window 
grows, FIREHOSE accuracy 
quickly goes to zero

Even when window size is only
4x data structure size, most

reportable data are lost before
It is reported.

Broder, Andrei, and Michael Mitzenmacher. "Using 
multiple hash functions to improve IP lookups." 
INFOCOM 2001


