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Physical biases in data-driven modeling
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Black-box ML                                       Strong inductive biases

Black 
Box
ML

Physics informed ML Parameter 
estimation

Fewer biases
More expressive

More biases
More exploitable structure

We extract models from data where first 
principles derivation is intractable, while 

guaranteeing well-posed models in 
small data limits

Ex:
• Turbulence models
• Multiscale closures
• Equations of state
• Noneq. chemistry/kinetics



Data-driven modeling at SNL
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Can high-fidelity E&M simulations for semiconductors be encoded as efficient circuit models?

Can a data-driven EOS be extracted from observations of
Riemann problems at high energy states

Exact physics treatment and solvability guarantees are critical



The state-of-the-art in physics-informed ML

Make list of desired features and penalize them after the fact: 
PDE structure, BC, IC, conservation, etc.

Key Challenges:

Our applications need physics to hold exactly – not just by penalty
e.g. electromagnetics, fluid mechanics

What happens when the governing PDE and material parameters are unknown – is it still possible to 
impose physical constraints?

If physics can be imposed exactly then a source of uncertainty is eliminated
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What are physics compatible discretizations for 
PDEs?

Methods for solving PDEs which:
Use generalized Stokes theorems to 
approximate differential operators

Preserve topological structure in 
governing equations

Mimic properties of continuum operators 
(thus sometimes called mimetic 

discretizations)
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Two key ingredients:

1: A topological structure
In PDE discretization this is a 

mesh, with boundary 
operators linking cells, faces, 

edges, and nodes
We will use a graph as an 

inexpensive low-dimensional 
mesh surrogate

2: Metric information
Measures associated with 

mesh entities, ensuring 
discrete exterior derivatives 

converge to div/grad/curl
Graphs are purely topological 

with no natural metric, we 
will use ML to extract metric 

information from data
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Exterior calculus preliminaries: chain complex
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Compat. PDE Comb. Hodge
Mesh entities K-cliques
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Exterior calculus preliminaries: chain complex
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Comb. Hodge Compat. PDE

Exterior calculus preliminaries: cochain complex
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Traditional DEC
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A data-driven exterior calculus (DDEC)
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What does all this give you?
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Theorems…
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Using DDEC to discover structure preserving surrogates
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High-fidelity PDE
solution

Apply graph-cut to 
coarse-grain

chain complex

Average over 
partitions to obtain 

training data



General optimization problem
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Invertible bilinear 
form

Nonlinear 
perturbation

If we can fit the model to data while 
imposing equality constraint, then 

during training we restrict to manifold 
of solvable models preserving physics

Fluxes:

Conservation:



Is PDE constraint well posed?
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A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the 
nonlinear part, following standard elliptic PDE arguments

• Poincare constant easily estimated from matrix eigenvalues
• Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired



“PDE”-constrained optimization
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An iterative algorithm 
guaranteeing exact 

enforcement of physics 
at each iteration:



Back to Darcy…
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Comparison to traditional covolume: improved accuracy at low resolution
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Comparison of pressure for same # DOF for FVM (left) and DDEC (center)
Right: profile along diagonal shows better fit to solution (green) by DDEC (blue) vs FVM (orange)

N = 22

N = 52

N = 102



Nonlinear Darcy: potential profile across diagonal
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Magnetostatics
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Extracted surrogate:
Is exactly div free

Provides sharp interfaces
Conserves circulation
Guaranteed solvable

Generalizes to other BCs



Compact models for semiconductors: PN-diode
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Matching IV-curve – linear scale
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Extract a conservative surrogate accurate over 
fifteen orders of magnitude

May be embedded in a circuit simulator (e.g. Xyce) to 
couple coarse-grained high-fidelity PDE model in 

multiscale model w/ millions of components



 PHILMs – Physics Informed Learning Machines for multiscale/multiphysics problems
 ASCR MMICCs center at the intersection of machine learning and scientific computing
 PI: George Karniadakis
 SNL team: Mike Parks (PI), Pavel Bochev, Marta D’Elia, Mamikon Gulian, Ravi Patel, Mauro Perego, Nathaniel Trask

 PIRAMID – Physics Informed Rapid and Automated ML for compact model 
development
 SNL LDRD to extract efficient compact circuit models from high-fidelity PDE simulation
 Team: Andy Huang (PI), Xujiao Gao, Shahed Reza, Nathaniel Trask

 DOE Early Career – Physics informed graph neural networks for multiscale physics

Applications
Non-equilibrium closures for autoignition in turbulent combustion
Pulse shaping for pulsed power fusion applications on Z-machine

Development of surrogate models for radiation modeling of circuits
Fracture mechanics closures for ice sheet models

Multiscale modeling of lithium-ion batteries during failure
Multiscale closure for subsurface flow through fracture networks

Multiscale data-driven closures for kinetic effects and turbulence in plasmas

Several new projects – please contact for postdoc/collaboration opportunities 
(natrask@sandia.gov) 24
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