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Physical biases in data-driven modeling ) e

Ex:

* Turbulence models

* Multiscale closures

« Equations of state

* Noneq. chemistry/kinetics

We extract models from data where first
principles derivation is intractable, while
guaranteeing well-posed models in
small data limits

Ou=V - F(u,z,t)

Opu = F(u,x,1) Ou+u-Vu=—-Vp+ Vu

+ physics constraints

ElfEelS Parameter
Box Physics informed ML .
estimation
ML
<Black-box ML Strong inductive biases>

Fewer biases More biases
More expressive More exploitable structure
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Data-driven modeling at SNL
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Can high-fidelity E&M simulations for semiconductors be encoded as efficient circuit models?
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Can a data-driven EOS be extracted from observations of
Riemann problems at high energy states

Exact physics treatment and solvability guarantees are critical
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The state-of-the-art in physics-informed ML

Make list of desired features and penalize them after the fact:
PDE structure, BC, IC, conservation, etc.

Iteration: O
TN,

1.0

L= Ldata, + ELphysics o

0.8 0.8

0.6

L = ||udata _NN‘HEQ + EH‘C[udam] _ ‘C[NMH%Q o

0.6
0.4
0.2
0.0

Key Challenges: 0.0

Our applications need physics to hold exactly — not just by penalty
e.g. electromagnetics, fluid mechanics

What happens when the governing PDE and material parameters are unknown —is it still possible to
impose physical constraints?

If physics can be imposed exactly then a source of uncertainty is eliminated



What are physics compatible discretizations for A Raona
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PDEs?
Pavel B. Bochev
. . Richard B. Lehoucq
Methods for solving PDEs which: i
Use generalized Stokes theorems to g;:t‘il;?ﬁble
approximate differential operators Discretizations
Preserve topological structure in
governing equations
Mimic properties of continuum operators
(thus sometimes called mimetic o

discretizations)

Arnold, D. N., Bochev, P. B.,
Lehoucq, R. B., Nicolaides, R. A,,
& Shashkov, M. (Eds.). (2007).
Compatible spatial discretizations
(Vol. 142). Springer Science &
Business Media.



Two key ingredients:

1: A topological structure

In PDE discretization this is a
mesh, with boundary
operators linking cells, faces,
edges, and nodes

We will use a graph as an
inexpensive low-dimensional
mesh surrogate

2: Metric information

Measures associated with
mesh entities, ensuring
discrete exterior derivatives
converge to div/grad/curl

Graphs are purely topological
with no natural metric, we
will use ML to extract metric
information from data
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Exterior calculus preliminaries: chain complex ) e

Co <2 Oy <& Oy <2

Compat. PDE | Comb. Hodge

Mesh entities K-cliques
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Exterior calculus preliminaries: chain complex ) e

Co <2 Oy <& Oy <2

f S Cz 62f € Cl 6162f € Co
Exact sequence property: Vk, 0r0ri1 = 0




Exterior calculus preliminaries: cochain complex rh) e
CO C1 02 — (3
d d d
CO 0 Cl 1 02 2 03

Ck—i—l

Coboundary operators define maps dj, : C* — satistying di,1dg = 0

Boundary and coboundary operators satisfy the generalized Stokes theorem

Jdu=J U
w ow

Comb. Hodge Compat. PDE

grad[s](i, j) = I Vs-dl =s; —s;
e

gradls](i,j) = s; — s
wrlX)r) = [ Vxx-da= 3 [ x-a curl[X](i,5,k) = Xij + X5 + X

9
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Traditional DEC i) Naat

d 8 5
Co — C1 < Cy < Cj

030D

02
d *

03

dj d

Introducing inner products (-, -)x, we define the codifferential operator
dy : C*+*1 — CF as

(v, dpu)e = (dpv, w)k41

Again, dy_, #d; =0




A data-driven exterior calculus (DDEC)
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dj_4

o

(i d

. C

da—1 lB
d

dg—1 Cd

Idea: Take graph calculus and introduce learnable inner products

— T
k
(z,y)B, = "By

(z,y)p, = z"Dyy

to find data-driven exterior calculus operators that inherit the structure of

graph exterior calculus
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What does all this give you? ) e

dg dj d; d3 dj_1
o o o e T
0 53 1 5;‘ 2 5; 3 6;; 63 d
CO 2= Ol = 2 e 0B ...

8o 51 02 3 dda—1
R [

00 _do 1 _d 2 b2 a3 ds 0 ddm1 g

e Differential operators which locally and globally conserve fluxes, circula-
tions, potentials

e Invertible Hodge Laplacians Ay = dj, dg+1 + didj 4
e Exact sequence properties dyy1dx = dpdp,, =0
e Hodge decomposition u = d*a + dff +

e Corollary: treatment of nontrivial null-spaces in electromagnetism
12




Theoremes...

Theorem 3.1. The discrete derivatives di in form an exact sequence if
the simplicial complex is exact, and in particular diyy odi = 0. In R3, we
have CURL;, o GRAD;, = DIV;, o CURL;, = 0.

Theorem 3.2. The discrete derivatives dj, in form an exact sequence of
the simplicial complex is exact, and in particular dy ody,, = 0. In R3, DIV o
CURL}; = CURL} o GRAD} = 0.

Theorem 3.3 (Hodge Decomposition). For C*, the following decomposition

holds
ck = im(dk71)®k ker(Ak)®k im(dy), (17

where @, means the orthogonality with respect to the (-, ~)DAB71 -inner product.
Rk
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Theorem 3.4 (Poincaré inequality). For each k, there exists a constant cpy
such that

HZkHDkB;' < (:Psk‘|dkzk“Dk+1B,:_ll’ Z € h’n(d;;),

and another constant Cl*",k: such that
Iztllp, 5,1 < cpildiizrlp, B 1> 2Zx € im(di_1).
Thus, for u, € C*, we have

inf

it e = belp, g = € ([l g, = 140wl ;)

where constant C' > 0 only depends on cpy and cp, .

Theorem 3.5 (Invertibility of Hodge Laplacian). The k" -order Hodge Lapla-
cian Ay is positive-semidefinite, with the dimension of its null-space equal to
the dimension of the corresponding homology H* = ker(dy,)/ im(dx—1).




Using DDEC to discover structure preserving surrogates ) e
V.-F=f diF = f
F+kVp=0 F +&dop + Ny(o) =0

7\

High-fidelity PDE Apply graph-cut to Average over
solution coarse-grain partitions to obtain
chain complex training data
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General optimization problem h

Fluxes: WEi1 = dek + ENN(dkuka 5)?
Conservation: dk—l d;;—luk —|— dZWkJrl == fk

m) o(v,u; B, D)+ Ny[u;£] = b(v)

Invertible bilinear Nonlinear
form perturbation
If we can fit the model to data while argmin, ||W — Wdata.| |2
imposing equality constraint, then B,D¢

during training we restrict to manifold

Sandia
National
Laboratories

of solvable models preserving physics ~ such that Ljw,u;B,D,£| =0

15
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Is PDE constraint well posed? ) e

a(v,u; B, D) + Ny[u; ] = b(v)

Theorem 3.6. The equation (24)) has at least one solution ug € V satisfies

1]

upl| < ——mM@M@MM—.
el < =

(26)

Theorem 3.7. If _Conlfl - 1, then the equation (24f) has at most one
Cp(cp_CN)

solution in V.

A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the
nonlinear part, following standard elliptic PDE arguments

* Poincare constant easily estimated from matrix eigenvalues
* Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired

16
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“PDE”-constrained optimization

LuB,D,¢ = ||W — Waata||* + ATL[w, u; B, D, ¢]
Liw,u;B,D, & =0

e Solve forward problem with current model parameters

An iterative algorithm w,u< VyLyaBpe=0
guaranteeing exact
enforcement of physics e Solve adjoint problem with current forward solution
at each iteration:

A VyLuaBpe =0

e Apply gradient descent to update model

B,D,{ <+ VBp¢LuarBDe =0

17




Back to Darcy... ) e

V- F=f
F+kVo =0

140 1
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Comparison to traditional covolume: improved accuracy at low resolution 7 Sandia
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Comparison of pressure for same # DOF for FVM (left) and DDEC (center)
Right: profile along diagonal shows better fit to solution (green) by DDEC (blue) vs FVM (orange)
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Nonlinear Darcy: potential profile across diagonal i)t
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Compact models for semiconductors: PN-diode i)t

hitps:/fwww. electronics-tutonals ws/diode/diode 3.html

PN Junction 7-eVh = —(p—n+ Nt —Np)
MN-region ‘ P-region dn li?* (= nE — D, ¥n) — R, (n,p)
s T = Ir+ e N 7 gt ql n n niih

S _ | B P_

_I = = I + | + % e E— -EF' (ﬁan-Dpr) - Rp(ﬂ,p]

N L+ I
S = - + +
- ! +

— = - + + L N P O
Cathode [K) Ej Anmile (A
-0 H o+
L
= -

Conventional Current Flow
Traditional compact models fit ideal diode + resistor, and
can be tuned to match either small or large voltage regimes

10 44

101 15

lor® 340
Locally exponential: . | =l Ln;all*_.r linear:
1.0, model = resistor model
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Matching IV-curve — linear scale i)t

Current
Current

T T T L T T T T T T T T T T T
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Voltage drop Voltage drop

Extract a conservative surrogate accurate over
fifteen orders of magnitude

May be embedded in a circuit simulator (e.g. Xyce) to
couple coarse-grained high-fidelity PDE model in

multiscale model w/ millions of components
23
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=  PHILMs — Physics Informed Learning Machines for multiscale/multiphysics problems

=  ASCR MMICC:s center at the intersection of machine learning and scientific computing

=  PI: George Karniadakis
=  SNL team: Mike Parks (PI), Pavel Bochev, Marta D’Elia, Mamikon Gulian, Ravi Patel, Mauro Perego, Nathaniel Trask

=  PIRAMID — Physics Informed Rapid and Automated ML for compact model

development
= SNL LDRD to extract efficient compact circuit models from high-fidelity PDE simulation
=  Team: Andy Huang (PI), Xujiao Gao, Shahed Reza, Nathaniel Trask

= DOE Early Career — Physics informed graph neural networks for multiscale physics

Applications

Non-equilibrium closures for autoignition in turbulent combustion

Pulse shaping for pulsed power fusion applications on Z-machine
Development of surrogate models for radiation modeling of circuits

Fracture mechanics closures for ice sheet models
Multiscale modeling of lithium-ion batteries during failure
Multiscale closure for subsurface flow through fracture networks
Multiscale data-driven closures for kinetic effects and turbulence in plasmas

Several new projects — please contact for postdoc/collaboration opportunities

!natrask@sandia.govz 24
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