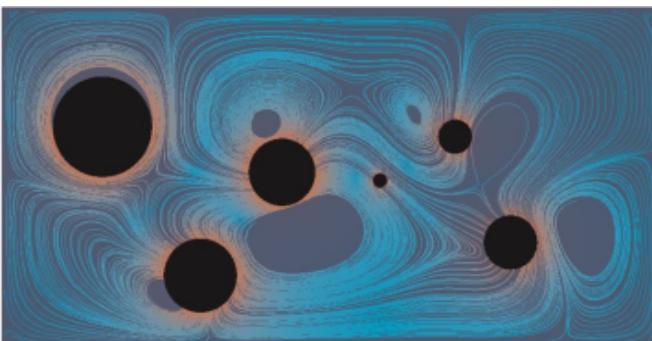
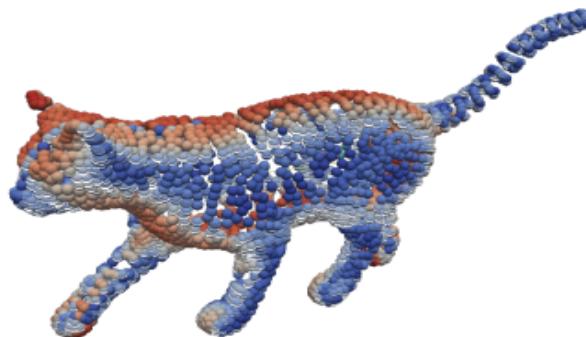
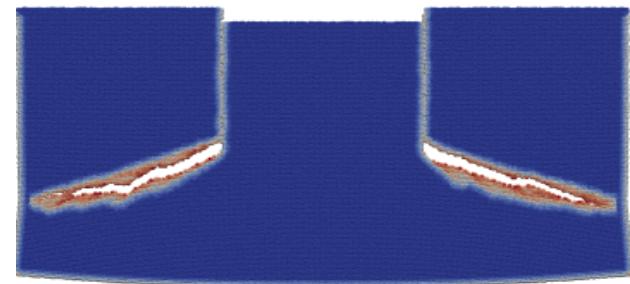


Exceptional service in the national interest



A data-driven exterior calculus for model discovery

Nat Trask
Center for Computing Research
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Physical biases in data-driven modeling

We extract models from data where first principles derivation is intractable, **while guaranteeing well-posed models in small data limits**

Ex:

- Turbulence models
- Multiscale closures
- Equations of state
- Noneq. chemistry/kinetics

$$\partial_t u = \mathbf{F}(u, x, t)$$

$$\partial_t u = \nabla \cdot \mathbf{F}(u, x, t)$$

+ physics constraints

$$\partial_t u + u \cdot \nabla u = -\nabla p + \nu \nabla^2 u$$

Black
Box
ML

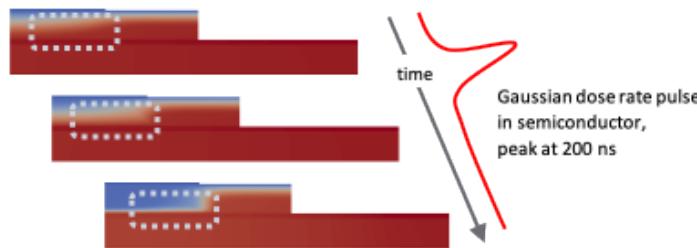
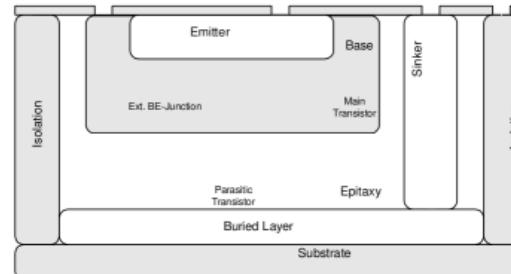
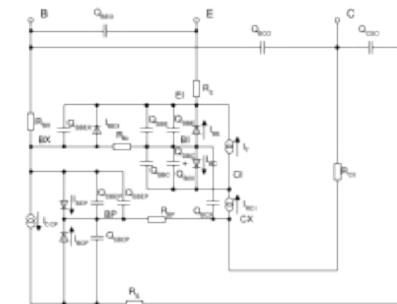
Physics informed ML

Parameter
estimation

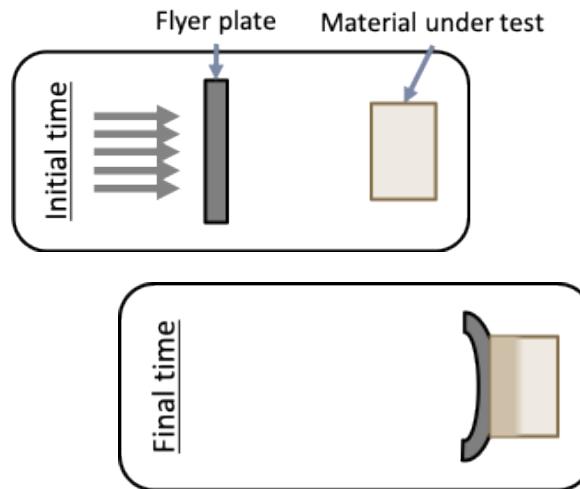
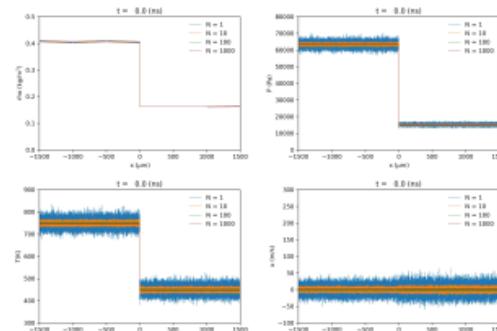
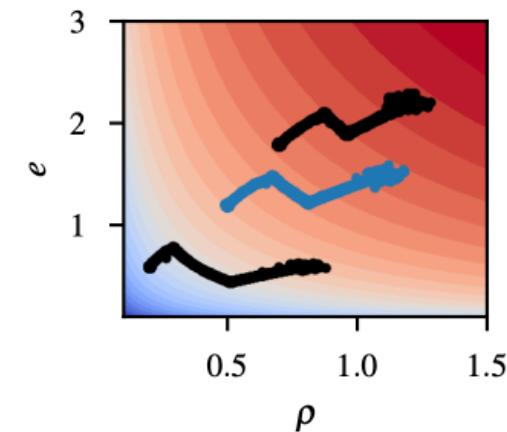
Fewer biases
More expressive

More biases
More exploitable structure

Data-driven modeling at SNL



Can high-fidelity E&M simulations for semiconductors be encoded as efficient circuit models?



Can a data-driven EOS be extracted from observations of Riemann problems at high energy states

Exact physics treatment and solvability guarantees are critical

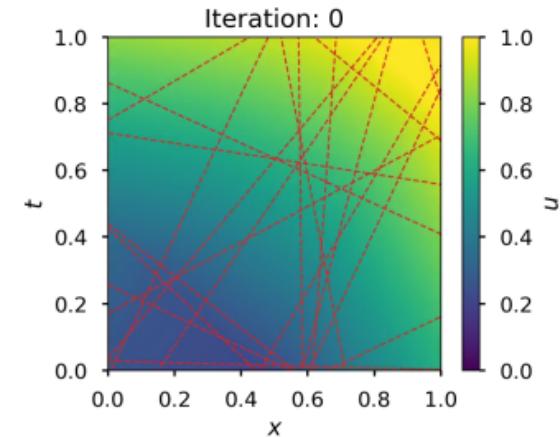
The state-of-the-art in physics-informed ML

Make list of desired features and penalize them after the fact:
 PDE structure, BC, IC, conservation, etc.

$$\mathbf{L} = \mathbf{L}_{data} + \epsilon \mathbf{L}_{physics}$$

$$\mathbf{L} = \|u_{data} - \mathcal{NN}\|_{\ell_2}^2 + \epsilon \|\mathcal{L}[u_{data}] - \mathcal{L}[\mathcal{NN}]\|_{\ell_2}^2$$

Key Challenges:



Our applications need physics to hold exactly – not just by penalty
 e.g. electromagnetics, fluid mechanics

What happens when the governing PDE and material parameters are unknown – is it still possible to impose physical constraints?

If physics can be imposed *exactly* then a source of uncertainty is eliminated

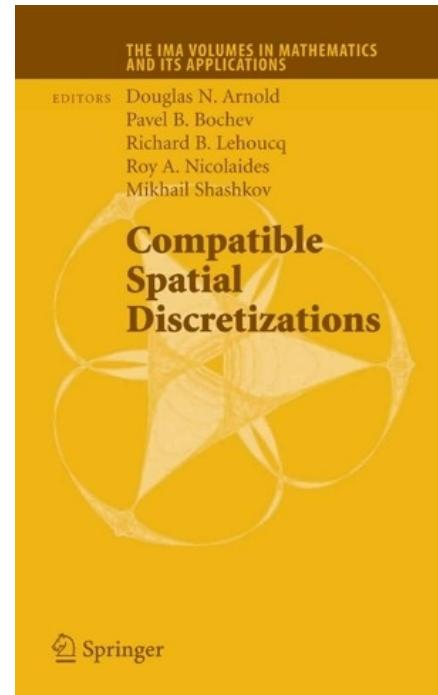
What are physics compatible discretizations for PDEs?

Methods for solving PDEs which:

Use generalized Stokes theorems to approximate differential operators

Preserve topological structure in governing equations

Mimic properties of continuum operators
(thus sometimes called **mimetic discretizations**)



Arnold, D. N., Bochev, P. B.,
Lehoucq, R. B., Nicolaides, R. A.,
& Shashkov, M. (Eds.). (2007).
Compatible spatial discretizations
(Vol. 142). Springer Science &
Business Media.

Two key ingredients:

1: A topological structure

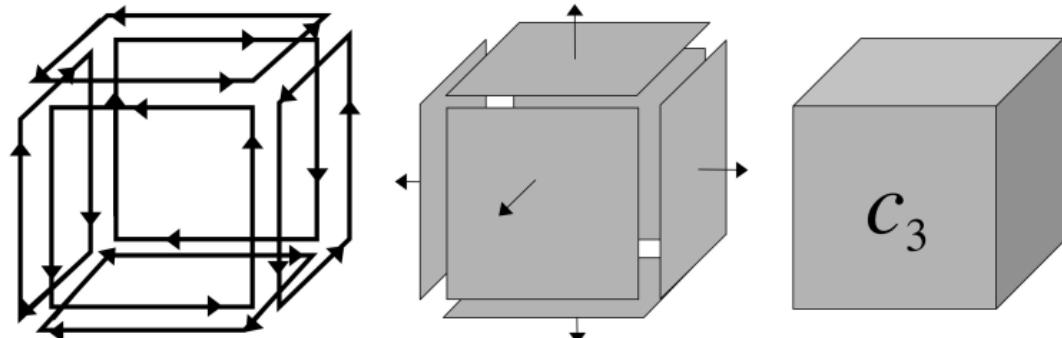
In PDE discretization this is a mesh, with boundary operators linking cells, faces, edges, and nodes

We will use a graph as an inexpensive low-dimensional mesh surrogate

2: Metric information

Measures associated with mesh entities, ensuring discrete exterior derivatives converge to div/grad/curl

Graphs are purely topological with no natural metric, we will use ML to extract metric information from data

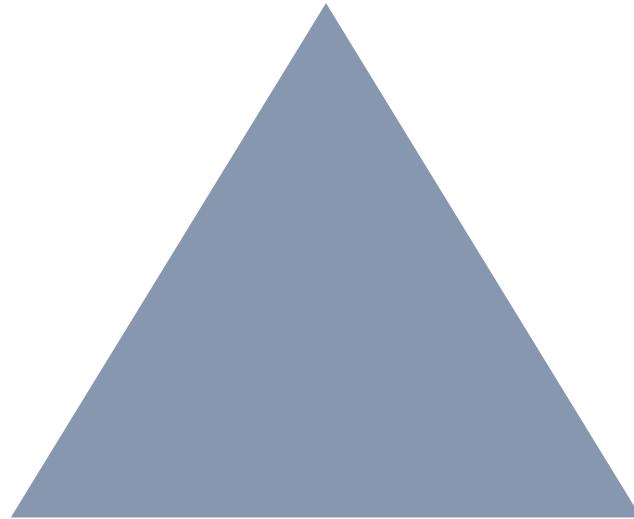
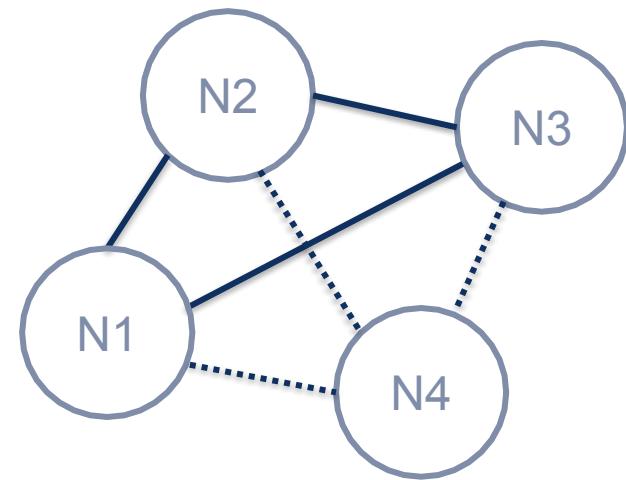


$$0 \leftarrow \partial \partial c_3 \xleftarrow{\partial} \partial c_3 \xleftarrow{\partial} c_3$$

$$\nabla \cdot \mathbf{u} = \frac{1}{\mu(C)} \sum_{f \in \partial C} \int_f \mathbf{u} \cdot d\mathbf{A}$$

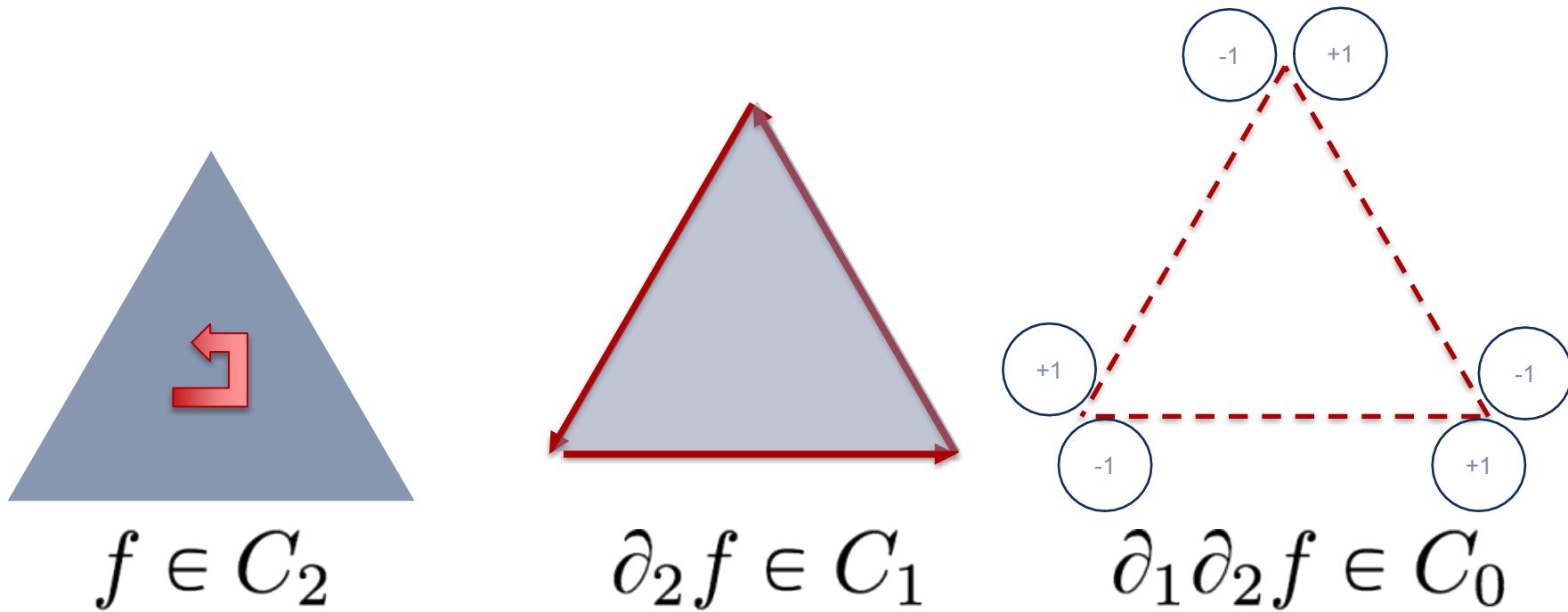
Exterior calculus preliminaries: chain complex

$$C_0 \xleftarrow{\partial_0} C_1 \xleftarrow{\partial_1} C_2 \xleftarrow{\partial_2} C_3$$



Compat. PDE	Comb. Hodge
Mesh entities	K-cliques

$$C_0 \xleftarrow{\partial_0} C_1 \xleftarrow{\partial_1} C_2 \xleftarrow{\partial_2} C_3$$



Exact sequence property: $\forall k, \partial_k \partial_{k+1} = 0$

Exterior calculus preliminaries: cochain complex

$$C_0 \xleftarrow{\partial_0} C_1 \xleftarrow{\partial_1} C_2 \xleftarrow{\partial_2} C_3$$

$$C^0 \xrightarrow{d_0} C^1 \xrightarrow{d_1} C^2 \xrightarrow{d_2} C^3$$

Coboundary operators define maps $d_k : C^k \rightarrow C^{k+1}$ satisfying $d_{k+1}d_k = 0$

Boundary and coboundary operators satisfy the *generalized Stokes theorem*

$$\int_{\omega} du = \int_{\partial\omega} u$$

Comb. Hodge	Compat. PDE
$grad[s](i, j) = \int_{e_{ij}} \nabla s \cdot d\mathbf{l} = s_j - s_i$ $curl[X](F) = \int_F \nabla \times X \cdot d\mathbf{A} = \sum_{e \in \partial F} \int_e X \cdot d\mathbf{l}$	$grad[s](i, j) = s_j - s_i$ $curl[X](i, j, k) = X_{ij} + X_{jk} + X_{ki}$

Traditional DEC

$$C_0 \xleftarrow{\partial_1} C_1 \xleftarrow{\partial_2} C_2 \xleftarrow{\partial_3} C_3$$

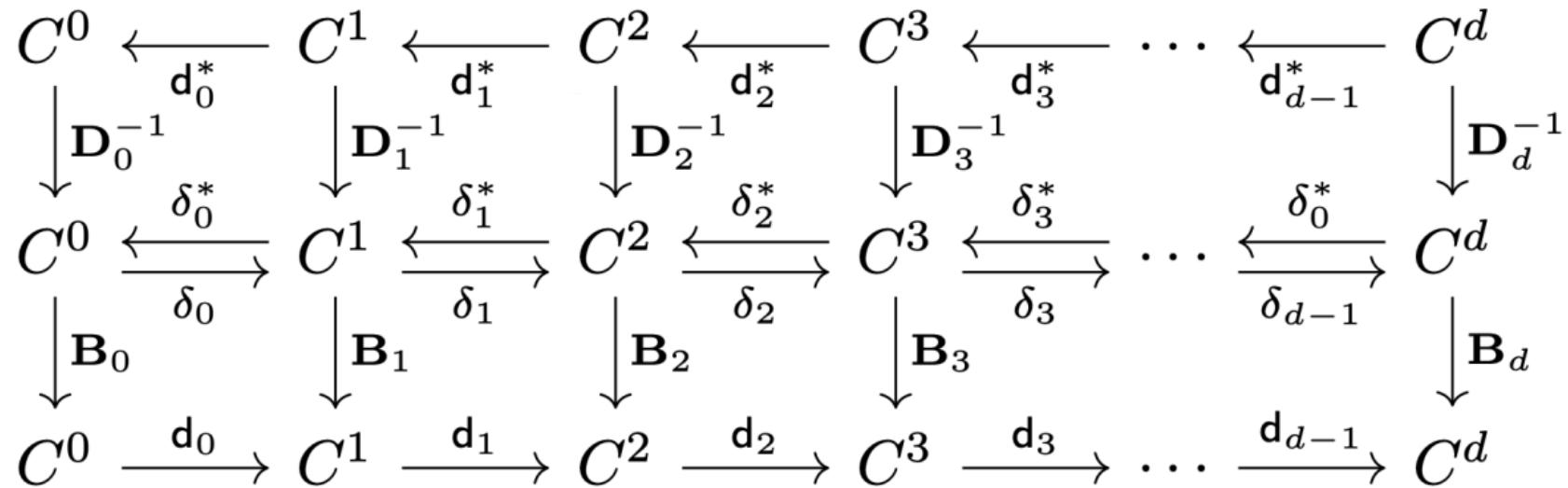
$$C^0 \xrightarrow[d_0]{\quad} C^1 \xrightarrow[d_1^\star]{\quad} C^2 \xrightarrow[d_2^\star]{\quad} C^3$$

Introducing inner products $(\cdot, \cdot)_k$, we define the *codifferential* operator $d_k^\star : C^{k+1} \rightarrow C^k$ as

$$(v, d_k^\star u)_k = (d_k v, u)_{k+1}$$

Again, $d_{k-1}^\star * d_k^\star = 0$

A data-driven exterior calculus (DDEC)



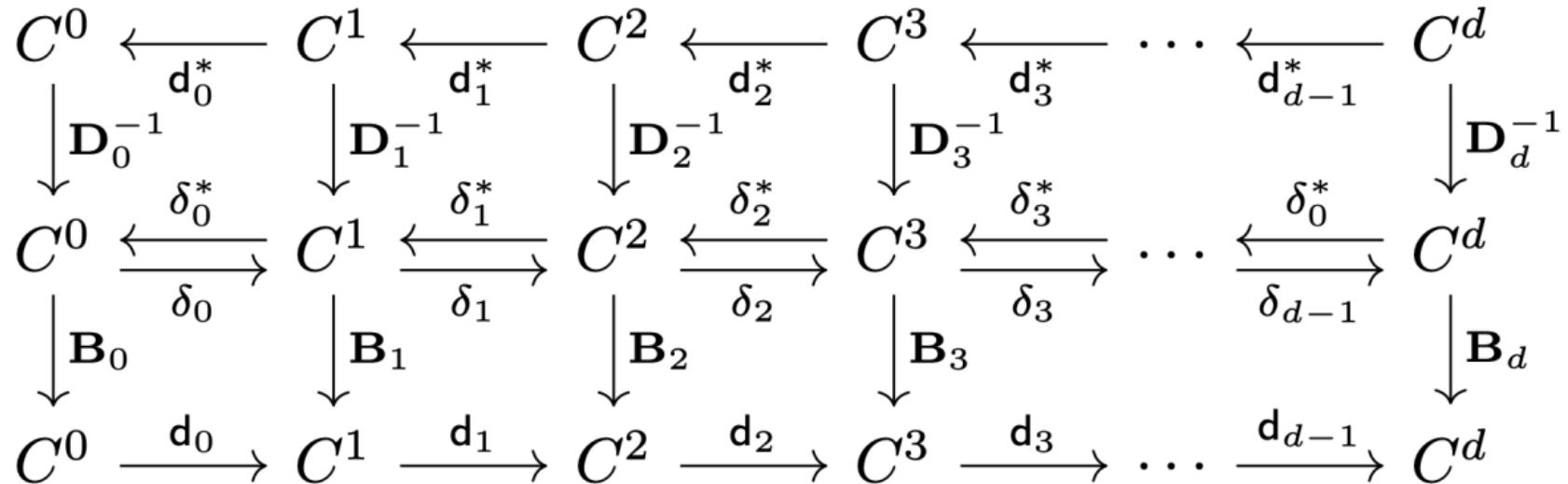
Idea: Take graph calculus and introduce learnable inner products

$$(x, y)_{\mathbf{B}_k} = x^T \mathbf{B}_k y$$

$$(x, y)_{\mathbf{D}_k} = x^T \mathbf{D}_k y$$

to find data-driven exterior calculus operators that inherit the structure of graph exterior calculus

What does all this give you?



- Differential operators which locally and globally conserve fluxes, circulations, potentials
- Invertible Hodge Laplacians $\Delta_k = d_{k+1}^* d_{k+1} + d_k d_{k+1}^*$
- Exact sequence properties $d_{k+1} d_k = d_k^* d_{k+1}^* = 0$
- Hodge decomposition $u = d^* \alpha + d \beta + \gamma$
- Corollary: treatment of nontrivial null-spaces in electromagnetism

Theorems...

Theorem 3.1. The discrete derivatives \mathbf{d}_k in (11) form an exact sequence if the simplicial complex is exact, and in particular $\mathbf{d}_{k+1} \circ \mathbf{d}_k = 0$. In \mathbb{R}^3 , we have $\text{CURL}_h \circ \text{GRAD}_h = \text{DIV}_h \circ \text{CURL}_h = 0$.

Theorem 3.2. The discrete derivatives \mathbf{d}_k^* in (11) form an exact sequence of the simplicial complex is exact, and in particular $\mathbf{d}_k^* \circ \mathbf{d}_{k+1}^* = 0$. In \mathbb{R}^3 , $\text{DIV}_h^* \circ \text{CURL}_h^* = \text{CURL}_h^* \circ \text{GRAD}_h^* = 0$.

Theorem 3.3 (Hodge Decomposition). For C^k , the following decomposition holds

$$C^k = \text{im}(\mathbf{d}_{k-1}) \bigoplus_k \ker(\Delta_k) \bigoplus_k \text{im}(\mathbf{d}_k^*), \quad (17)$$

where \bigoplus_k means the orthogonality with respect to the $(\cdot, \cdot)_{\mathbf{D}_k \mathbf{B}_k^{-1}}$ -inner product.

Theorem 3.4 (Poincaré inequality). For each k , there exists a constant $c_{P,k}$ such that

$$\|\mathbf{z}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq c_{P,k} \|\mathbf{d}_k \mathbf{z}_k\|_{\mathbf{D}_{k+1} \mathbf{B}_{k+1}^{-1}}, \quad \mathbf{z}_k \in \text{im}(\mathbf{d}_k^*),$$

and another constant $c_{P,k}^*$ such that

$$\|\mathbf{z}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq c_{P,k}^* \|\mathbf{d}_{k-1}^* \mathbf{z}_k\|_{\mathbf{D}_{k-1} \mathbf{B}_{k-1}^{-1}}, \quad \mathbf{z}_k \in \text{im}(\mathbf{d}_{k-1}).$$

Thus, for $\mathbf{u}_k \in C^k$, we have

$$\inf_{\mathbf{h}_k \in \ker(\Delta_k)} \|\mathbf{u}_k - \mathbf{h}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq C \left(\|\mathbf{d}_k \mathbf{u}_k\|_{\mathbf{D}_{k+1} \mathbf{B}_{k+1}^{-1}} + \|\mathbf{d}_{k-1}^* \mathbf{u}_k\|_{\mathbf{D}_{k-1} \mathbf{B}_{k-1}^{-1}} \right),$$

where constant $C > 0$ only depends on $c_{P,k}$ and $c_{P,k}^*$.

Theorem 3.5 (Invertibility of Hodge Laplacian). The k^{th} -order Hodge Laplacian Δ_k is positive-semidefinite, with the dimension of its null-space equal to the dimension of the corresponding homology $H^k = \ker(\mathbf{d}_k) / \text{im}(\mathbf{d}_{k-1})$.

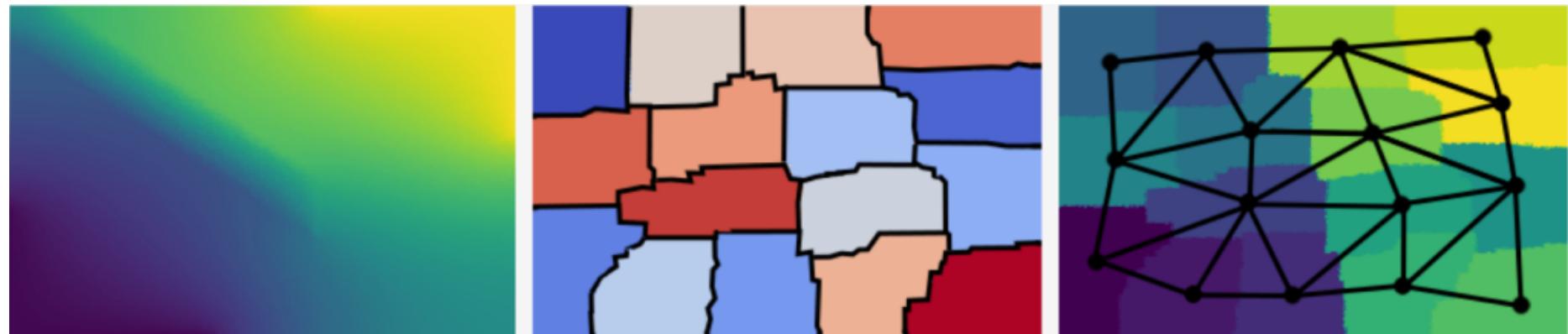
Using DDEC to discover structure preserving surrogates

$$\nabla \cdot \mathbf{F} = f$$

$$d_0^\star \mathbf{F} = f$$

$$\mathbf{F} + \kappa \nabla \phi = 0$$

$$\mathbf{F} + \xi d_0 \phi + \mathcal{N}_\eta(\phi) = 0$$



High-fidelity PDE
solution

Apply graph-cut to
coarse-grain
chain complex

Average over
partitions to obtain
training data

General optimization problem

Fluxes:

$$\mathbf{w}_{k+1} = \mathbf{d}_k \mathbf{u}_k + \epsilon \mathcal{N} \mathcal{N}(\mathbf{d}_k \mathbf{u}_k; \xi),$$

Conservation:

$$\mathbf{d}_{k-1}^* \mathbf{d}_{k-1} \mathbf{u}_k + \mathbf{d}_k^* \mathbf{w}_{k+1} = \mathbf{f}_k.$$

→ $a(\mathbf{v}, \mathbf{u}; \mathbf{B}, \mathbf{D}) + N_{\mathbf{v}}[\mathbf{u}; \xi] = b(\mathbf{v})$

Invertible bilinear
form

Nonlinear
perturbation

If we can fit the model to data while
imposing equality constraint, then
during training we restrict to manifold
of solvable models preserving physics

$$\underset{\mathbf{B}, \mathbf{D}, \xi}{\operatorname{argmin}}, \|\mathbf{w} - \mathbf{w}_{\text{data}}\|^2$$

such that $\mathcal{L}[\mathbf{w}, \mathbf{u}; \mathbf{B}, \mathbf{D}, \xi] = 0$

Is PDE constraint well posed?

$$a(\mathbf{v}, \mathbf{u}; \mathbf{B}, \mathbf{D}) + N_{\mathbf{v}}[\mathbf{u}; \xi] = b(\mathbf{v})$$

Theorem 3.6. *The equation (24) has at least one solution $\mathbf{u}_k \in \mathbb{V}$ satisfies*

$$\|\mathbf{u}_k\| \leq \frac{\|\mathbf{f}\|}{(C_p - C_N)}. \quad (26)$$

Theorem 3.7. *If $\frac{C_{\nabla N} \|\mathbf{f}\|}{C_p(C_p - C_N)} < 1$, then the equation (24) has at most one solution in \mathbb{V} .*

A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the nonlinear part, following standard elliptic PDE arguments

- Poincare constant easily estimated from matrix eigenvalues
- Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired

“PDE”-constrained optimization

$$\mathbf{L}_{\mathbf{u}, \lambda, \mathbf{B}, \mathbf{D}, \xi} = \|\mathbf{w} - \mathbf{w}_{\text{data}}\|^2 + \lambda^T \mathcal{L}[\mathbf{w}, \mathbf{u}; \mathbf{B}, \mathbf{D}, \xi]$$

$$\mathcal{L}[\mathbf{w}, \mathbf{u}; \mathbf{B}, \mathbf{D}, \xi] = 0$$

- Solve forward problem with current model parameters

An iterative algorithm
guaranteeing exact
enforcement of physics
at each iteration:

$$\mathbf{w}, \mathbf{u} \leftarrow \nabla_{\lambda} \mathbf{L}_{\mathbf{u}, \lambda, \mathbf{B}, \mathbf{D}, \xi} = 0$$

- Solve adjoint problem with current forward solution

$$\lambda \leftarrow \nabla_{\mathbf{u}} \mathbf{L}_{\mathbf{u}, \lambda, \mathbf{B}, \mathbf{D}, \xi} = 0$$

- Apply gradient descent to update model

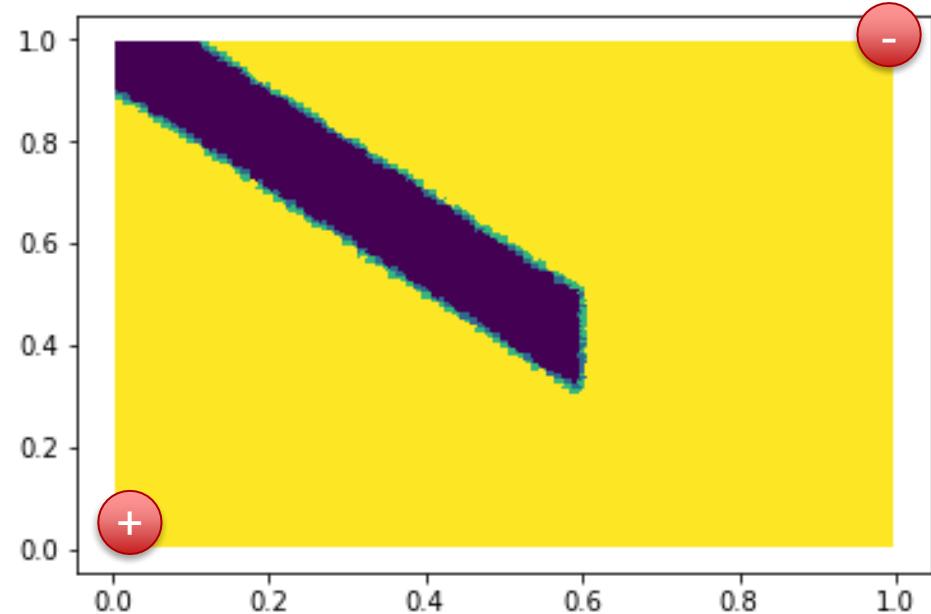
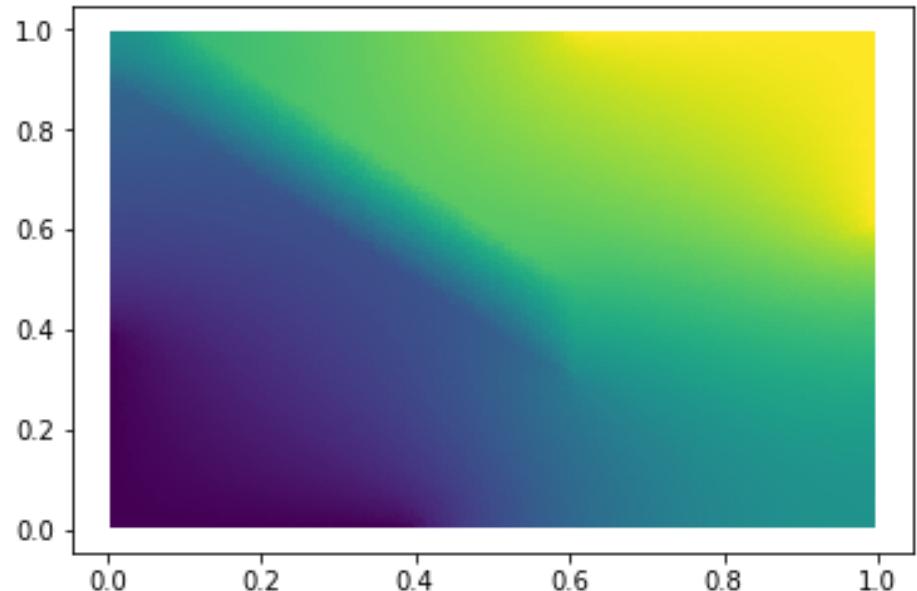
$$\mathbf{B}, \mathbf{D}, \xi \leftarrow \nabla_{\mathbf{B}, \mathbf{D}, \xi} \mathbf{L}_{\mathbf{u}, \lambda, \mathbf{B}, \mathbf{D}, \xi} = 0$$

$$\nabla \cdot \mathbf{F} = f$$

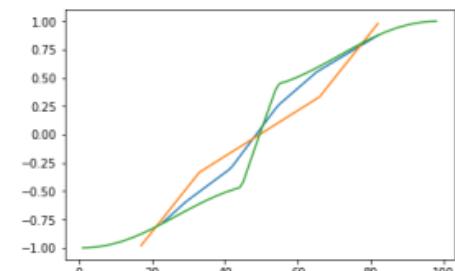
$$\mathbf{F} + \kappa \nabla \phi = 0$$

$$d_0^* \mathbf{F} = f$$

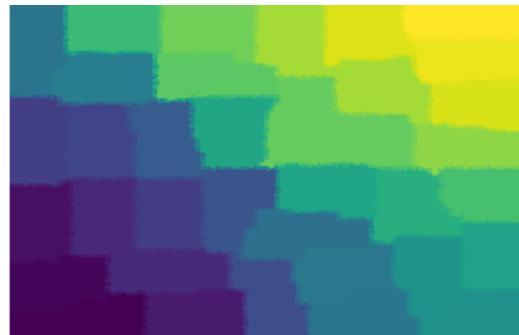
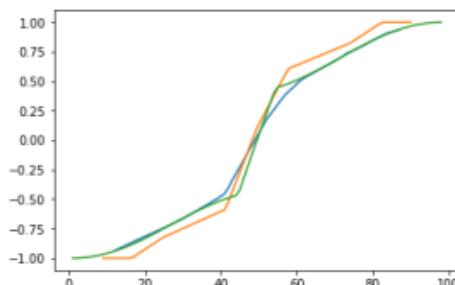
$$\mathbf{F} + \xi d_0 \phi + \mathcal{N}_n(\phi) = 0$$



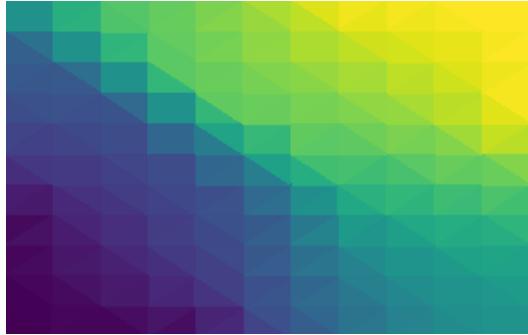
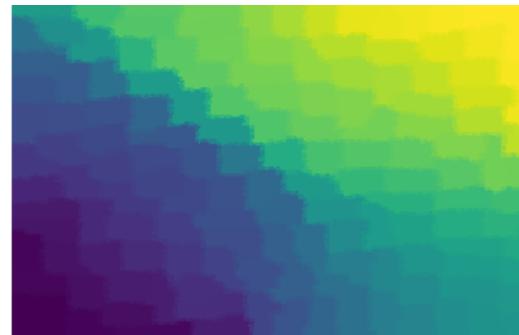
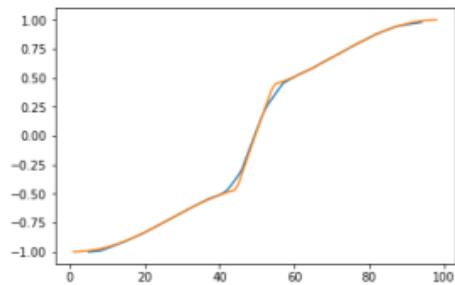
$N = 2^2$



$N = 5^2$



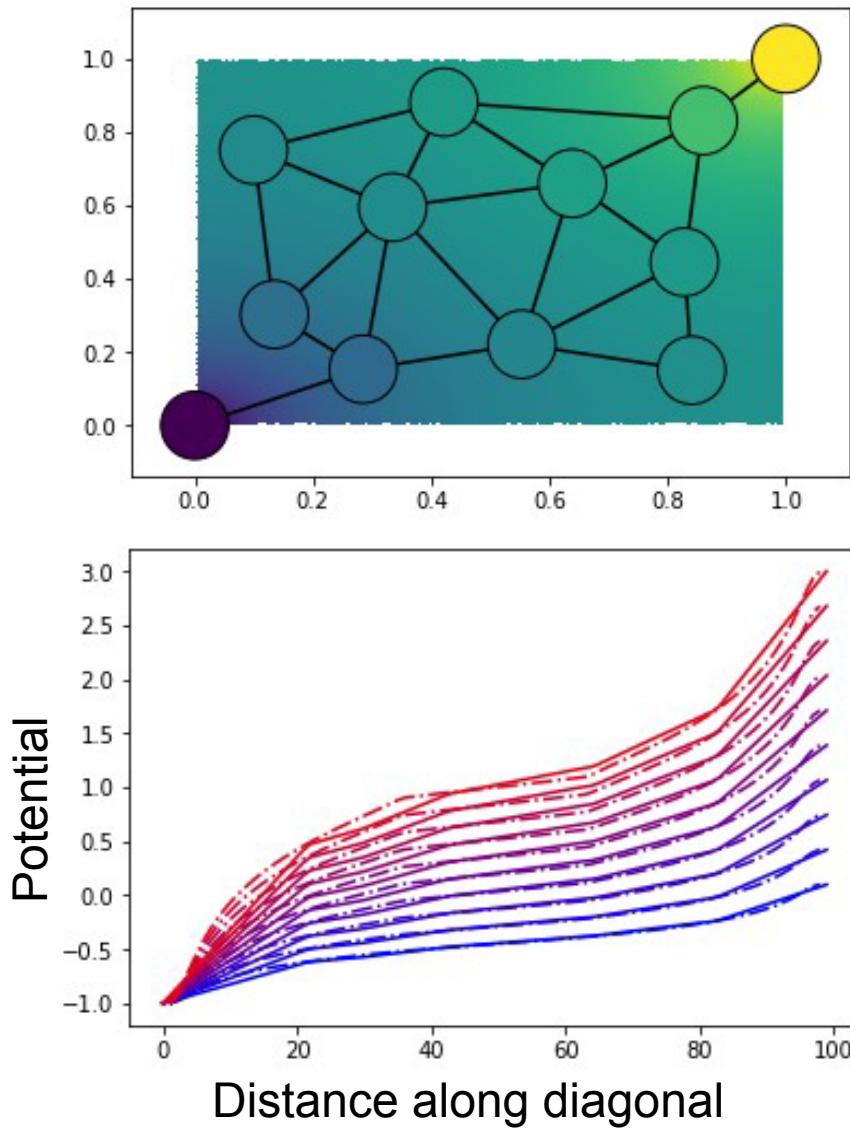
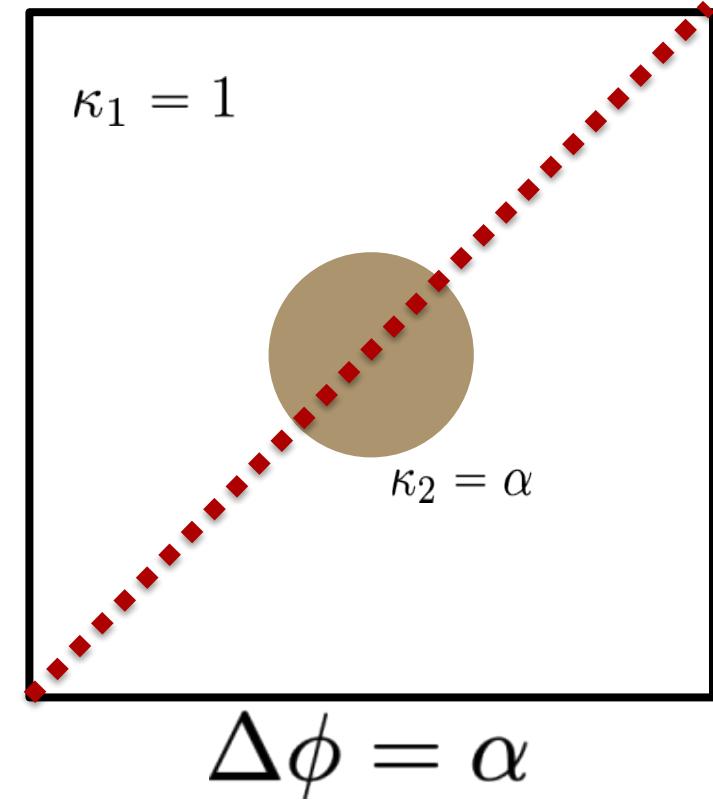
$N = 10^2$



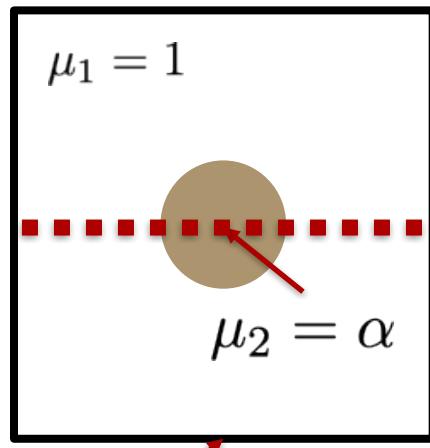
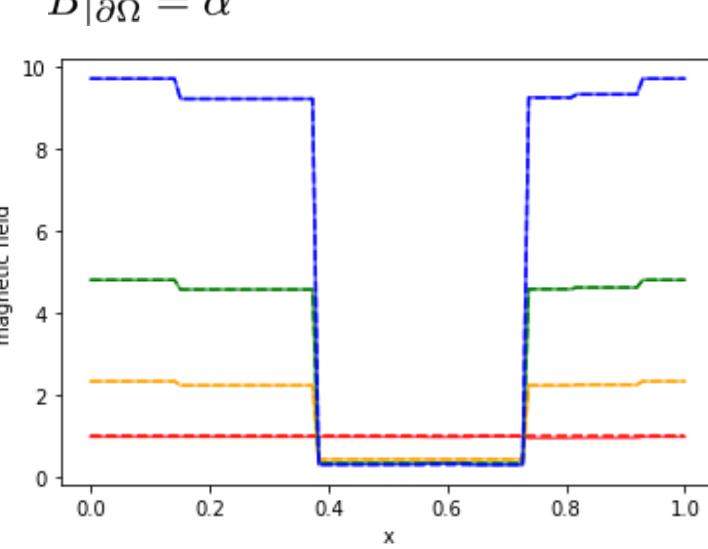
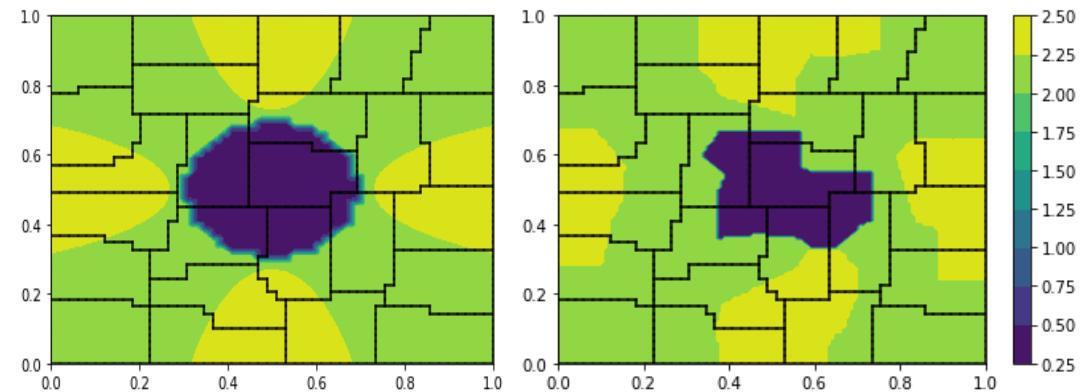
Comparison of pressure for same # DOF for FVM (left) and DDEC (center)

Right: profile along diagonal shows better fit to solution (green) by DDEC (blue) vs FVM (orange)

Nonlinear Darcy: potential profile across diagonal



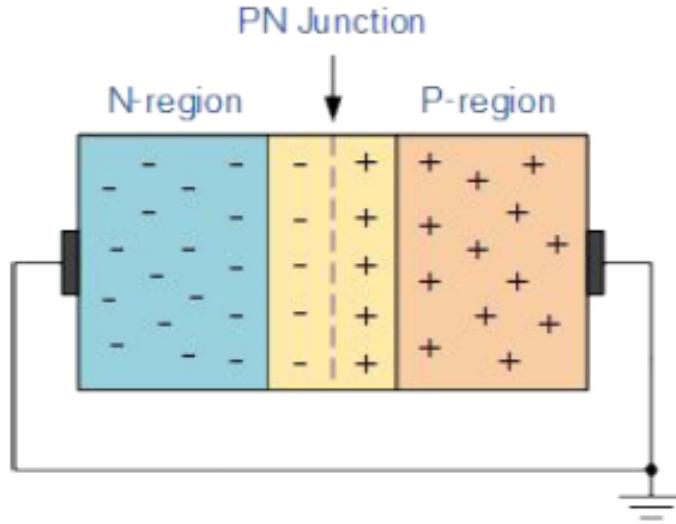
Magnetostatics



Extracted surrogate:
Is exactly div free
Provides sharp interfaces
Conserves circulation
Guaranteed solvable
Generalizes to other BCs

Compact models for semiconductors: PN-diode

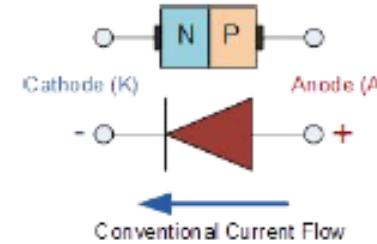
https://www.electronics-tutorials.ws/diode/diode_3.html



$$\nabla \cdot \epsilon \nabla \phi = -(p - n + N_D^+ - N_A^-)$$

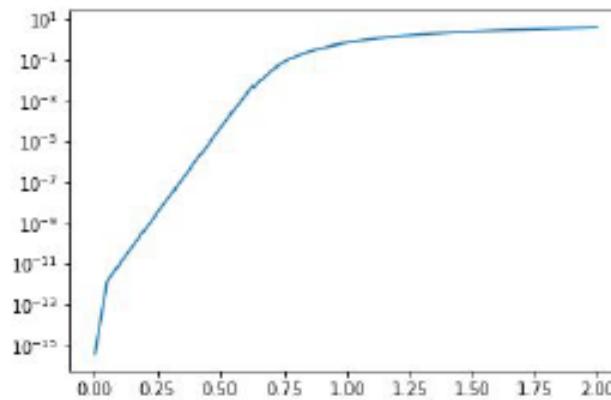
$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot (-\mu_n n E - D_n \nabla n) - R_n(n, p)$$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot (\mu_p p E - D_p \nabla p) - R_p(n, p)$$

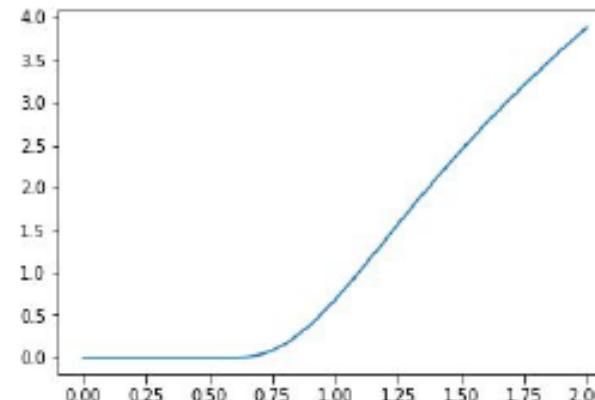


Traditional compact models fit ideal diode + resistor, and can be tuned to match either small or large voltage regimes

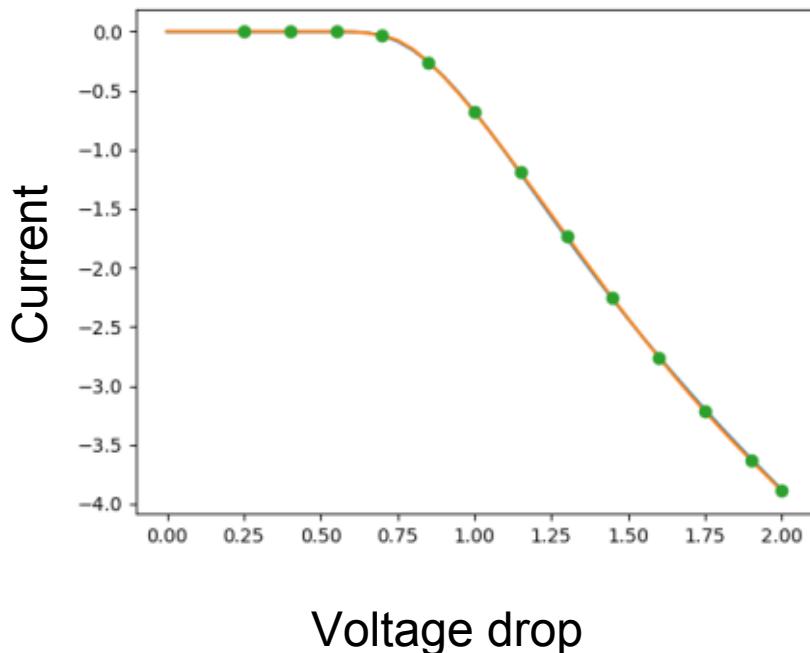
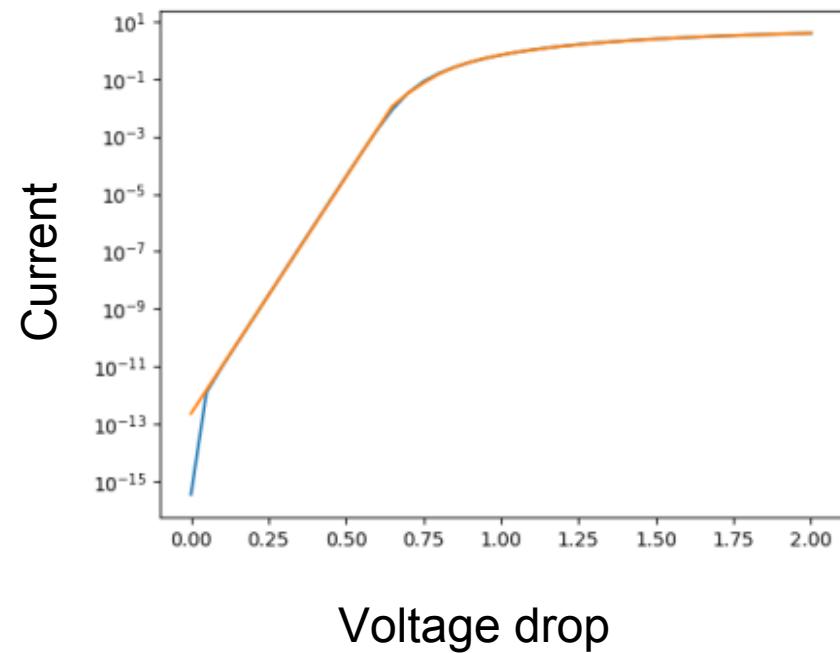
Locally exponential:
I.D. model



Locally linear:
resistor model



Matching IV-curve – linear scale



Extract a conservative surrogate accurate over
fifteen orders of magnitude

May be embedded in a circuit simulator (e.g. Xyce) to
couple coarse-grained high-fidelity PDE model in
multiscale model w/ millions of components

Acknowledgements

- **PHILMs – Physics Informed Learning Machines** for multiscale/multiphysics problems
 - ASCR MMICCs center at the intersection of machine learning and scientific computing
 - PI: George Karniadakis
 - SNL team: Mike Parks (PI), Pavel Bochev, Marta D'Elia, Mamikon Gulian, Ravi Patel, Mauro Perego, Nathaniel Trask
- **PIRAMID – Physics Informed Rapid and Automated ML** for compact model development
 - SNL LDRD to extract efficient compact circuit models from high-fidelity PDE simulation
 - Team: Andy Huang (PI), Xujiao Gao, Shahed Reza, Nathaniel Trask
- **DOE Early Career – Physics informed graph neural networks** for multiscale physics

Applications

Non-equilibrium closures for autoignition in turbulent combustion

Pulse shaping for pulsed power fusion applications on Z-machine

Development of surrogate models for radiation modeling of circuits

Fracture mechanics closures for ice sheet models

Multiscale modeling of lithium-ion batteries during failure

Multiscale closure for subsurface flow through fracture networks

Multiscale data-driven closures for kinetic effects and turbulence in plasmas

Several new projects – please contact for postdoc/collaboration opportunities
(natrask@sandia.gov)