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Hydrogen is valued as a clean source of energy, but storage and transport of hydrogen in its gas
form is a challenge due to low energy density and safety issues. Liquid organic hydrogen carriers
(LOHCs) are organic compounds with covalently bonded hydrogen that can act as hydrogen
batteries for long-term hydrogen storage since they can be catalytically dehydrogenated and
hydrogenated. ldeal LOHCs should be able to be easily transported, reversibly bond to hydrogen,
and integrate with current liquid fuel infrastructure. Catalysts for LOHC cycling should have
favorable thermodynamic conditions, and ruthenium catalysts are good candidates. As part of the
HyMARC effort (www.hymarc.org), we are investigating reversible hydrogen storage in LOHCs
based on aliphatic polyalcohols. Here, we present results of reversible dehydrogenation of
ethylene glycol in the presence of homogeneous and heterogeneous ruthenium catalysts with
pincer-type ligands.

Objective: To heterogenize Ru-catalysts with a silica support to improve the dehydrogenation and
hydrogenation of hydrogen from ethylene glycol.

Reaction scheme

Experimental setup

The reaction is carried out in an Parr

Parr bomb setup

bomb autoclave to prevent hydrogen
gas from escaping.

Dehydrogenation conditions: 0.02
mmol catalyst, 0.04 mmol tBuOK, 2
mmol EG. For reactions with
solvent: 1 mL toluene, 1 mL DME.
The forward reaction was carried out
over 72 hours at 150 °C, with gas
collection at 24 hour timepoints.

Hydrogenation conditions: 40 bar
hydrogen gas at 150 °C for 48 hrs.
Afterwards, the Parr bomb was
charged with hydrogen to
regenerate the starting materials.
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0.02 mmol Ru-4, 0.04 mmol tBuOK, 1:1 DME:tol, 2 mmol EG
0.0019 mmol Ru-4@SBA-15, 1:1 DME:tol, 2 mmol EG
0.02 mmol Ru-MACHO, 0.04 mmol tBuOK, 1:1 DME:tol, 2 mmol EG

Ru-4 homogeneous catalyst was our base line to repeat Milstein’s experiment (34 mL of H:z with
43% conversion). We successfully produced 28 mL of H2 with 46% conversion. Ru-4 @ SBA-15
produced the least gas. Ru-Macho produced the most gas in 24 hrs and the most gas overall.
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Ru-4@SBA-15 2nd cycle dehydrogenation
Ru-Macho 2nd cycle dehydrogenation
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Ethylene glycol (EG) is renewable and inexpensive and theoretically has a hydrogen storage
capacity of 6.5 wt%. The liquid to liquid dehydrogenation of EG is catalyzed by a Ru-catalyst, and
the product is a polymer of EG with varied lengths. And depending on number of polymer units,
this reaction has a hydrogen storage capacity from 3.25 to 6.5 wt%. Furthermore, this reaction is
reversible, as the ester oligomer will decompose into ethylene glycol after a hydrogenation
reaction with the same Ru-catalyst.
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State-of-the-art Ru-catalysts

Professor David Milstein’s group b ol ‘Bu
published a series of ruthenium L ‘}P“FU
: " N—RU—CO
pincer complexes that catalyze q \
reversible hydrogen storage Et*’m“a
using various LOHCs, including
ethylene glycol. The catalyst is
typically activated by the
removal of the CI ligand with a
base. We chose these catalysts
because they are well studied
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We used procedures published by
Goni et al. to anchor Ru-4 on
silica (Ru-4 @ SBA-15) through a
Mannich reaction. This
heterogenized catalyst could
activate and generate hydrogen
gas without the addition of base.
We hypothesize this is due to
unanchored amine groups.
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to anchor Ru-catalysts to silica
without loss of reactivity.

[ u CO

I
\\' El iH'I TEt et Cl, |

ALl /‘Bu
CH —

“Et 2 E‘/T l‘H '[’ Bu

H Ha C]/\j

|
R '_
v .n"
N GH:
=
NH;
U w
NN N N

2
NH
HN
CH CH z

—~0-Si 0-5; 0—si-o0- si—0—
| \ \
e o

Te
—Ru
HY |
Hzc N
co
B \\CI El

—_——

H
P
1,4-dioxane

CH;
OH-.Si-O—S'{“CVSi--O_‘

/
o o \0

th T .

( "Ru’.
/ | Speen,
H‘\__/

Cl

[ Hughes, Structural Investigations of Silica Polyamine Composites: Surface Coverage, Metal lon Coordination, and Ligand Modification. Ind. Eng. Chem. Res. 2006, (45, 6538-6547).

Ru-Macho is a commercialized Ru-catalyst that in inexpensive in
comparison to Milstein’s catalysts. It has a similar structure, with Ru-N and
Ru-H bonds, which have been reported to be essential to the mechanism of
the dehydrogenation reaction.
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NMR characterization
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Nuclear Magnetic Resonance (NMR) spectra
were collected after the catalytic
dehydrogenation reaction (bottom spectra),
as well as after the hydrogenation reaction
(top spectra). Our results indicate that Ru-4
and Ru-Macho are efficient in regenerating
ethylene glycol under hydrogen, whereas the
anchored Ru-4@SBA-15 only catalyzes the
dehydrogenation reaction.

Summary and conclusions

We showed that both homogenous and heterogenous
Ru pincer catalysts efficiently generate H: from EG.
Our NMR data indicates anchored Ru-4 @ SBA-15
cannot regenerate EG under hydrogen pressure.
Future experiments are planned using a high-
throughput Parr reactor to probe the origin of catalytic
activity and mitigate the deactivation of the
heterogeneous catalyst.

We will also plan to mount the most active catalyst,
Ru-Macho, on silica, with the goal of making a more
efficient Hz cycling catalyst
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