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Introduction

Sandia is investing internal funds through the lab directed research and development (LDRD) program to support
sensor emplacement through precision drilling.

The goal is to help support the aging wellbore infrastructure by providing a means of targeted sensor emplacement
to detect leaks or other wellbore integrity issues. The LDRD is focused on several aspects of this including drilling to
the formation from within the confines of wellbore, leak detection analysis, and long-term sensor emplacement.

The work being presented supports the drilling effort by helping to detect material and material transitions (e.g.
casing to cement, cement to formation) to precisely drill for sensor placement when deploying from within the
wellbore.

Wellbore Integrity is a significant environmental and energy security problem for our nation
30% of the 4 million wells worldwide show signs of integrity issues (Davies et al., 2014)

Current industry paradigms for well design include using cement as a barrier, however many cementing problems go
undetected (Yakimov, 2012)

The ability to detect material transitions has far-reaching applications that extend beyond wellbore sensor
emplacement. Potential applications include utilities installation and other access-limited drilling environments.



Challenges and Approach

* Wellbore integrity assessment relies on a combination of indirect
measurements (through casing) and models to assess these very

complex systems
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Current methodologies

* Existing methods require fiber optic or sensor placement during well
construction
* Expensive, technically challenging, could introduce fluid leaks

* Applies only to NEW wellbore installation—does not address aging wells that
may be failing

* Our approach would entail intentionally breaching the casing in a
controlled manner to enable precise assessment
* Enables the future development of smarter, effective, remediation

technigues/materials that are tailored to the wellbore flaw, reducing risk to
the entire well



Focus

Simulate wellbore drilling using benchtop set-up and wellbore material sandwich samples

Data analysis to characterize mechanisms of micro-drilling in wellbore material (shale, cement, steel)
* Develop ability to predict properties and transitions ahead of drilling
* Enables optimization of drilling conditions to suit wellbore formation
* Enables precise placement of sensor package for long term monitoring

Detect active material transitions while drilling using real time temporal kurtosis

Foundational step towards the development of fully autonomous well drilling that could
automatically adjust drilling parameters to minimize or avoid drilling dysfunctions



Bench Top Testing Set-up

* Simulates micro-drilling into a wellbore casing

e Consists of:

* Carriage mounted spindle
actuated using servo driven ball

* Linear rail guides
* Plastic shield for protection
* LabView data acquisition system

* Bi-axial load cell coupled to test
samples via test carrier—
measures force and torque
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Test Samples

* Simulates materials in a wellbore—shale,
cement, and 1018 steel

* Bonded together with epoxy

e Samples were made with the materials in
different orders and separately
* Allows better understanding of the force

interaction between the drill and the individual
material
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Drilling Data Analysis

e “Standard” data was collected at 1800 RPM with a 4.5 in/min feed
rate using a 1/8 inch drill bit

* Force and torque data were collected from the bi-axial load cell—
highly correlated

 Chose to focus on force data

* Focusing on fewer measurements better simulates real world applications
and makes it easier to scale-up diagnostic tool later

* Early indications show that the force data has a higher SNR than the torque
data which allows for easier statistical analysis



Drilling Data Analysis—Material Sandwich

* Drill through 3 wellbore materials in succession, but in different
order for each sample

* Shows unique force signature for each given material (steel,
cement, shale) independent of drilling order

Cement-Steel-Shale Sample, Steady Feed, 1800 RPM, 4.5 in/fmin
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Drilling Data Analysis-Individual Material

* Also shows unique force signature for each material
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Drilling Data Analysis—Shale

* Nonhomogeneous composition that could cause unexpected
force variability from sample to sample

Shale Only Example 1, 1800 RPM, 4.5 infmin
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Drilling Data Analysis—Temporal Kurtosis

Shows the extreme values of either tail of a distribution representing the “tailedness” of
the distribution (Decarlo, 1997, Song and Cha, 2016)
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* |dentify any rapid changes in the force data which we hypothesize to be related to the
drill’s transition between materials in real time

* Temporal kurtosis was chosen for a variety of reasons:

* Variance alone proved to not be a reliable statistical measurement so we decided to look at
higher order statistics

* Simple measurement that could be performed quickly in real time and used as a feedback to our
control system



Drilling Data Analysis—Shale Cement
Comparison

* Greatest Similarity observed between shale and cement materials

* Noticeable difference between variance observed in force data
between the shale and cement materials

* Compared temporal variance between cement and shale materials

* Highlights inhomogeneous nature of the shale material versus the
cement material
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Shale Test # TEII.lp oral Cement Test # TEII.lp oral
Varlance Varlance
Shale 1 0.5773 Cement 1 0.2278
Shale 2 1.2759 Cement 2 0.2117
Shale 3 1.6078 Cement 3 0.2199
Shale 4 0.9323 Cement 4 0.2326
Shale 5 1.3284 Cement 5 0.2114
Shale 6 1.2656 Cement 6 0.2316
Shale 7 3.6535 Cement 7 0.2186
Shale 8 4.0809 Cement 8 0.2232
Shale 9 0.8130 Cement 9 0.2694
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Algorithm/Benchtop Set-up Integration

* Kurtosis analysis was modified for real time analysis and integrated
into the benchtop drilling software

* Integrated using a built-in LabView moving average function with a mean
window size of 10
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* Hypothesis—a kurtosis value that varies far from a Gaussian
distribution of 3 will indicate the drill is actively transitioning between
materials



Algorithm/Benchtop Set-up Integration
Conclusions

* A kurtosis value of around 3 is observed when drilling in a constant
material

* When the drill actively transitions between materials a dip in the
kurtosis value to around 1 is observed

* Kurtosis computation can be used in a real time capacity to
determine active material transitions



Algorithm/Benchtop Set-up Integration
Results Example 1

LabView Kurtosis Analysis
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Algorithm/Benchtop Set-up Integration
Results Example 2

LabView Kurtosis Analysis Example 2
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Future Work

* Develop thresholding algorithm to help distinguish what material the
drill is currently drilling through

* Leverage SNR and variance data
* Consider using torque data to further analyze and develop algorithm
* Determine whether there is a frequency dependence with variance
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