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distribution, so an effect on laser damage is also likely.

| \ Why study the effect of humidity on laser damage?

* Qur coated optics are used in a variety of environments, however, laser damage
tests are typically conductedin a dry environmentfor standardization purposes.

* The coating process (electron beam evaporation) produces coatings that are porous
and consequently absorb water from the ambientenvironment. In general, the
absorbed water can impact a coating’s spectral performance and electric field
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5 \ Electric Field Intensity for 1064 nm, Normal Incidence
(Optilayer model)
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\ 300  Humidityprovides
9 significantlaser damage

increase at 532 nm

6 \ Electric Field Discussion

« At both 532 nm and 1064 nm, peak intensities occur in SiO, layers.
This is advantageous because SiO, has a higher damage threshold
compared to HfO,.

« The situation at 532 nm is a little worse since this is higher photon
energy, and both SiO, layers experience peak intensities, so they are
both vulnerable to damage. At 1064 nm, only the outermost SiO,
layer experiences the peak intensity.

« Therefore, we expect laser damage thresholds to be lower at 532 nm.

« We do not expect significant changes in the electric field distribution
between 0% and 40% relative humidity because there was negligible
spectral shift.
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, \ Laser Damage Testing: Raster Scan Method

1 cm? area
Performed by Spica Technologies (NIF-MEL protocol) I
Raster-scan method includes 2500 overlappingsitesin 1 cm? area i !
Spot diameter (1/e?): i
= 1.04 mm (for wavelength 1064 nm) I
= 1.01 mm (for wavelength 532 nm) —_—
Pulsewidth (FWHF): 3.5 ns 2500 test sites

Beam Profile: TEMy,
Initial fluenceis setto 1 J/cm?, and is increased in 1 J/cm? increments after each scan of the 2500 sites.

The tests were conducted at 0% and 40.5% relative humidity and normal incidence. Spica allowed each
sample to reach a steady state with the environment by keeping the sample at the humidity condition
for 12 hours before performing the laser damage test.

Laser damage threshold fluence is set by whichever occurs fist:
= Occurrence of 25 non-propagating damage sites (i.e. ~1% of the coating area is damaged)

= Occurrence of 1 propagating damage site

Reasons for using this type of damage test: it covers a “large” area, so damage due to defects are better
accounted for.

. \ Results: Humidity can improve laser damage thresholds at 532 nm

- Damage was defect-based: both samples reached their damage
threshold fluence due to the accumulation of 25 non-propagating
damage sites.

« At 1064 nm, the laser-induced damage thresholds at 0% and 40.5% RH
were similar. There was very slight improvement at 1064 nm.

» At 532 nm, the laser-induced damage thresholds at 40.5% RH were
roughly two times higher than those measured at 0% RH. The
underlying mechanisms are under investigation.

8 \ Laser Damage Testing: 2 Coatings, 4 Tests Each

1064 nm, 0% RH

Coating #022p-20 » Witness sample #879 1064 nm, 40% RH

Coating #023p-20 » Witness sample #852 532 nm, 0% RH

532 nm, 40% RH
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