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ABSTRACT

This report details work that was completed to address the Fiscal Year 2022 Advanced Science
and Technology (AS&T) Laboratory Directed Research and Development (LDRD) call for
“Al-enhanced Co-Design of Next Generation Microelectronics.” This project required concurrent
contributions from the fields of 1) materials science, 2) devices and circuits, 3) physics of
computing, and 4) algorithms and system architectures.

During this project, we developed Al-enhanced circuit design methods that relied on
reinforcement learning and evolutionary algorithms. The Al-enhanced design methods were
tested on neuromorphic circuit design problems that have real-world applications related to
Sandia’s mission needs. The developed methods enable the design of circuits, including circuits
that are built from emerging devices, and they were also extended to enable novel device
discovery. We expect that these Al-enhanced design methods will accelerate progress towards
developing next-generation, high-performance neuromorphic computing systems.



ACKNOWLEDGMENT

The authors acknowledge the support of Frances Chance, Suhas Kumar, Paul Kuberry, and our
program manager Mike Descour for their invaluable input and feedback during this project.

The authors acknowledge support from Advanced Science and Technology (AS&T) Laboratory
Directed Research and Development (LDRD) program. Sandia National Laboratories is a
multi-mission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LL.C, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NAO0003525. This report describes technical results and analysis. Any subjective views or
opinions that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.



CONTENTS

Summary
1. Introduction
L1. MOBIVALION .o ottt e et e e e e e e e e e e e e
1.2. AI-Enhanced Microelectronics Design . ......... ... ...,
1.3. Al-Enhanced Microelectronics DiSCOVETY . ..........c.iiiiiiiineinenenn...
1.4. Hardware Accelerators and Neuromorphic Architectures ......................
1.5. Neuromorphic Computing .. .........couiiiiti i,
1.6. Al Approaches to Circuit Design .......... ...ttt
1.6.1. Game Theory . ...t e e e
1.6.2. Reinforcement Learning .. .......... ...t
1.6.3. Evolutionary Algorithms ......... ... ... ... i i,
1.7. Building Neuromorphic Circuits using Reinforcement Learning. ................
1.8, Report Outline . . . ..ottt e e e e e et e
2. Methods for RL-based Circuit Design
2. TaSKS . oo
2110 Delay Line . ... e
2.1.2. Signal Detection. . ... ..ottt e
2.1.3. Dendritic Detection . ... .........uuutiti ettt
2.2. Reinforcement Learning . ... ... ...ttt e
2.2.1. Deep Q-Networks .. ...t e
222, SOft ACtOr-CIitiC ... .v ittt e e e e e
2.2.3. Proximal Policy Optimization .................c..o oo,
2.2.4. Hindsight Experience Replay . ....... ... ... .. ...
2.2.5. Modular and Multi-Level Machine Learning (MAMMAL) ..............
2.2.6. Rewards . .......c.iiii
2.2.7. Accelerating RL . ... ... .. . e
2.2.8. Software Implementation ........... ...t
3. Experiments for RL-based Circuit Design
3.1. Delay Line EXperiments . ... ...ttt
3.1.1. Experiment 1: Simple Delay Line .............. ... ... ... ... . ...
3.1.2. Experiment 2: Delay Line with Two Delay Types ......................
3.1.3. Experiment 3: Delay Line with Continuous Parameters .................
3.1.4. Experiment 4: Delay Line with Costs . .......... ... .. ... ... ... oo....
3.1.5. Experiment 5: Delay Line with Time Series Input......................

12

15
15
15
16
16
17
18
18
19
19
21
21

23
23
23
25
28
29
29
30
31
31
31
33
33
34



3.2. Detection EXPEriments . ... ... .ottt
3.2.1. Experiment 6: Simple Delay Gate - Dense Rewards ....................
3.2.2. Experiment 7: Simple Delay Gate - Sparse Rewards....................
3.2.3. Experiment 8: Simple Delay Gate - Curriculum Learning ...............
3.2.4. Experiment 9: Delay Gate with Variable Delays .......................
3.2.5. Experiment 10: Delay Gate with Analog Detectors.....................

3.3. Dendritic Detection EXperiments . .............. oot ..
3.3.1. Experiment 11: Dendritic Delay Line (No Leaks) ......................
3.3.2. Experiment 12: Dendritic delay line (leaky)...........................
3.3.3. Experiment 13: Dendritic Delay Line with Tunable Bias ................
3.3.4. Experiment 14: Dendritic Delay Line with Tunable Leak ...............

3.4, DISCUSSION . oottt ettt e e e e e e e e e e e e e

. Comparing Reinforcement Learning with Evolutionary Algorithms
O ¥ 0] 5 7 15[} o L

4.2, Methods . . ..o e
421, Task ..o
4.2.2. Details of Evolutionary Algorithm ............. ... ... ... ... ... .....

4.3, ReSUItS ..o
4.3.1. Reinforcement Learning .. .......... ...t
4.3.2. Evolutionary Algorithms ............ .. ...

4.4. Discussion and Conclusions. .. ..........o ottt
4.4.1. Circuit Design TIMe .. ......vtuiii it
4.4.2. Circuit Design ACCUIACY . . . ..ottt ittt
4.4.3. Circuit Design Creativity ............c..iiiuiiiiniineineneenn.

. Case Study: Mott Memristors

5.1. MOUVALION . .\ttt e e e e e e
5.2. General Methods . . ... ... e
5.2.1. Mott Memristor Model . .......... .. . i
5.2.2. CIICUILS . oottt et e e e e e e e e
5.2.3. Tunable Parameter Values. .. ............ i,
5.3, RESUILS ..o
5.3.1. Tunable Current Detection Threshold . ............ ... ... ... ... ... ....
5.3.2. Fixed Current Detection Threshold .............. ... ... ... ... .. .. ...
5.4, DISCUSSION . o\ttt ittt et e e e e e

. Novel Device Discovery

6.1, MOUVALION . . .ottt ettt e et e e e e e e
6.2. General Methods . . ... . i
6.2.1. Definingthe Problem ......... ... ... ... . . .
6.2.2. Neural Network Models .......... ... .. i
6.2.3. Training .. ..ottt e
6.2.4. AnalysisMethods .......... .. i
6.2.5. Task .. ..o e

47
47
47
47
47
48
48
49
49
49
49
50

51
51
51
51
53
53
53
53
54
54



6.2.6. Human-Intuitive SOIUtiON . . . . ...t e e 60

6.3. “Novel” Device Generation - Initial Attempt............ ... ... ... oo ... 60
6.4. Decreasing the Number of Componentence Parameters . ....................... 64
6.5. “Correcting” the Problem Formulation...................................... 65
6.6. Expandingthe Library ........ ... . . i 68
6.7. Converting Neural Networks to Explainable Models .......................... 69
6.8, DISCUSSION . . ottt ettt ettt e e e e e e e e e e e e e e 71
6.8.1. SUMMATY . ...t e e 71

6.8.2. Future Work . ... ... o 71

7. Discussion and Conclusions 73
7.1. MAMMAL (Reinforcement Learning) ............ ... .. ..o iiiiiieneen.... 73
7.2. Evolutionary Algorithms . ........ ... . e 74
7.3. Novel Device DISCOVETY . . ..ottt e 74
7.4. Impactand Future Work . . ... ... . 74
References 76
Appendices 81
A. Component Diagrams 81
A.l. Delay COMPONENLS . . ..ottt ettt et e et e 81
A2, Detect COMPONENLS . . ..o vttt ettt ettt e e et e e e e e 82
A.3. Dendritic COMPONENLS . ... ...ttt ettt e e e e 83

B. Summaries of RL experiments 85
B.1. Delay EXperiments . ... ..... ... .ttt 86
B.2. Detect EXperiments . . .. ...ttt e 91
B.3. Dendritic Detect eXperiments. . . .. ...ttt ettt 97
B.4. Novel Device Discovery Experiments ..................cuiiiiiiinieenennn... 102



LIST OF FIGURES

Figure 1-1.
Figure 1-2.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.

Figure 3-1.
Figure 3-2.

Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.

Figure 4-1.

Figure 5-1.
Figure 5-2.
Figure 5-3.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.

Overview of reinforcement learning. . ........... .. ... .. oo, 20
Overview of evolutionary algorithms . ........... ... . ... ... ... ... .. 20
Exampleof adelay line ...... ... .. ... i 23
Example of adetect circuit ............ i 25
Observing the target signal ......... ... i, 26
Target and non-target signal distributions ............... ... .. ... ... .... 27
Diagram of dendritic COmMpPONEeNnt . .............uiineineuneineeneeneennn. 29
Modular and multi-level machine learning MAMMAL) ................... 32
Dendritic CIrCUIL. . . ..ottt e e e e 35

[llustration of experimental setup for Experiments 1 and 5. For Experiment
1, the delays were presented as integers. For Experiment 5, the delays were

presented as delta functions. .......... ... ... .. 37
Illustration of experimental setup for Experiment 2. ....................... 38
Illustration of experimental setup for Experiments 3and 4. ................. 38
Illustration of experimental setup for Experiments 6, 7, and 8................ 39
Curriculum learning . . . ... 41
[lustration of experimental setup for Experiment9. ....................... 41
Illustration of experimental setup for Experiment 10. ...................... 42
Ilustration of experimental setup for Experiment 11. ...................... 43
Ilustration of experimental setup for Experiment 12. ...................... 44
Ilustration of experimental setup for Experiment 13. ...................... 44
llustration of experimental setup for Experiment 14. ...................... 45
Reinforcement learning vs. evolutionary algorithms ....................... 48
Mott signal disCrimination CirCUit. . . ......vutti ettt iee e 52
Signal detection with tunable current detectors. . ............. ... ... ...... 55
Signal discrimination with fixed current detectors ......................... 56
Example of a neural network for device discovery ......................... 59
Example of human-intuitive component function.......................... 61
Distribution of the 8; and 6, componentence parameters . .................. 62
Novel device behavior for different valuesof 8y and 6, .................... 63

Distribution of 6; for for a novel device with a single componentence parameter 64

Novel device behavior for different valuesof 6; ........... ... ... ... ...... 65
Distribution of 0; with an initial input of 1 insteadof O .................... 66
Novel device behavior for different values of 6; with an initial inputof 1 ..... 67



Figure 6-9. Distribution of 6; with an initial valueof 0.5 ............ ... ... ... . ... 68

Figure 6-10. Novel device behavior for different values of 6; with an initial inputof 0.5.... 69
Figure 6-11. Example conversion of neural network to explainable function .............. 69
Figure 6-12. Piecewise linear parameters as functionsof 61 ............................ 70
Figure 6-13. Piecewise linear approximation of decision boundaries..................... 71



LIST OF TABLES

Table 0-1. Nomenclature . ....... ... e 13
Table 2-1. Delay line components . ..............o.uiuniiitien i, 24
Table 2-2. Delay line cOmponents . ................iiiniiiniitiin i, 27
Table 2-3. Delay line cOmMpOnents . ..............uuneuneineiieie e, 29
Table 3-1. Summary of RL-enhanced design experiments. . ...............c.ovouun... 36

10



SUMMARY

In this work, we began to develop a codesign framework for circuit design (MAMMAL- Modular
and Multi-level Machine Learning) with a focus on developing next-generation neuromorphic
components, circuits, and systems. Neuromorphic computing is a field of active research with
many competing approaches in digital, analog and mixed-signal. Leading neuromorphic
platforms (e.g. Loihi) rely upon compact neuron models that lend themselves well to extreme
scalability. However, as seen in nature (e.g. Dragonfly TSDNs - target selective descending
neurons), fewer complex neurons can implement complex computations. We specifically evaluate
the dendrite analog circuit as an example problem. Dendrites are highly branched tree-like
structures that connect a neuron’s synapses to the soma. Research shows that dendrites can
perform operations such as non-linear filtering, spatial and temporal summation of synaptic
inputs, coincidence detection, synaptic scaling, and sequence detection [26, 21]. Biological
dendrites are also known for their complex physical structures with significantly greater fan-in (=
10,000 inputs). Our work will enable exploration of a complex neuron model with dendritic
connections. Analog neuromorphic approaches offer savings in energy compared to digital
neuromorphic, with the promise of more complexity and dynamics. Previous work has
demonstrated dendritic models using sub-threshold analog floating-gate transistors [13, 35]. The
voltage across these devices has been shown to obey a class of non-linear PDEs. Our hypothesis
is that the technology to implement nonlinear summation currently exists, but capturing this
capability will require specific configuration of the neural network. It was therefore critical that
the architecture, hardware, and algorithm development be conducted in tight synergistic
collaboration for this co-design initiative. MAMMAL can enable this.

We utilized reinforcement learning techniques as the driving mechanism for codesign. This
AI/ML approach is constrained by input/output characteristics, device physics, and circuit
topology. Using these constrains, reinforcement learning is able to design circuits. The outcome
in this scenario is a desired neural circuit function, including any SWaP constraints. In the process
of creating this strategy, different circuit components drop out or are rearranged in unexpected
and revolutionary ways. In this way, AI/ML enable the combination of algorithms, hardware, and
physics for the discovery and codesign of new neural circuits.

We used the Passive Dendrite cable model as an example to test our Al-enhanced tool.
Experiments conducted included: 1) delay lines, 2) delay and detect circuits for pattern detection
and 3) dendrite-inspired delay and detect circuits that used an abstracted model for the dendrite
sub-circuit. We demonstrated “learned” dendritic circuits leveraging abstracted device models for
pattern recognition. We also studied the differences in reinforcement learning (RL) and
evolutionary algorithms (EA) for a given circuit. EA can be used for rapid prototyping with novel
modules and more creativity, and RL can be used for ‘production’ circuit design that involves
designing many different circuits from the same modules. By combining EA and RL methods, it
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may be possible to rapidly develop creative designs. We used curriculum learning to accelerate
training for larger circuits. We also demonstrated examples leveraging an emerging device like
the Mott Memristor [23] and evolutionary algorithms for circuit design.

We also explored novel device discovery using reinforcement learning. Using reinforcement
learning, we were able to build circuits from novel device models that were optimized using Al.
We show that, by analyzing the models of novel devices, we can gain insight into the types of
novel devices that we should be trying to develop. And, we also show that imperfect
manifestations of the novel device models can still be used by RL to solve known problems.
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NOMENCLATURE

Table 0-1. Nomenclature

Abbreviation Definition

Al Artificial Intelligence

ASIC Application Specific Integrated Circuit

AS&T Advanced Science and Technology

DOE Department of Energy

EA Evolutionary Algorithms

EDA Electronic Design Automation

EONS Evolutionary Optimization of Neuromorphic Systems
IC Integrated Circuit

ML Machine Learning

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
ND Nuclear Deterrence

NSP National Security Program

PDE Partial Differential Equations

RL Reinforcement Learning

SNR Signal-to-Noise Ratio

TPU Tensor Processing Unit

VLSI Very Large Scale Integration
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1. INTRODUCTION

1.1. Motivation

Circuit design is a labor-intensive process that must be performed by highly-trained professionals
who have years of experience. In niche circuit design fields, subject matter experts require
additional training, which further limits the available talent. Because circuit design talent is
limited, mission-critical circuit design knowledge is at risk of being lost due to normal employee
turnover.

In order to maintain its technological dominance and national security, the United States needs to
augment its circuit design workforce. We propose to augment the United States circuit design
workforce by developing Al-enhanced tools that can automate many circuit design tasks and also
efficiently encode domain-knowledge.

1.2. Al-Enhanced Microelectronics Design

Many works have explored the possibility of using Al-enhanced tools to optimize existing
microelectronics designs. While many of these works have focused on optimizing human designs,
some works have explore the possibility of optimizing random initial designs [45]. Existing
Al-enhanced tools have been used to optimize device placement [43, 42, 19], connection routing
[42, 19], component sizing [6], digital logic design [58, 43, 42, 19], software to hardware
mapping [31, 56], SPICE simulation [42], lithography [42, 19], device modeling [42], runtime
management [42], and high-level synthesis [19]. Several Al-enhanced electronic design
automation (EDA) tools are even commercially available [50, 7]. Generally, the workflow for
Al-enhanced optimization involves the following steps:

1. A human produces an initial design

2. The initial design is transformed into a computer-interpretable representation (commonly, a
graph or a graph neural network)

3. Al is used to optimize the human design

Existing Al-enhanced optimization techniques have already produced super-human designs in
super-human time [32]. Here, we address the rate-limiting step of Al-enhanced microelectronics
optimization: the production of the initial human design.

In this work, we detail an Al-enhanced circuit design tool that is capable of automating circuit
design for simple neuromorphic circuits. Unlike previous works, our Al-enhanced circuit design
tools do not require an initial human design; they can design circuits “from scratch.”
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1.3. Al-Enhanced Microelectronics Discovery

During a top-down design process, an Al-enhanced circuit design tool chooses components to
create a circuit that solves an interesting problem. During a bottom-up design process, an
Al-enhanced circuit design tool starts with (potentially novel) components and explores the
problems that can be solved with the provided components. Both design processes start with
existing components and problems.

Suppose that a problem cannot be solved with any combination of known components. Under
these circumstances, an Al-enhanced circuit design tool will need to do more than use known
components - the tool will need to discover a new component. Here, we present Al-enhanced
methods for stimulating microelectronic discovery. Specifically, we present methods that allow
Al-enhanced tools to suggest specifications for novel components that, if physically realized, can
be used to solve known problems.

1.4. Hardware Accelerators and Neuromorphic Architectures

Recent successes in Al have been facilitated not only by algorithmic innovations, but also by
improvements in hardware [17]. With the rapid adoption of Al in many different fields, the
demand for specialized computation is growing. Increasingly, companies like Google and Apple
are developing their own integrated circuits (ICs). The industry is shifting towards more
application specific integrated circuits (ASICs) to maximize computational efficiency and
improve software-hardware integration [47]. There has been an explosion of machine learning
accelerator approaches like Google’s Tensor Processing Unit (TPU), Cerebras [24] (wafer-scale),
and Mythic (analog) [1], each with a unique approach to overcoming performance bottlenecks.

Neuromorphic architectures are another example of hardware accelerators that are expected to
improve computing in the next decade and beyond as non-Von Neumann architectures gain
prominence. Implementations of neuromorphic chips in silicon exist today (e.g. Loihi,
TrueNorth, SpiNNaker, BrainChip, GrAl Matter Labs). Non-CMOS approaches are promising,
and industry trends (Imec/Global Foundries) show that these architectures will be available for
mass production soon. Neuromorphic accelerators can impact the efficiency of machine learning,
scientific computing, and edge applications with 2-3 orders of magnitude improvement in energy
and speed.

Neuromorphic computing is expected to improve power efficiency scaling and meet the DOE’s
future mission demands for high performance computing (HPC) (nuclear deterrence (ND),
climate simulations) and edge computing (satellite, space systems, national security programs
(NSPs), global security). The Department of Energy (DOE) Basic Research Needs for
Microelectronics report has emphasized the need for codesigned devices, circuits, algorithms, and
architectures. Al-enhanced codesign of next-generation microelectronics will enable algorithm
and hardware innovations that will accelerate progress towards next-generation high-performance
neuromorphic computing systems.
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1.5. Neuromorphic Computing

Neuromorphic computing mimics key biological properties of brains in silicon. The building
blocks in a neuromorphic architecture consist of neurons, synapses, dendrites, routing etc. that are
modeled using devices and circuits. The field of neuromorphic computing was pioneered by
Carver Mead at CalTech in late 80s [29]. Initial circuits developed were analog circuits that
leveraged the sub-threshold dynamics of CMOS transistors to emulate biological components.
Many neuromorphic chips have been developed to date including digital [10, 30, 38, 18, 11],
analog [5, 41, 14], mixed-signal [34, 39, 4] and beyond-CMOS [53] neuromorphic systems.
There has also been a lot of work demonstrating the efficacy of beyond-CMOS devices as
candidates to model neurons and synapses [23, 25, 55]. Digital system like Loihi and SpiNNaker
have been scaled to 100 million [36] and billion neurons [28] respectively. Beyond-CMOS
devices also promise scaling gains as well as computational efficiency. Leading neuromorphic
platforms rely upon compact and simple neuron models for scaling. However, in order to achieve
brain-like cognition, we need complexity (increased computational power per neuron, dendrites
as computational interconnects, online learning) in addition to scaling (increased number of
neurons and synapses).

Next-Generation Heterogeneous Neuromorphic Architectures: There are many on-going
efforts to look at emerging devices for neuromorphic computing [23, 25, 55]. While we need
novel neuromorphic devices to accelerate computation, we also need novel algorithms and
architectures. We hypothesize that designing complex neurons will augment the capabilities that
current neuromorphic systems offer. For example, introducing dendritic processing will introduce
non-linear summation, spatio-temporal processing, and increased connectivity. Synaptic
stochasticity can be leveraged to do probabilistic computation. Brain-inspired local learning is
another area of active research that could impact the use of neuromorphic processors as not just
inference engines, but also training engines.

Next-generation neuromorphic circuits and systems based upon nonlinear dendritic processing
and local learning will balance the trade-off between scalability and the biological complexity.
Novel approaches in fabrication like three-dimensional architectures, wafer-scale technology, and
in-memory computing devices could further alleviate current communication and connectivity
bottlenecks. This would require tools that enable synergistic collaboration across devices,
architectures, software, and algorithms. An Al based approach to designing microelectronics
could alleviate some of the challenges posed by full-stack design and effectively incorporate
constraints posed by algorithms, architectures, circuits and devices.

The remainder of this chapter provides the necessary background for understanding our approach
to Al-enhanced circuit design. In Section 1.6, we outline three potential approaches to
Al-enhanced circuit design. In Section 1.7, we detail the needs and building blocks for
constructing neuromorphic circuits, along with the goals and science questions for this project.
Finally, in Section 1.8, we detail the remaining organization of this report.
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1.6. Al Approaches to Circuit Design

In order to automate circuit design, we used reinforcement learning and evolutionary algorithms.
Here, we provide details about these Al methods as well as one alternative method that we have
yet to implement: game theory.

1.6.1. Game Theory

Game theory is a mathematical subject used to analyze strategies and interactions among
competing or cooperating groups [52]. Traditionally, a game, in the game theoretic sense, consists
of

e players;

e actions for players to take;

e strategies to determine how players choose actions;
e and payoffs determined by action choice.

The basic notion is that players select a strategy to play. This selection could be done in tandem
with other players or in sequence, and other players may or may not know strategies selected by
others. A game is played with players playing actions according to their strategy, and then
rewards are given. Games may be iterative with the objective to find the best strategy for actions.
The “best strategy” is typically a Nash equilibrium. A Nash equilibrium is a set consisting of a
strategy for each player where no single player has anything to gain by deviating to a different
strategy. In multi-player games this means you will not do better on average by switching to a
different strategy. In two player zero-sum games (games where one player’s gain is equivalent to
another player’s loss) this means neither player will lose out on average when both are playing the
Nash equilibrium strategy.

Calculation of these equilibrium strategies is not trivial. Nonetheless, such strategies are
obviously valuable. Game theory has been used to optimize strategies in a variety of fields,
including business, economics, and transportation [57, 8, 15].

Broadening how one might view a player, game theory can be extended to system design. This
can find applications when one can formulate a game between an adversary seeking to disrupt a
design and a player seeking to protect by careful design. Indeed, such construction has proven to
be useful in network security and network design [59]. Cooperative game theory, however, can be
used to great utility in design with recent applications in optimal wireless network design [27].
Further cooperative modes can describe the interaction among designers that each produce a
single piece of a larger system [51].

Previous successful application of game theory to system design suggests that game theory would
also be useful for circuit design. Since circuits can be viewed as systems of devices that are
connected in defined ways, and circuits can be considered sub-systems of larger systems, it would
be useful to develop game theory methods that enable systems of systems design. To date, game
theory has primarily been used to either model and analyze a system of systems or to optimize
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control strategies, but game theory has not been used to design systems of systems from scratch
[9, 3]. There is at least one explicit example of multi-objective circuit design optimization using
game theory [12], but this is optimization rather than design.

A novel approach to linear circuit design using game theory could arise by constructing a
cooperative game among players who place a single type of device or circuit component. Players
take turns electing to play their piece or to not play their piece. All knowledge of previously
played components is available to all players. Any player may choose to terminate the circuit
instead of playing their component. Once a circuit is terminated, it is scored, and a payoff is given
to all players if the circuit meets the desired expectations. Penalties may also be given out if
certain characteristics of the circuits are not desirable (i.e., it meets expectations but would not
hold up under certain temperatures).

One may ask: “Why are multiple players needed instead of just a single player that allocates all
types of devices or components?” A single player game with slightly modified rewards resembles
reinforcement learning (RL), which we discuss in the next section.

1.6.2. Reinforcement Learning

In reinforcement learning [49], an agent observes an environment (e.g., a game or system) and
uses the observation to choose actions. The actions get applied to the environment, causing the
environment to probabilistically transition to a new state and emit a reward. A parameter update
function uses observations, actions, and rewards to train the agent to choose actions that maximize
the expected sum of future rewards. Figure 1-1 provides an illustration of RL. A full description
of the reinforcement learning framework is provided in Section 2.2.

In the context of circuit design, an RL agent is a circuit designer. The agent observes some
representation of the circuit (e.g., the output of the circuit, given some input). Actions include
placing components into the circuit and tuning component parameters. The RL agent is rewarded
base on the performance of the circuit, given some pre-define metric of performance.

1.6.3. Evolutionary Algorithms

Evolutionary algorithms (EA) were inspired by the biological process of evolution. EA (Figure
1-2) starts by selecting a random initial population of parents that have a set of traits. In the
context of circuit design, these traits might include the identity of components in the circuit, as
well as the tunable parameters of the components. Parents are selected based on their fitness
score, which is analogous to the sum of future rewards in RL. Selected parents then undergo a
process of crossover, where offspring are produced by combining traits from selected parents.
After crossover, children undergo mutation, where some traits are randomly modified. Children
then become the new parents, and the process repeats.

Evolutionary algorithms have already been used to optimize neuromorphic circuits. Evolutionary
Optimization of Neuromorphic Circuits (EONS) [45], for instance, optimizes networks of
neuromorphic elements by considering the structure of the networks to be the parent traits.
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Figure 1-1. Overview of reinforcement learning. An agent observes an envi-
ronment (e.g., a game or system) and uses the observation to choose ac-
tions. The actions get applied to the environment, causing the environment
to probabilistically transition to a new state and emit a reward. A parameter
update function uses observations, actions and rewards to train the agent to
choose actions that maximize the expected sum of future rewards.
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Figure 1-2. Overview of evolutionary algorithms. An initial cohort of parents
is evaluated and then selected based on their fithess scores. Traits from
selected parents are combined in the process of crossover, and then traits
are randomly mutated. The resulting children become the new parents, and

the process repeats.

)
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Mutation functions change the networks by changing network connectivity or changing the
identity of nodes in the network.

1.7. Building Neuromorphic Circuits using Reinforcement Learning

Innovation in circuits, especially those leveraging novel and emerging devices, will be crucial for
building next-generation neuromorphic architectures. Automating circuit design will further
accelerate design. However, this is still an active area of research. There are few instances of
leveraging a game theoretic approach for circuit design optimization [12] and hardware (RTL)
verification and security [48]. Lately, reinforcement techniques have been applied for placement
and optimization [31, 32], generating layout for analog circuits [46] and optimizing analog
circuits [54].

Key science questions we wanted this project to answer were as follows:

e Can we use techniques such as reinforcement learning for circuit design? What are the
challenges associated with doing so?

e Will developing Al-enhanced codesign tools for neuromorphic circuits and architectures
accelerate design for next-generation neuromorphic architectures?

e Will leveraging an Al-accelerated approach enable fast design of dendritic neural circuits?
Dendritic neural circuits can be used as computational interconnects in a neuromorphic
architecture.

e How would our efforts impact neuromorphic accelerators with applications in machine
learning, scientific computing, and brain-like simulation with significant improvement in
energy and speed?

Our approach also looks to answer these questions and more. We envision designing an AI/ML
approach constrained by domain knowledge, device physics, SWaP (Size, Weight and Power),
and circuit topology. For example, RL can be used to develop a policy network which enables
designing different circuit topologies in unexpected and revolutionary ways. In this way, Al
enables the combination of algorithms, hardware, and physics of the devices for the discovery and
codesign of novel neural circuits.

1.8. Report Outline

In Chapter 2, we describe our methods in detail. Specifically, we will describe the AI methods
that we used as well as the tasks that we used to compare different Al methods. In Chapter 3, we
detail the experiments that we used to guide the development of Al-enhanced circuit design tools.
Specifically, we describe how Al-enhanced circuit design tools evolved from “delay line” tasks to
signal discrimination tasks. We also discuss curriculum learning and transfer learning methods
for accelerating Al-enhanced circuit design. In Chapter 4, we compare RL and evolutionary
algorithms on the same design task, and we demonstrate that RL has advantages as a production
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tool, but evolutionary algorithms have advantages for rapid prototyping. In Chapter 5, we
demonstrate that Al-enhanced circuit design methods can be used to rapidly prototype circuits
that are built from emerging devices, such as the Mott memristor. In Chapter 6, we move beyond
Al-enhanced circuit design into Al-enhanced novel device discovery. We expect that the
landmark results in this chapter will cause a paradigm shift in how we approach discovery in the
field of microelectronics in the future. Finally, we conclude this report with Chapter 7 by
detailing the impact of our Al circuit and device design discoveries, listing our innovations, and
outlining future work.
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2. METHODS FOR RL-BASED CIRCUIT DESIGN

In this chapter, we explain RL methods that were widely use throughout this project.

2.1. Tasks

Based on our project goals (see Section 1.7), we wanted to ultimately design energy-efficient
dendrite-like neuromorphic circuits that could successfully perform signal detection. While we
ultimately tested our Al-enhanced circuit design tools on signal detection tasks (Section 2.1.2),
we initially tested the tools on “delay line” tasks (Section 2.1.1).

2.1.1. Delay Line

Initially, we prototyped Al-enhanced circuit design methods on simple “delay line” circuits. We
chose to use delay line circuits because they are the simplest circuits that capture interesting
properties of neuromorphic circuits: 1) components are capable of accepting inputs and 2) there is
a time delay associated with each processing step.

As shown in Figure 2-1, the purpose of a delay line circuit is to delay an input X by a set amount
of time. For simple neuromorphic circuits, this input might be a spike representing a zero or a
one. To build a delay line circuit, it was necessary to choose the appropriate neuromorphic
components and tune their parameters.

For the initial delay line experiments, we used circuit design tools that were based on RL. We did
not attempt to use evolutionary algorithms. At each time step, the RL agent observed 2 numbers:
1) the desired delay and 2) the total delay already in the circuit. The RL agent needed to choose to

X Input Output X

Delay — Delay — Delay --= Delay

Figure 2-1. Example of a delay line. An Al-enhanced circuit design tool must
place delay components to delay the input X by the correct amount.

23



Component Name | Function

Probe | Terminate the circuit
Delayl | Delay the input by 1 time step
Delay10 | Delay the input by 10 time steps
Delta Delay | Delay the input by 6 time steps. d is tunable.

Table 2-1. Delay line components.

place one of several components, as detailed in Table 2-1. Component diagrams can be found in
Appendix A. Some components had tunable parameters that the RL agent also needed to choose.
Circuit design terminated when the RL agent placed a “Probe” component (the name refers to
where you would place a probe to measure the circuit output).

RL agents were provided with sparse rewards (see Section 2.2.6) at the terminal state, only, based
on the the absolute value of the difference |A| between the desired delay and the output delay. For

initial experiments, which only involved Delay1 and Probe components, the reward r was given
by:

r=—1x|Al (2.1)

which penalized the RL agent for producing a delay that was different than desired delay. For
subsequent experiments, we modified the reward to be:

r=1—— (2.2)

This reward was designed to produce occasional positive rewards, which can allow RL to
converge faster by preventing unnecessary exploration of the solution space. We then further
modified the reward function to penalize positive (i.e. too much) delay:

1- 4% 095, ifa
r:{( )% 0.95, ifA>0 03

(1— %), otherwise

This reward was designed to accelerate convergence by encouraging RL to not make decisions
that it could not reverse. With this reward, the RL learned to “fix” negative delays by adding
additional delay components and also learned not to make unfixable mistakes (i.e. positive
delays). We then log-transformed A to ensure that the RL agent did not ignore relatively small
delays.
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|

Detect = Detect — Detect > Detect = Detected?

Figure 2-2. Example of a detect circuit. An Al-enhanced circuit design tool
must place detect components that detect if each of r samples of a signal, X,
is the part of the target pattern.

(2.4)

(1— 2@y . 0,95, ifA>0
=
otherwise

(1— |10g120(A)\>7

In some experiments, we tested if RL agents could maximize performance while minimizing
component costs. To do this, we assigned cost ¢; to the ™ of T components and updated the
reward function to:

logo(A) .
r:{(l—"g+('—zgc,)xo.95, if A>0 05

(1— M —¥le), otherwise

2.1.2. Signal Detection

After prototyping Al-enhanced circuit design methods on delay line circuits, we increased the
task difficulty by requiring the circuits to detect if an input pattern matched a target pattern. As
shown in Figure 2-2, the r™ component of every circuit was responsible for detecting whether the
™ sample of a signal, X, matched the r™ sample of a target pattern.

For the initial signal detection experiments, we used circuit design tools that were based on RL.
We did not attempt to use evolutionary algorithms. At each time step, the RL agent observed 16
examples of a target signal and 16 examples of non-target signals (Figure 2-3).

Target signals and non-target signals were drawn from several distributions to test different
capabilities of the RL agents (Figure 2-4). The target and non-target distributions had matching
distributions at some subset of the samples. Typically, 60% of the samples were drawn from
different distributions for the target and non-target distributions. During transfer learning and
curriculum learning (see Section 2.2.7), the total number of differing samples remained constant
(meaning that the proportion of differing samples decreased).
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Target Signal Non-Target Signal
(16 Examples) (16 Examples)

i AAA ~ANAA

Time

: : Agent Observation

Figure 2-3. Observing the target signal. At each timestep, the RL agent ob-
served 16 examples of the target signal and 16 examples of non-target sig-
nals. The agent observation “moves up” the signals as time passes. At each
time step, the agent observes one sample from each signal.

The parameters of the target and non-target signal distributions were changed to modulate the
signal-to-noise ratio (SNR) between the target signal (signal) and non-target signal (noise). See
Figure 2-4 for illustrations. In the "Digital" condition, examples of target and non-target signals
were drawn from U {0, 1} and then approximately 60% of samples for the target signal were
forced to be equal. In the “Low SNR” condition, all samples of the non-target signal were drawn
from a uniform distribution U (—1, 1); the samples of the target signal were drawn from a uniform
distribution U (;,h;) where by =1, +0.2 and [; ~ U(—1,0.8). In the “Medium SNR” condition, all
samples of the non-target signal were drawn from a uniform distribution U(—1, 1); the samples of
the target signal were drawn from a uniform distribution U (I;, h;) where h; = [; +0.2,

|l;] ~U(0.4,0.8), and sign(/;) ~ U{—1,1}. Put simply, the Medium SNR condition increased the
SNR by forcing the target signal to have a larger magnitude. In the “High SNR” condition, all
samples of the non-target signal were drawn from a uniform distribution U (—0.1,0.1); the
samples of the target signal were drawn from a uniform distribution U (;, ;) where h; = [; + 0.2,
|l;| ~U(0.4,0.8), and sign(/;) ~ U{—1,1}. Put simply, the High SNR condition increased the
SNR by decreasing the magnitude of the non-target signal by a factor of 10. In the “Separable
About Zero” condition, the magnitude of the non-target signal was drawn from U (0, 1); the
samples of the target signal were drawn from a uniform distribution U (/;, ;) where h, = I, + 0.2,
|l;| ~U(0.4,0.8), and sign(;) ~ U{—1,1}, and the signs of the target and non-target distributions
were constrained to be opposite. The purpose of the Separable About Zero condition was to
create a signal discrimination task that was easy for a human to solve with perfect accuracy by
placing components that act as positive number detectors and negative number detectors. Because
humans can solve this problem easily, it is easier to interpret solutions that are found by
Al-enhanced circuit design tools.

To discriminate the target signal from non-target signals, the RL agent needed to choose to place
one of several components, as detailed in Table 2-2. Component diagrams can be found in
Appendix A. Some components had tunable parameters that the RL agent also needed to choose.
Circuit design terminated when the RL agent placed a “Probe” component.
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Figure 2-4. Target and non-target signal distributions. Bold lines are the
mean (or mode for digital); shaded regions represent the range. All distri-
butions were uniform across the range. Target and non-target distributions
differed at a subset of samples - typically about 60%. In the Digital condition,
approximately 60% of the time, all examples of the target signal matched,
whereas the non-target samples were drawn from U{0,1}. In the Low SNR
condition, the time-varying target distribution and the non-target distribution
overlapped. In the Medium SNR condition, the mean of the target distribu-
tion was required to be greater in magnitude than some threshold, which
was chosen to be +0.5. In the High SNR condition, the range of the non-
target distribution was decreased by a factor of 10. In the Separable About
Zero condition, the target and the non-target distributions always had sepa-
rate signs. a.u. = “arbitrary units.” SNR = “signal to noise ratio.”

Component Name | Function

Target

* Upper Threshold

** Lower Threshold

Target

= Upper Threshold

«= Lower Threshold

Probe | Terminate the circuit

Delay | Do not detect any number. The output of this component is the output of

the previous component.

DetectO | Detecta O

Detectl | Detecta 1

DetectAny | Detect a number that is ¢ +=0.11, where u is a tunable parameter.

Table 2-2. Delay line components.
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For detection experiments, we tested both sparse and dense rewards (see Section 2.2.6). For the
Digital signal detection task, the dense reward r; was given by:

1, if correct component
p=1{ o eomp (2.6)
0, otherwise
For the Digital signal detection task, the sparse reward r; was given by:
_J 1, if circuit terminated & correct circuit 27
0, otherwise '

For analog (non-Digital) detection task, only sparse rewards were given. Rewards were calculated
per example (i.e., for each of the 16 examples of target signal and each of the 16 examples of the
non-target signal), and then the total reward was calculated according to:

# correct — # incorrect

2.8
total # 2:8)

The maximum possible reward was 1 if all examples were correctly classified. The minimum
possible reward was -1 if all signals were incorrectly classified. A single mis-classification would
result in a reward of (31 —1)/32 = 0.9375. We chose this reward formulation so that chance
classification resulted in a reward of 0. Negative rewards promote exploration, which can lead to
slow convergence, but may be useful for locating global optima. Positive rewards promote
exploitation of existing knowledge, which can lead to faster convergence, but the solution may
converge to a local optima. By allowing chance classification to have a reward of 0, we hoped to
promote rapid convergence to a non-trivial solution. Specifically, we wanted to avoid convergence
to trivial solutions that are local optima, such as building circuits that always classify signals as
target signals.

2.1.3. Dendritic Detection

In Section 2.1.2, we described a signal detection task that used idealized components that had
well-defined detection ranges. Here, we consider how we can perform the same tasks that were
described in Section 2.1.2, but while building circuits using neuromorphic components that
approximate the function of biological neurons. Specifically, we were interested in modeling
sub-threshold (non-spiking) activity in biological dendrites.

The dendritic detection components are described in Table 2-3, and a general model of dendritic
components is provided in Figure 2-5. Additional diagrams are available in Appendix A. The
dendritic components that we explored all implemented modified leaky integration models. This
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Figure 2-5. Diagram of dendritic component.

Component Name | Function
Delay | Do not detect any number. The output of this component is
the output of the previous component.
Dendritic Detect | G € [-10,10], B=0,L=0
Leaky Dendritic Detect | G € [—10,10], B=0, L =0.1
Tunable Leaky Dendritic Detect | G € [—10,10], B=0, L € [-10,10]
Leaky Biased Dendritic Detect | G € [—10,10], B € [-10,10], L=0.1

Table 2-3. Delay line components. G = gain. B = bias. L = Leak.

model approximates the way that current accumulates in dendritic compartments and spreads to
other dendritic compartments. Given a signal sample X;, an input from the previous component
Y;_1,a gain G, a bias B, and a leakage current L, the output of a dendritic component was given

by:
Y, =Yip1 +G(X +B)— L 2.9)

As described in Table 2-3, different components allowed G, B, and L to be tunable.

2.2. Reinforcement Learning

In Section 1.6.2, we provided an overview of reinforcement learning. Here, we provide details of
the specific RL implementation that was used in this work.

2.2.1. Deep Q-Networks

For initial experiments, we used an RL algorithm known as Deep Q-networks (DQN) [33]. In
DQN, a neural network is trained to predict the time-discounted expected sum of future rewards
O, that will be received when in state s; and taking action a;. During evaluation or inference, the
appropriate action is chosen by maximizing the expected sum of future rewards:
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a; = argmax Q; (s, a) (2.10)
a

During training, a hyperparameter € determines the proportion of actions that are random. With
probability &, actions are chosen randomly; with probability 1 — &, rewards are chosen according
to Equation 2.10. This randomness helps with exploration, which is essential to allow RL to
converge to a good solution [49].

At each time step, the DQN-based RL agents observed a sample of the input signal (see Section
2.1.2 and Figure 2-4). The DQN-based RL agents used these observations to choose to place one
of the components that were available in the library (see Tables 2-1, 2-2, and 2-3). DQN can only
be used with discreet actions. Thus, it was not possible to use DQN with components that had
real-valued tunable parameters.

2.2.2. Soft Actor-Critic

Because DQN can only produce discreet actions, we investigated soft actor-critic (SAC) [16],
which is capable of producing continuous actions. SAC is a member of the actor-critic family of
RL algorithms. The ‘“actor” component of actor-critic algorithms refers to a neural network that
observes the current state and predicts the action that will maximize the expected sum of
time-discounted future rewards. The “critic” component of the actor-critic algorithm refers to a
neural network that attempts to predict the sum of time-discounted future rewards that will be
received when the agent is in state s; and chooses a;. The output of the critic is used by the
parameter update function (see Figure 1-1) to update the actor.

Unlike DQN, SAC is capable of outputting real-valued actions. In fact, SAC outputs parameters
for statistical distributions that describe these actions. The actual action is chosen by sampling
from these statistical distributions. In SAC, these statistical distributions provide a source of
exploration that helps the agents converge to good solutions.

Because SAC outputs real-valued actions, it is necessary to convert some of the SAC actions to
discrete choices so that the (discreet) type of component can be chosen. SAC produces an action
vector A after sampling from the statistical distributions. We chose the structure of A such that it
was composed of 2 sub-vectors A and A,. Each component type that was represented in A; was
also represented in A;, but only if A had a tunable parameter. The type of component to place
was chosen by:

a; = argmaxAj 2.11)
a

The real-valued tunable parameter for the component was the element of A, that corresponded to
the chosen element in A;.
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2.2.3. Proximal Policy Optimization

Like SAC, proximal policy optimization (PPO) is a member of the actor-critic family of RL
algorithms [44]. PPO is also capable of producing both discrete and real-valued actions using the
same procedure that was described in Section 2.2.2. On-policy algorithms like PPO frequently
converge in less clock time than off-policy algorithms like SAC. However, off-policy algorithms
like SAC frequently converge with fewer simulation time steps. Because the neuromorphic circuit
simulations were low-fidelity, and therefore time-efficient to run, we implemented PPO in later
experiments to gain a clock-time advantage compared to SAC.

2.2.4. Hindsight Experience Replay

For delay experiments, the RL agent observed: 1) the desired delay and 2) the amount of delay
already in the circuit. Because this observation space was so simple, it was possible to leverage
hindsight experience replay (HER) [2] to accelerate learning. HER changes the target state
retrospectively to allow the RL agents to gain more information during failure. For instance,
suppose that an RL agent is asked to delay a signal by 5 timesteps, but the agent mistakenly
delays the signal by 6 timesteps. HER allows the agent to say, “I didn’t mean to delay by 6
timesteps, but if I need to delay by 6 timesteps in the future, I can use this set of actions.”

HER can be used with either DQN or SAC. However HER is incompatible with proximal policy
optimization [2].

2.2.5. Modular and Multi-Level Machine Learning (MAMMAL)

We were interested in taking the first steps towards true microelectronics codesign. True codesign
requires:

1. System design across two or more system levels
2. Simultaneous or iterative top-down and bottom-up design processes

In this work, we created RL methods for performing top-down and bottom-up design. However,
we were limited to design across a single system level (i.e., we designed circuits from
components). We refer to the full Al-enhanced system codesign tool as Modular and Multi-Level
Machine Learning (MAMMAL). As shown in Figure 2-6, MAMMAL accepts specifications from
engineers about how a system should respond to a given set of inputs. MAMMAL also accepts
design constraints. MAMMAL uses these specifications and design constraints to choose system
components. In top-down mode, MAMMAL refines a system at progressively lower system
levels. In bottom-up mode, MAMMAL works with a limited library of modules to try to solve
problems. MAMMAL will also be capable of designing higher-level modules from lower-level
modules. MAMMAL can already create specifications for novel modules if available modules in
the library cannot be used to solve the problem of interest (see Chapter 6).
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Figure 2-6. Modular and multi-level machine learning (MAMMAL). (A) A re-
inforcement learning agent is provided with system inputs, desired system
outputs, and some constraints. (B) The RL creates a high-level approxima-
tion of the system using by choosing modules from a library. (C-D) The RL
agent creates better approximations of the system by tuning submodules,
which can also be chosen from the library. (E) Parameters for the lowest-level
components are tuned. (F) If the RL agent is unable to create a high-level
representation using existing modules, new modules can created from sub-
modules. (G) If appropriate submodules cannot be identified, the RL agent
can create specifications for novel modules that solve the problem of inter-
est. (H) new modules can be added to the library using transfer learning.
In this work, MAMMAL components A, B, E, and G were created. MAMMAL
components C, D, F, and H still need to be created.
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2.2.6. Rewards

We explored two basic reward strategies:
1. Dense rewards
2. Sparse rewards

Dense rewards are given to the RL agent after each component is placed. Essentially, after each
component is placed, the RL agent is told if it placed the correct component or an incorrect
component. Because dense rewards are given frequently, they contain a lot of information about
how the RL agent can improve. This information can be exploited to help the RL agent learn
more quickly.

Unfortunately, dense rewards can only be given if the evaluator knows what the “correct” design
is. Of course, for real-world problems, this would mean that a human team would need to design
each system before the RL designed the system; this, of course, is impractical. Thus, we explored
sparse reward strategies.

Sparse reward strategies involve giving the RL agent rewards only at the end of the design
process. These rewards contain less information than dense rewards. But, it should always be
possible to design sparse reward strategies, regardless of the task.

2.2.7. Accelerating RL

Because sparse rewards contain less information than dense rewards, it is necessary to accelerate
the RL learning process. One common method for accelerating RL is to use reward shaping,
which involves the creation of complex reward functions, where the RL agent is rewarded for
accomplishing tasks that are associated with accomplishing the ultimate goal. One example of
reward shaping is a reward strategy for the game of chess where the RL agent is rewarded for
capturing pieces. Unfortunately, reward shaping strategies are often exploited by RL agents,
which prevents the RL agent from learning to reach the ultimate goal [37]. In the chess example,
an RL agent may never learn to checkmate an opponent if it always prioritizes capturing pieces.
For this reason, we chose not to use reward shaping. Instead, we used curriculum learning and
transfer learning.

“Curriculum learning” refers to the process of teaching an RL agent to reach the ultimate goal by
first learning to reach easier goals. This mimics the process of human learning, which is greatly
facilitated by a curriculum (e.g., teach arithmetic before calculus). In the context of circuit design,
we implemented curriculum learning by asking the RL agent to build shorter circuits, and then we
progressively increased the length of the circuits.

“Transfer learning” refers to the process of teaching an RL agent to perform one task and then
using that RL agent to perform another task. In the context of circuit design, we implemented
transfer learning by teaching the RL agent to build shorter circuits, and then we used the RL agent
to build very long circuits. We differentiate between curriculum learning and transfer learning by
noting that curriculum learning is a progressive process and transfer learning is a sudden process.
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For instance, in curriculum learning, we might teach an RL agent to build a 20-component circuit
by slowing increasing the circuit length from 10-20 in increments of 1. In transfer learning, we
might teach the RL agent to build a 20-component circuit by starting with circuits that contain 10
components, and then by abruptly increasing the number of circuit components to 20.

2.2.8. Software Implementation

The RL framework was implemented using in Python 3.6.8 using stable-baselines3 version 1.3.0
[40]
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3. EXPERIMENTS FOR RL-BASED CIRCUIT DESIGN

In this chapter, we list the outcomes of the experiments that guided the development of the
RL-enhanced system design tool. A summary of the experiments is provided in Table 3-1. Full
summaries of these experiments can be found in Appendix B.
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Figure 3-1. (a) Dendrites are the structures which connect synapses to the
cell body and are known to perform interesting computation like summation
of inputs, non-linear filtering, and coincidence detection for spatio-temporal
inputs. (b) Neuroscientists typically model these structures as passive lin-
ear cables. (c) The classical model of this linear cable is an equivalent RC
delay line. (d) A VLSI implementation [35, 13] of this model using MOS-
FETs (Metal-Oxide-semiconductor field-effect transistor) and capacitors in
the sub-threshold regime. The circled structure is similar to our abstracted
model for the sub-circuit.

To evaluate our framework, we focused on the dendrite neural circuit. Dendrites are highly
branched tree-like structures that connect a neuron’s synapses to the soma. Research shows that
dendrites can perform operations such as non-linear filtering, spatial and temporal summation of
synaptic inputs, coincidence detection, synaptic scaling, and sequence detection [26]. Biological
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# Type | Topic Purpose
1 delay | simple delay line simplest interesting example of RL-
enhanced design
2 delay | delay line with 2 delay types simplest interesting example of multi-
component RL-enhanced design
3 delay | delay line with continuous parameters | choose discreet and continuous ac-
tions simultaneously
4 delay delay line with costs optimize performance while minimiz-
ing costs
5 delay delay line with time series input the RL agent observes entire time se-
ries instead of single time steps
6 detect | simple delay gate - dense rewards generalize delay line to detection line
7 detect | simple delay gate - sparse rewards use sparse rewards instead of dense
rewards
8 detect | simple delay gate - curriculum learn- | use curriculum learning to accelerate
ing learning
9 detect | delay gate with variable delays detection task that does not require de-
tection at each time step
10 detect | delay gate with analog detectors detection task with simultaneous
choice of discrete and real-valued
parameters
11 | dendritic | dendritic delay line (no leaks) simplest generalization from detec-
tion to dendritic detection
12 | dendritic | dendritic delay line (leaky) confirm that RL works with leaky
dendritic compartments
13 | dendritic | dendritic delay line with tunable bias | improve detection by making bias tun-
able
14 | dendritic | dendritic delay line with tunable leak | attempt to improve detection by mak-

ing the leakage tunable

Table 3-1. Summary of RL-enhanced designh experiments.
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Figure 3-2. lllustration of experimental setup for Experiments 1 and 5. For
Experiment 1, the delays were presented as integers. For Experiment 5, the
delays were presented as delta functions.

dendrites are also known for their complex physical structures with significantly greater fan-in
(~ 10,000 inputs).

Analog approaches to building dendrites offer savings in energy compared to digital
neuromorphic, with the promise of more complexity and dynamics. Previous work has
demonstrated dendritic models using sub-threshold analog floating-gate transistors [13, 35] as
shown in Fig. 3-1. The voltage across these devices has been shown to obey a class of non-linear
partial differential equations (PDEs) and could potentially be used as scientific kernels. Our
hypothesis is that the technology to implement nonlinear summation currently exists, but
capturing this capability will require specific configuration of the neural network. Automating the
selection of parameters for this circuit will enable circuit designers to predict how to utilize these
circuits in architecture design.

3.1. Delay Line Experiments

3.1.1. Experiment 1: Simple Delay Line

We trained an RL agent to perform the delay line task (Section 2.1.1) with variable delays that
lasted between 0 and 5 time steps. At each time step, the RL agent chose to either place a Delay1
component or a Probe component, which terminated the circuit (Table 2-1). The RL agent was
given a sparse reward (Equation 2.2). The RL agent was trained using HER-DQN (Section 2.2).
After training, the RL agent was able to create delay line circuits with 100% accuracy. This
experiment demonstrated that RL can be used to design simple circuits from scratch. For an
illustration, see Figure 3-2.

3.1.2. Experiment 2: Delay Line with Two Delay Types

We trained an RL agent to perform the delay line task (Section 2.1.1) with variable delays that
lasted between 0 and 100 time steps. The RL agent was only allowed to place a maximum of 11
components. At each time step, the RL agent chose to either place a Delayl component, a
Delay10 component, or a Probe component, which terminated the circuit (Table 2-1). The RL
agent was given a sparse reward (Equation 2.4). The RL agent was trained using HER-SAC
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Figure 3-3. lllustration of experimental setup for Experiment 2.

(Section 2.2). After training, the RL agent was able to create delay line circuits with 100%
accuracy. For an illustration, see Figure 3-3.

This experiment demonstrated several important concepts. Firstly, it taught us to log-transform
rewards so that small and large delays were equally considered. Secondly, it taught us to penalize
too much delay so that RL agents would learn to not make unfixable mistakes. Thirdly, it
demonstrated that RL methods for real-valued action spaces can also be used to make discreet
component choices. And finally, it demonstrated that RL could make simple circuits from more
than 2 component types.

3.1.3. Experiment 3: Delay Line with Continuous Parameters

We trained an RL agent to perform the delay line task (Section 2.1.1) with variable delays that
lasted between 0 and 100 time steps. The RL agent was only allowed to place a maximum of 11
components. At each time step, the RL agent chose to either place a Delayl component, a Delta
Delay component, or a Probe component, which terminated the circuit (Table 2-1). The RL agent
was given a sparse reward (Equation 2.4). The RL agent was trained using HER-SAC (Section
2.2). After training, the RL agent was able to create delay line circuits with 100% accuracy. This
experiment demonstrated that RL agents can learn to not only place components, but also choose
their parameter values. For an illustration, see Figure 3-4.

3.1.4. Experiment 4: Delay Line with Costs

We trained an RL agent to perform the delay line task (Section 2.1.1) with variable delays that
lasted between 0 and 100 time steps. The RL agent was only allowed to place a maximum of 11
components. At each time step, the RL agent chose to either place a Delayl component, a Delta

Delay = 0 Delay = & Delay = N-1 Delay = N

O bse rve : Desired = N Desired = N Desired = N Desired = N

o o
Place: »IIII) »
t=0 t=1 t=N

Figure 3-4. lllustration of experimental setup for Experiments 3 and 4.
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Delay component, or a Probe component, which terminated the circuit (Table 2-1). The RL agent
was given a sparse reward (Equation 2.5) that included costs for each component placed. The RL
agent was trained using HER-SAC (Section 2.2). After training, the RL agent was able to create
delay line circuits with 100% accuracy. This experiment demonstrated that RL agents can learn to
maximize circuit performance while simultaneously minimizing some cost. For an illustration,
see Figure 3-4.

3.1.5. Experiment 5: Delay Line with Time Series Input

We trained an RL agent to perform the delay line task (Section 2.1.1) with variable delays that
lasted between 0 and 10 time steps. The RL agent was only allowed to place a maximum of 11
components. At each time step, the RL agent chose to either place a Delayl component or a
Probe component, which terminated the circuit (Table 2-1). The RL agent was given a sparse
reward (Equation 2.4). The RL agent was trained using HER-SAC (Section 2.2).

For this experiment, the observation was different. Whereas in previous experiments, the RL
observed the remaining delay at a discreet point in time, for this experiment, the RL agent
observed a time series that represented the necessary delay at each time step. The RL agent also
observed an integer representing the number of steps left. Unfortunately, training was not
successful. It is possible that longer training times would have resulted in successful training.
Future experiments should also consider how alternative neural network architectures can be used
to understand simultaneous presentation of time series data. It is possible that recurrent neural
networks will be useful for such problems. For an illustration, see Figure 3-2.

3.2. Detection Experiments

3.2.1. Experiment 6: Simple Delay Gate - Dense Rewards

We trained an RL agent to perform the detection task (Section 2.1.2) with variable signal lengths
between 0 and 10 time steps. At each time step, the RL agent observed a sample of the Digital
signal (Figure 2-4). At each time step, the RL agent chose to either place a DetectO0 component, a
Detect] component, or a Probe component, which terminated the circuit (Table 2-2). The RL
agent was given a dense reward (Equation 2.8). The RL agent was trained using PPO (Section

Target= 046 Target= 14¢ Target= 14¢

O bse rve . - = - = - - Done
. Non-target=rand;¢ Non-target=rand;g Non-target=rand;s

Place: —)----) —)
t=0 t=1 t=N

Figure 3-5. lllustration of experimental setup for Experiments 6, 7, and 8.
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2.2). After training, the RL agent was able to build circuits that correctly detected the target
pattern with nearly 100% accuracy. For an illustration, see Figure 3-5.

This experiment confirmed that RL can learn to design signal detection circuits by looking at
multiple examples of target an non-target signals. Until this experiment, RL agents observed
scalar values, rather than vectors.

3.2.2. Experiment 7: Simple Delay Gate - Sparse Rewards

We trained an RL agent to perform the detection task (Section 2.1.2) with variable signal lengths
between 0 and 10 time steps. At each time step, the RL agent observed a sample of the Digital
signal (Figure 2-4). At each time step, the RL agent chose to either place a DetectO0 component, a
Detectl component, or a Probe component, which terminated the circuit (Table 2-2). Unlike in
the previous experiment, the RL agent was given a sparse reward (Equation 2.8). The RL agent
was trained using PPO (Section 2.2). For an illustration, see Figure 3-5.

When the target signal had fewer than 5 time steps, the RL agent was able to learn to build an
appropriate signal detection circuit. However, when the target signal had more than 5 timesteps,
the RL agent did not learn to build signal detection circuits within the allotted time. This
experiment highlighted the need to accelerate RL when using sparse rewards.

3.2.3. Experiment 8: Simple Delay Gate - Curriculum Learning

We trained an RL agent to perform the detection task (Section 2.1.2) with variable signal lengths
between 0 and 10 time steps. At each time step, the RL agent observed a sample of the Digital
signal (Figure 2-4). At each time step, the RL agent chose to either place a Detect0 component, a
Detect] component, or a Probe component, which terminated the circuit (Table 2-2). The RL
agent was given a sparse reward (Equation 2.8). The RL agent was trained using PPO (Section
2.2). For an illustration, see Figure 3-5.

For this experiment, curriculum learning was applied by increasing the maximum length of the
target signal as training progressed. The length of the target signal increased from O to 10. At the
end of training, the RL agent was able to design signal detection circuits that were nearly 100%
accurate for all signal lengths. This experiment highlighted the utility of using curriculum
learning to accelerate RL when using sparse rewards. Because curriculum learning was so
successful, it was used for the remainder of experiments.
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RL agents were trained for 100,000
timesteps to design signal detection circuits. When RL agents were given
dense rewards (Experiment 6, blue line), training time increased linearly with
the signal length. When RL agents were given sparse rewards (Experiment 7,
red line), training time increased exponentially with the signal length, and RL
agents did not learn to design signal detection circuits for signals that con-
tained more than 5 bits of information. When RL agents were trained using
curriculum learning, training time increased linearly with the signal length,

even with sparse rewards (Experiment 8, yellow line).

3.2.4. Experiment 9: Delay Gate with Variable Delays

Observe:

Place:

We trained an RL agent to perform the detection task (Section 2.1.2) with variable signal lengths
between 0 and 10 time steps. At each time step, the RL agent observed a sample of the Digital
signal (Figure 2-4). At each time step, the RL agent chose to either place a DetectO component, a
Detect] component, a Delayl component, or a Probe component, which terminated the circuit
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Figure 3-7. lllustration of experimental setup for Experiment 9.
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Figure 3-8. lllustration of experimental setup for Experiment 10.

(Table 2-2). The agent was given a sparse reward (Equation 2.8). The RL agent was trained using
PPO (Section 2.2). For an illustration, see Figure 3-7.

This experiment was much like Experiment 8, but with the addition of the Delayl component,
which did not perform detection. The addition of the Delayl component was made to test if the
RL agent was able to learn to place components when there were more than 3 components. This
experiment established that increasing the design space does not necessarily inhibit the
performance of the RL agent.

3.2.5. Experiment 10: Delay Gate with Analog Detectors

We trained an RL agent to perform the detection task (Section 2.1.2) with variable signal lengths
between 0 and 10 time steps. At each time step, the RL agent observed a sample of the Low SNR
signal (Figure 2-4). At each time step, the RL agent chose to either place a Detect Any component
or a Probe component, which terminated the circuit (Table 2-2). The RL agent was given a sparse
reward (Equation 2.8) and trained using PPO (Section 2.2). For an illustration, see Figure 3-8.

After training, the RL agent was able to build signal detection circuits that were greater than 60%
accurate. Transfer learning was employed by training the agent to build signal detection circuits
for signals of length 10 and then using the same agent to build signal detection circuits for signals
of length 20, without retraining. Transfer learning worked with little to no degradation in
performance (about 2%). While accuracy was far from perfect, it was far greater than chance
performance (50%), and somewhat impressive given the low SNR.

This experiment established the possibility of using transfer learning to train an RL agent in a
time-efficient manner on simple circuits and then using the same agent to build more complex
circuits. This experiment also established that RL agents can be used to build real-valued signal
detection circuits. Rather than choosing to tune performance for the Detect Any component, we
choose to shift attention to the dendritic detect components. It is possible that tuning of the
curriculum learning hyperparameters or additional training time would have resulted in higher
performance.
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Figure 3-9. lllustration of experimental setup for Experiment 11.
3.3. Dendritic Detection Experiments

Passive dendrite cable circuits are a great first step to test our RL algorithms on. Each dendrite
compartment or ‘tap’ consists of an axial conductance and leakage capacitance and conductance.
These blocks can be placed sequentially and can be tuned for a particular parameter.

3.3.1. Experiment 11: Dendritic Delay Line (No Leaks)

We trained an RL agent to perform the dendritic detection task (Section 2.1.3) with variable
signal lengths between 10 and 20 time steps. At each time step, the RL agent observed a sample
of the Medium SNR signal (Figure 2-4). At each time step, the RL agent chose to either place a
Dendritic Detect component or a Delay component. Unlike in previous experiments, circuits
terminated automatically based on the pre-determined number of components in the circuit; probe
components were not used. The RL agent was given a sparse reward (Equation 2.8) and trained
using PPO (Section 2.2). For an illustration, see Figure 3-9.

Detection accuracy approached 91% for the Medium SNR signal. For this task, we noticed that
the highest accuracy was achieved when target and non-target signals had samples with opposite
signs, suggesting that a tunable bias parameter may be helpful. We also noticed that this task
required slightly longer signals (a minimum length of about 10 was used) in order for the RL
agent to be able to learn. This may be because only certain differences can be exploited by
dendritic components.

Curriculum learning was successfully used to increase the signal length from 10 to 20. Transfer
learning was successfully used to increase the signal length from 20 to 40. This experiment
demonstrated that RL can be used to build circuits from dendrite-like neuromorphic
components.
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Figure 3-10. lllustration of experimental setup for Experiment 12.

3.3.2. Experiment 12: Dendritic delay line (leaky)

We trained an RL agent to perform the dendritic detection task (Section 2.1.3) with variable
signal lengths between 10 and 20 time steps. At each time step, the RL agent observed a sample
of the Medium SNR signal (Figure 2-4). At each time step, the RL agent chose to either place a
Leaky Dendritic Detect component or a Delay component. Circuits terminated automatically
based on the pre-determined number of components in the circuit; probe components were not
used. The RL agent was given a sparse reward (Equation 2.8) and trained using PPO (Section
2.2). For an illustration, see Figure 3-10.

Detection accuracy approached 91%. Curriculum learning was successfully used to increase the
signal length from 10 to 20. Transfer learning was successfully used to increase the signal length
from 20 to 40. This experiment demonstrated that RL can be used to build circuits from
dendrite-like neuromorphic components, even if those components have leakage currents.

3.3.3. Experiment 13: Dendritic Delay Line with Tunable Bias

We trained an RL agent to perform the dendritic detection task (Section 2.1.3) with variable
signal lengths between 10 and 20 time steps. At each time step, the RL agent observed a sample
of the Medium SNR signal (Figure 2-4). At each time step, the RL agent chose to either place a
Leaky Dendritic Detect with Tunable Bias component or a Delay component. Circuits terminated
automatically based on the pre-determined number of components in the circuit; probe
components were not used. The RL agent was given a sparse reward (Equation 2.8) and trained
using PPO (Section 2.2). For an illustration, see Figure 3-11.
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Figure 3-11. lllustration of experimental setup for Experiment 13.

44



Detection accuracy approached 97%. Curriculum learning was successfully used to increase the
signal length from 10 to 20. Transfer learning was successfully used to increase the signal length
from 20 to 40. This experiment demonstrated that RL can be used to rapidly prototype changes in
components. In this case, including the tunable bias increased accuracy from 91% to 97%.

3.3.4. Experiment 14: Dendritic Delay Line with Tunable Leak

We trained an RL agent to perform the dendritic detection task (Section 2.1.3) with variable
signal lengths between 10 and 20 time steps. At each time step, the RL agent observed a sample
of the Medium SNR signal (Figure 2-4). At each time step, the RL agent chose to either place a
Leaky Dendritic Detect with Tunable Leakage component or a Delay component. Circuits
terminated automatically based on the pre-determined number of components in the circuit; probe
components were not used. The RL agent was given a sparse reward (Equation 2.8) and trained
using PPO (Section 2.2). For an illustration, see Figure 3-12.

Detection accuracy approached 91%. Curriculum learning was successfully used to increase the
signal length from 10 to 20. Transfer learning was successfully used to increase the signal length
from 20 to 40. Leakage current is a part of biological neurons. Here, we rapidly prototyped a
tunable leakage current to determine if it had any affect on computation. Compared to a
non-tunable leakage current (Experiment 12), a tunable leakage current did not offer additional
computational power.

3.4. Discussion

In this chapter, we prototyped RL circuit design tools on simple delay line tasks before moving to
signal detection tasks and finally dendritic detection tasks. From these experiments, we learned
several important lessons. Firstly, RL can successfully design many different types of circuits
from scratch by choosing components from a library. The maximum size of the library that we
tested was 4 components, but we suspect that these methods will generalize to larger libraries.
Secondly, RL can maximize circuit performance while minimizing costs. Thirdly, RL can use
sparse rewards to learn to design circuits; however, when using sparse rewards, it is important to
accelerate RL by using techniques such as curriculum learning and transfer learning. Lastly, RL is
very useful for rapid prototyping. In less than an hour, it was possible to evaluate several
dendrite-like neuromorphic components to determine which components would be useful for
performing a signal detection task (see Experiments 11-14).
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Figure 3-12. lllustration of experimental setup for Experiment 14.
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These experiments also uncovered one unaddressed challenge that future studies should consider:
the RL agents were unable to build circuits when they observed an entire time series input instead
of observing a time series sample-by-sample. Many interesting electrical components, such as
capacitors, induce phase changes, and detecting these phase changes may be crucial for allowing
RL to place such components. For this reason, it will be necessary for RL to be able to observe
multiple samples of a time series. Future studies should consider methods that enable time series
observations - recurrent neural networks are one potential solution.
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4. COMPARING REINFORCEMENT LEARNING WITH
EVOLUTIONARY ALGORITHMS

4.1. Motivation

In Chapter 3, RL was successfully used to build signal detection circuits. In this chapter, we
explore if evolutionary algorithms (Section 1.6.3) can be used to accelerate the circuit design
process.

4.2. Methods

4.2.1. Task

We compared evolutionary algorithms and RL using the Dendritic Detection task. The Dendritic
Detection task was described at length in Section 2.1.3. Briefly, models of dendrite-like
neuromorphic components were use to construct signal detection circuits. Circuits were only
constructed from the Dendritic Delay and Dendritic Detect with Tunable Bias components (Table
2-3). These circuits were built to detect the Medium SNR signals (Figure 2-4). RL agents were
given sparse rewards (Equation 2.4).

4.2.2. Details of Evolutionary Algorithm

Unlike RL, evolutionary algorithms do not have a mechanism to observe system inputs, outputs,
or design constraints. Instead, evolutionary algorithms optimize circuits by using the fitness score
(reward), only.

For the Dendritic Detection task, the evolutionary algorithm was allowed to optimize the
following parameters:

1. The identity of each component
2. The parameters of each component

The number of components was assumed to be fixed (this was also the case for the RL algorithm).
Component identity and component parameters were combined such that crossover (Section
1.6.3) chose the component identity and component parameters from the same parent (i.e., it was
not possible to inherit a component identity from one parent and inherit the component
parameters from the other parent). Crossover was implemented by randomly choosing the
component parameter/identity traits with equal probability from each of the 2 parents. Mutation
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was implemented by randomly changing the component identities and parameters. Component
identities were mutated with a probability of 0.1. Component parameters were mutated with a
probability of 0.1 and were drawn from a uniform distribution that was centered on the original
parameter value with a range of 1. Note that the range of parameter values was £10.

Each generation was composed of 50 parents. Crossover and mutation produced an additional 50
children. The top 50 candidates were selected to become the next generation.

4.3. Results
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Figure 4-1. Reinforcement learning vs. evolutionary algorithms. Evolution-
ary algorithms (orange line) outperformed RL (blue line) in terms of detection
accuracy (top panel) for all signal lengths. Detection accuracy for the evo-
lutionary algorithm was always perfect, while the detection accuracy for RL
decreased with the number of samples in the signal. The training time (bot-
tom panel) for the evolutionary algorithm (orange line) increased with the
number of samples in the signal. For RL, the training time was constant for
all signal lengths (green line), and circuit design time (blue line) increased as
a function of signal length, but remained much lower than the training time
for evolutionary algorithms.

Figure 4-1 compares the performance and training/evaluation time required by RL and EA.

4.3.1. Reinforcement Learning

For RL, it took approximately 6 minutes (median) to train the agents (n=5). Because of transfer
learning, training time was constant for all circuit sizes tested. Note that, for the results detailed in
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Figure 4-1, the RL agents were trained on circuits that were 10-20 samples in length and then
tested on circuits that were 10-100 samples in length. After training, inference (circuit design
without further learning) occurred at a rate of approximately 1,269 components per second. This
rate was relatively constant for all circuit sizes. The median classification accuracy of circuits
designed with RL was approximately 97% for circuits that had 10-20 modules and greater than
90% for circuits that had up to 100 modules.

4.3.2. Evolutionary Algorithms

When EA is used to optimize circuits, there is no distinction between training time and testing
time because EA must be performed anew for each new circuit design. Unlike RL, which learns
to build a class of circuits (in this case, dendrite-like neuromorphic circuits), EA learns to build
individual circuits. Thus, circuit design time for EA is dependent on circuit size. As circuit size
was increased from 10 to 100 modules, the design time increased from a median of 2.5
seconds/circuit to a median of 134 seconds/circuit. The classification accuracy of circuits
designed with EA was 100%, regardless of circuit size.

4.4. Discussion and Conclusions

4.4.1. Circuit Design Time

RL took approximately 6 minutes to train, but then it could design dendrite-like neuromorphic
signals at a rate of 1,269 modules/second. EA had no distinct training phase, and could build
circuits at a rate of 0.5-4 modules/seconds. This suggests that EA and RL may have distinct roles
in Al-enhanced circuit design. EA can be used for rapid prototyping with novel modules, and RL
can be used for “production” circuit design that involves designing many different circuits from
the same modules. However, we suggest caution when interpreting these results for several
reasons. Firstly, hyperparameters for EA and RL were manually tuned, and we expect that
additional hyperparameter tuning may result in accelerated learning for both methods.

Secondly, while EA has already been used to design networks of modules with parallel
connections [45], generalizing RL to parallel circuits is non-trivial and will require further
research. This means that EA may have a distinct advantage when designing more complex
circuits. However, RL is able to take advantage of transfer learning to efficiently learn more
complex circuits. Designing transfer learning methods for EA is likely not possible without
specialized knowledge. This means that RL. may have advantages over EA when circuit design
tasks can be broken down into series of less complex tasks.

4.4.2. Circuit Design Accuracy
As shown in Figure 4-1, EA was able to build circuits that could detect signals with 100%

accuracy, whereas RL-designed circuits were only able to achieve a median accuracy of 90-97%,
depending on signal length. This might suggest that EA should be used instead of RL when high
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accuracy is desired. Or, alternatively, it might suggest that RL solutions can be refined using EA
in order to combine the superior speed of RL (during inference) with the superior accuracy of
EA.

However, it is important to note that the target and non-target distributions that were used to
create signals overlapped, suggesting that, at least occasionally, signal detection should have
imperfect accuracy. Perfect accuracy over the 3200 signals evaluated suggests that the 100%
accuracy for EA-designed circuits is caused by overfitting. We note that, while RL simulations
automatically provide validation data sets, EA methods are difficult to cross-validate. For this
reason, it may be preferable to use RL instead of EA because RL provides a reasonable estimate
of solution robustness whereas EA does not.

4.4.3. Circuit Design Creativity

EA must be trained separately for each circuit of interest. RL can be trained separately for each
circuit, but such a strategy would be uncommon and likely quite inefficient. Instead, RL is
typically trained on a large set of circuits that belong to the same family (e.g., the family of signal
detection circuits that are built from specified modules for signals with the specified
distributions). Because RL is trained to build many different circuits, it is encouraged to find
solutions that work well across many types of circuits. In many regards, this behavior is desirable,
because it suggests that, if some RL solutions can be explained, then most RL solutions can be
explained. However, because EA is trained on a single circuit, it can possibly overfit the data (as
discussed above). EA also can produce multiple designs that work well for an individual circuit.
A trained RL agent, by contrast, will tend to produce solutions deterministically. Because EA can
produce multiple designs, it can be thought of as a creative process. If more creativity is desired,
the EA can be randomly initialized multiple times in order to reveal the entirety of the solution
space. By understanding the entire solution space, it may be possible to promote discovery of
novel uses for devices.

Creative processes tend to be inefficient, and EA is no exception. An RL agent is expected to
produce the same circuit design each time that it is presented with the same example signals
(assuming that no additional training occurred). While different RL agents could produce
different circuit designs, this becomes less likely as the amount of training data increases because
there are relatively few solutions that work well across the entire problem space, and
low-performing RL agents would be discarded. EA, on the other hand, can produce multiple
circuit designs across runs, and even within the same run. While this is great for creativity, it
comes at the cost of efficiency. It is difficult to know if further training for an EA algorithm will
produce better results. Thus, when EA does not produce a solution that has 100% accuracy on the
training data, it is possible to waste time searching for a better solution. A trained RL agent, on
the other hand, produces a single solution; so, it is not necessary to spend additional time to
search for a better solution.
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5. CASE STUDY: MOTT MEMRISTORS

5.1. Motivation

In previous chapters, we showed that RL and evolutionary algorithms can be used to rapidly
optimize circuit designs. In this chapter, we demonstrated that Al-enhanced circuit optimization
tools can be used to rapidly prototype circuits using emerging devices. Mott memristors [23] were
recently developed to implement leaky integrate-and-fire dynamics, similar to biological neurons.
Here, we show that evolutionary algorithms can rapidly tune Mott memristor parameters to
perform a signal detection task.

5.2. General Methods

5.2.1. Mott Memristor Model

Memristors are resistors, where the resistance is a function of the history of current that has passed
through the device. In a Mott memristor, the change in resistance is based on a temperature-based
Mott transition, which causes the device to transition from a resistor to a conductor.

Here, we modeled Mott memristors as variable resistors. The variable resistance was modulated
by the history of voltage across the device. In our model, the value of the resistor could take on
one of two values. If a voltage was applied to the Mott memristor that exceeded the switching
voltage, v,, the memristor transitioned from a high resistance value, ry, to a low resistance value,
r;. In our model, vy and r; were tunable, but r;, was not tunable. Mott memristors can be operated
with either forward or reverse polarity by physically rotating the memristor relative to the flow of
current. While a positive v; is required to switch the memristor from 7y, to r;, a negative v can be
implemented by switching the polarity of the device.

Mott memristors like those described in [23] also have a capacitance that acts a charge integrator.
Here, we modeled this capacitance as a perfect integrator of voltage that was capable of
instantaneously storing and dissipating charge (and therefore, voltage). Integration of voltage was
calculated as:

T
vr=Y v (5.1)
=0
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Figure 5-1. Mott signal discrimination circuit. Mott detectors (blue) are
volatile Mott memristors that are used to detect samples where the target
signal differs from the non-target signal. Null devices (gray) are essentially
empty component spaces that are not involved in detection. Mott integra-
tors (red) are non-volatile Mott memristors that integrate information across
time from multiple Mott detectors. Current detectors (green) make a decision
about whether or not a signal has been detected.

Note that, in our model, leakage current was not present. However, we did assume that, for the
non-volatile Mott memristors (the Mott Integrator modules, as described below), the internal state
of the device was reset between detection events.

We used two different models of Mott memristors. In both models, a voltage greater than v
caused the resistance of the device to transition from r; to r;. In “volatile” memristor models, the
resistance of the device transitioned from r; to r;, when voltage decreased below v,. In
“non-volatile” memristor models, the resistance of the device transition from r; to r;, only when
the polarity of the voltage changed to the opposite polarity of the memristor.

To test if Al techniques could be used to build circuits from Mott memristors, we asked the Al to
build circuits that could perform signal detection tasks. Because evolutionary algorithms were
identified as good candidates for rapid prototyping in Chapter 4, we chose to use EA to optimize
the circuit design. We used the same evolutionary algorithm methods that were described in
Section 4.2 with a few modifications. Firstly, we decreased the number of samples in the signal
from 10 to 8. This is because the Mott memristor circuits require 1 Mott memristor per signal
sample plus 2 additional elements that are involved in integrating information across samples (see
Figure 5-1). We also chose to use the High SNR signal distributions (Figure 2-4) in order to
rapidly prototype this initial proof-of-concept.
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5.2.2. Circuits

Evolutionary algorithms were used to optimize Mott memristor signal detection circuits like the
one illustrated in Figure 5-1. The evolutionary algorithm had to choose the component identity
and parameters from the following:

1. Mott Detector - a volatile Mott memristor with tunable parameters v, and r;

2. Null Device - a module that accepts a sample of the input signal, but does not process it.
3. Mott Integrator - a non-volatile Mott memristor with tunable parameters v, and r;
4

. Current Detector - an ideal current detector (no resistance), with tunable current detection
threshold parameter I

The connectivity of all elements was assumed to be constant and known. Mott Detectors were
always connected to a single Mott integrator, which was always connected to a Current Detector.
The evolutionary algorithm had to tune all tunable parameters to cause the Current Detector to
detect target signals, but not non-target signals.

5.2.3. Tunable Parameter Values

The following Mott memristor parameters were tunable:

vs € [0, 10] (5.2)
r € [~10,10] (5.3)

The sign of the r; determined the polarity of the Mott memristor. The current detection threshold
was also tunable for most experiments:

I, € [0,10] (5.4)

For some experiments, /; = 0.5 was a fixed constant in order to investigate if evolutionary
algorithms could take advantage of the Mott transition for computation.

5.3. Results

5.3.1. Tunable Current Detection Threshold

The evolutionary algorithm was asked to perform the signal detection task, described above, and
allowed to choose I; from the range [0, 10]. Under these conditions, EA converged to solutions
quickly (within 50 generations) and never failed to find a solution that resulted in 100%
accuracy.
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Interestingly, the /; was always approximately O and never observed to be greater than 0.1.
Furthermore, the solutions found by EA never required the Mott memristors to transition from ry,
to r;. Under these simulation conditions, all identified solutions used Mott memristors as simple
resistors.

One EA-produced solution for the signal detection task with tunable current detectors is shown in
Figure 5-2. The evolutionary algorithm placed Mott detectors at samples 4, 5, and 7. With this
solution, the current detector was unable to perform signal detection until all 3 samples had been
observed (e.g., signal detection could not detect signals until sample 7 was observed).

5.3.2. Fixed Current Detection Threshold

The evolutionary algorithm was asked to perform the signal detection task, described above, and
forced to use Iy = 0.5. Under these conditions, the evolutionary algorithm was able to find
solutions in approximately 1 out of 3 trials. Whenever solutions were found, they resulted in
100% classification accuracy.

Unlike in the tunable current detector condition, the fixed current detector condition did find
solutions that required the Mott memristors to transition from ry, to r;.

One example of the signal detection task with fixed current detectors is shown in Figure 5-2. The
solution found by the evolutionary algorithm used Mott detectors at samples 0-3 and 6-7.
However, the current detector was able to detect the signal using only signal samples O and 1.
Once the signal was detected, the trial terminated. This demonstrates that, when permitted by
differences in the signal and noise distributions, evolutionary algorithms can build circuits that do
not require using the full signal to perform detection. However, the final design did include more
Mott Detectors than required. We note that no feedback was given to the evolutionary algorithms
to discourage it from using more Mott Detectors than necessary. Future work should consider
adding a penalty to the fitness score to encourage finding solutions that use fewer Mott Detectors.
Or, future solutions might consider a second refinement step that removes as many Mott Detectors
as possible (replacing them with Null Modules) until performance is affected.

5.4. Discussion

In this chapter, we demonstrated that evolutionary algorithms can be used to optimize circuits that
use emerging devices. Future studies should use more complete Mott memristor models. Future
studies should also consider if RL can increase the proportion of fixed current detector circuits

(Iy = 0.5 condition) that can be successfully optimized.
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Figure 5-2. Signal detection with tunable current detectors. (Top Panel) An
example of a signal detection task . Blue lines are the target signal and red
lines are the non-target signals. (Bottom Panel) The solution found by the
evolutionary algorithm.

55



Magnitude (a.u.)

0.75 1

0.50 1

0.25 1

0.00

—0.25 T

—0.50 ~

—0.75 T

—1.00

270 20> o,
Q‘&//QQ*&//QQ!Q

2 3 4 5
Sample #
) X L N,
NN NG A0 X0

Y

Integrator

Current
Detector

56

Figure 5-3. Signal discrimination with fixed current detectors. (Top Panel) An
example of a signal detection task . Blue lines are the target signal and red

lines are the non-target signals. (Bottom Panel) The solution found by the
evolutionary algorithm.



6. NOVEL DEVICE DISCOVERY

6.1. Motivation

In Chapters 3-5, we demonstrated that Al-enhanced circuit design tools can be used to quickly
design circuits from components that are contained in a library. This rapid prototyping capability
allows investigators to quickly identify problems that an emerging device can solve. However, the
process of design relies on a library of known components. But suppose that no combination of
known components solves a problem within the specified design constraints? In this situation,
investigators need to move beyond design and into the discovery of novel devices. There are at
least 2 situations where novel device discovery should be implemented:

1. The user is an engineer trying to solve a circuit design problem, but the performance of the
final circuit does not meet minimum performance requirements.

2. The user is a scientist who is interested in discovery.

Unfortunately, the process of discovery can take a long time - possibly years depending on the
investigator’s level of experience and inspiration. Here, we present an Al-enhanced circuit design
tool that is capable of producing specifications for novel devices. In theory, specifications for
novel devices can be used to actually fabricate the device. In order to demonstrate what one such
design process would look like, we present this chapter as a chronological process of discovery.

6.2. General Methods

In this section, we describe a general design process that can be followed for novel device
development.

6.2.1. Defining the Problem

The process of discovery relies on MAMMAL (Section 2.2.5). MAMMAL requires the
investigator to supply circuit inputs, desired circuit outputs, and any design constraints. If
MAMMAL is provided with an insufficient component library, it can switch to “discovery mode.
For this example, we chose to provide MAMMAL with an empty component library.

2

Circuit components are functions that accept a finite number of inputs and produce a finite
number of outputs. These functions may also accept several constant parameters. In order to
discover a novel component, MAMMAL needs to describe a useful function. Once a function is
described, investigators can attempt to implement the function using novel or existing devices or
materials.
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6.2.2. Neural Network Models

To discover useful functions, we need a technique that can approximate useful functions. For this
purpose, we used neural networks, which are universal function approximators.

As show in Figure 6-1, MAMMAL chooses modules from a library. If MAMMAL chooses the
“novel component” component, the component is represented by a neural network. Importantly,
all novel component neural networks have the same neural network parameters. These shared
parameters include wy (layer 1 weights), wy (layer 2 weights), u (layer normalization mean), and
o (layer normalization standard deviation), as shown in Figure 6-1. We refer to these parameters
as "neural network parameters." Shared neural network parameters ensure that device behavior is
consistent across all instances of the novel component. This behavior is desirable for at least 2
reasons:

1. Intuitively, all instances of a novel component should exhibit the same behavior, at a high
level (e.g., all capacitors store charge).

2. Shared parameters should decrease the time required to construct new components because
there are fewer parameters to optimize.

However, MAMMAL was allowed to choose non-shared input parameters that it could pass to
each neural network separately. These non-shared parameters are represented in Figure 6-1 as 0.
The number of input parameters can be chosen by the investigator. We refer to the non-shared
parameters as “componentence’ parameters (componentence is to components as resistance is to
resistors as capacitance is to capacitors). In theory, a componentence parameter is a device
parameter (such as the distance between capacitor plates) or a material property (such as a
dielectric constant). While shared neural network parameters ensure that novel component
behavior is consistence across components at a high level, non-shared componentence parameters
allow for customization of device behavior at a low level (e.g., capacitors all store charge, but
each capacitor stores a different amount of charge).

6.2.3. Training

The process of device discovery involves iterative training of MAMMAL (which selects
componentence parameters) and training of the neural network novel component models. Once
the neural network component models are trained, they can be analyzed to extract the desirable
behavior of a novel component.

6.2.4. Analysis Methods
We propose two methods to analyze the neural network models to understand component
behavior.

The first method involves analyzing the distribution of the componentence parameters chosen by
the RL agent. Examples of this analysis are shown in Figures 6-3, 6-5, 6-7, and 6-9. From this
analysis, we can derive information about:
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Figure 6-1. Example of a neural network for device discovery. Neural net-
works are composed of multiple modules, where each module represents a
single instance of a component. All neural network parameters (w, wy, U, c)
are shared between neural networks. Because the neural network parame-
ters are constant between components, each component will have the same
behavior, given the same inputs. Each neural network receives the output
of the previous component, as well as possible additional inputs (Obs.) and
non-shared componentence parameters (6,, 6,) that are chosen by MAMMAL.
The 6 parameters are different between instances of the components, which
allows the same neural network to perform slightly different computations,
depending on context. Input 1 for the first component is an arbitrary con-
stant.
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1. The number of componentence parameters that are necessary to perform the specified task.
2. The range of componentence parameters that will need to be manufactured.
3. The sensitivity of the component to changes in componentence.

The second method involves analyzing the input-output characteristics of the component. For a
component with a single input, a single output, and a single componentence parameter, the
input-output characteristics can be displayed on a single plot where the x-axis is the input, the
y-axis is the componentence, and the z-axis (color axis) is the output. For components that have 2
inputs, 2 componentence parameters, and a single output, results can be displayed as a grid of
subplotplots, where each subplot represents a combination of the 2 componentence parameters,
the x- and y-axes of each subplot represent the 2 inputs, and the output of the component is
displayed on the z-axis (color axis). Examples of such plots are shown in Figures 6-4, 6-6 , 6-8,
6-10. From such plots, we can extract useful information about the function implemented by the
component and how the function of the component is changed by the componentence
parameters.

6.2.5. Task

The RL agent was trained to perform the Separable About Zero signal discrimination task (Figure
2-4) using sparse rewards (Equation 2.8). The RL agent was trained using PPO (Section 2.2).

6.2.6. Human-intuitive Solution

To assist in interpreting the input-output behavior of novel devices, we present an example of
novel device behavior that a human might try to invent. We note that, for the Separable About
Zero task, the target and non-target signals always have opposite signs. Therefore, a human would
likely try to solve this problem by creating a component that has one of two componentence
values: {-1, 1}. A componentence parameter of -1 would correspond with a negative number
detector, and a componentence parameter of 1 would correspond with a positive number detector.
The input-output behavior of such a device is demonstrated in Figure 6-2. Note that this solution
is very similar to the solution implemented in RL Experiment 8.

6.3. “Novel” Device Generation - Initial Attempt

We attempted to design a novel device by allowing the RL agent to specify 2 componentence
parameters. Final performance exceeded 99% accuracy.

In Figure 6-3, the distribution of the componentence parameters is plotted. In the left subplot, the
axis limits were chosen to maximize the resolution of the interesting data. In the right subplot, the
axis limits were chosen to show the distribution of the componentence parameters over the entire
allowed search space. There is clear structure in the distributions of the componentence
parameters.
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Figure 6-2. Example of human-intuitive component behavior for the Separa-
ble About Zero task. In the top panel, we see that the component has 2
intuitive componentence values — one to detect positive signs, and one to
detect negative signs. In the bottom panel, we see the input output behavior.
With a componentence value of 6 = —1, the component is a negative number
detector, which only outputs a one if the previous component output a 1 and
if Input 2 is negative (see Figure 2-2 for an illustration of a detection line).
With a componentence value of 6 = 1, the component is a positive humber
detector, which only outputs a one if the previous component output a 1 and
if Input 2 is positive.
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Figure 6-3. Distribution of the 6, and 6, componentence parameters for a
neural network model of a novel nheuromorphic component. The right panel
is a plot of the componentence parameters across their entire range. The left
panel is a detailed view of the right panel.

From the right subplot, it is clear that the input parameters that were chosen by MAMMAL only
made up a small portion of the permitted range of the componentence parameters.
Componentence parameters were within the approximate range of [-2, 2], even though they were
permitted to be chosen from the range [-10, 10]. Because the range of the parameters was limited,
future experiments could potentially accelerate learning by restricting the componentence space
that needs to be explored.

From the left subplot, it is clear that the parameters 68; and 6, are both bi-modal. The bi-modal
distributions of the 0 parameters strongly suggests that the componentence parameters do not
need to be continuous-valued - the problem can likely be solved with parameters that are chosen
from a set of only 2 possible parameter values.

Additional inspection reveals that 8; and 8, co-vary; the joint distribution lies on the line
described by the 6, = 6. These observations, taken together, suggest that we do not need 2
componentence parameters to solve the given problem.

As shown in Figure 6-4, the output of the novel component (colors) can be plotted as a function of
the inputs (x- and y-axis) as well as the componentence parameters (each subplot). By analyzing
the subplots, we see that the component acted like a classifier. The decision line becomes more
linear, and less cubic, as the 8; componentence parameter increases. The 6, componentence
parameter also seems to make the decision line more linear, but it also seems to shift the decision
line towards zero (note the inverted axis).

Input 1 values were restricted to the range [0, 1] by the sigmoidal output of the neural network.
Input 2 parameters are plotted over the range [-2, 2], but the target and non-target signals that are
observed on Input 2 were limited to the range [-1, 1]. Thus, when analyzing the behavior of the
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Figure 6-4. Analysis of component model outputs as functions of the com-
ponent inputs and the componentence parameters.
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Figure 6-5. Distribution of 6, for a neural network model of a novel neuromor-
phic component. Only one componentence parameter was used.

component, it is important to note that Input 2 values in the range [-1, 1] are interpolations, while
Input 2 values greater than 1 in magnitude are extrapolations. This provides an interesting way to
analyze the robustness of the neural network model.

6.4. Decreasing the Number of Componentence Parameters

During the first attempt to generate novel devices, we determined that fewer than 2
componentence parameters were required to solve the problem (Figure 6-3). In theory, the
problem requires at least 1 componentence parameter to solve (Section 6.2.5). Thus, for the
second attempt to generate a novel device, we allowed the RL agent to choose only a single
parameter. Final performance was not affected by this simplification - performance continued to
exceed 99% accuracy.

In Figure 6-5, we see that the distribution of the componentence parameters chosen by the
Al-enhanced circuit design tool remained bi-modal - indicating that the componentence
parameter likely needs to only take on one of two values. This is consistent with our analysis in
Section 6.2.6. We also see that the componentence parameters take up a small portion of the
allowable domain (i.e., the allowable domain was [-10, 10], but the componentence values chosen
were in [-3, 1] (x-axis)).

In Figure 6-6 we can analyze the affects of the componentence parameter 6; on the input-output
behavior of the novel component. The dividing line appears as a cubic function, which seems to
shift upwards and become more linear as the value of 0 increases from its minimum observed
value to its maximum observed value.
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Figure 6-6. Analysis of component model outputs as functions of the com-
ponent inputs and the componentence parameters. Unlike in Figure 6-4, we
only fit one neural network import parameter.

We note that the distribution of the componentence parameters is bi-modal with modes at
01 =~ —2,0.21. We can divide our analysis into analysis of each of the distribution modes.

For the left-most mode (6; ~ —2):

The component outputs a 1 whenever it detects very large positive numbers on Input 2, or when it
detects small-magnitude positive or negative values on Input 2.

For the right-most mode (6; ~ 0.21):

The component always outputs a 1 if Input 1 (from the previous component) is > 0.5 or if Input 2
(observation) is positive. Negative numbers can only be detected if Input 1 is greater than O.

This is an interesting strategy that differs from the human-intuitive strategy (Section 6.2.6). The
human-intuitive strategy distinctly detects positive and negative numbers. The novel component
strategy seems to have one component that detects positive numbers and one component that
“doesn’t stop” negative number values from preventing the detection of a signal.

We notice that the left and right sub-distributions (centered around each of the two modes) have
approximately equal area, indicating that the “2” componentence values are chosen with
approximately equal probability. This makes sense, in some regards, since 50% of the target
signal samples are positive and 50% of the target signal samples are negative (and vice-versa for
the non-target samples).

6.5. “Correcting” the Problem Formulation

In the previous analysis of Figure 6-5, we concluded that the area under the curve for the left
sub-histogram was approximately equal to the area under the curve for the right sub-histogram.
This indicated that each of the “2” componentence values was chosen with approximately equal
probability. However, further analysis also reveals that the left sub-histogram is shorter and fatter
than the right sub-histogram, suggesting that, to function properly, the “left” componentence
value needs to vary more. Analysis of Figure 6-6 reveals that the decision boundary has an
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Figure 6-7. Distribution of 6, for a neural network model of a novel neuromor-
phic component. Input 1 for the initial component was corrected to 1.

approximately cubic shape when 0; is drawn from the sub-distribution centered on the left-most
node. A cubic shape seems overly complicated for such a simple discrimination task.

Further analysis reveals that the componentence distribution in Figure 6-5 is not centered at 0.
Certainly, the distribution of componentence values was not constrained to be centered at 0.
However, this seems like an oddly complicated result for such a simple discrimination task, and it
certainly clashes with the human-intuitive solution (Section 6.2.6), which was very much centered
at 0.

Of course, the neural network model was not constrained to produce human-intuitive results.
However, these observations led us to re-analyze the problem description. During our re-analysis,
we discovered an odd choice. As shown in Figure 6-1, Input 1 is a number in the range [0, 1] that
approximately represents whether the previous components detected the target signal (1) or the
non-target signal (0). The range [0, 1] is enforced by the sigmoidal activation function at the
output of the previous component. The first neural network component doesn’t have a “previous
component,” meaning that Input 1 needs to be a specified (but otherwise arbitrary) constant,
rather than a variable. As shown in Figure 6-1, we had chosen to set the specified constant to 0 for
the initial neural network component. This would cause the human-intuitive solution to fail
(Section 6.2.6) because the human-intuitive solution assumes that all previous components
detected a target signal and, therefore, output 1’s. Despite this choice, the novel components were
able to be used to classify most signals correctly.

It is possible that setting the initial value of Input 1 to 0 influenced the componentence parameter
distributions and the shape of the decision line. To investigate this idea, we “discovered” another
component, but this time, we set the initial value of Input 1 to 1. Final performance was not
greatly affected by this decision - performance continued to exceed 98% accuracy.

As shown in Figure 6-7, the sub-histograms corresponding to each of the two values of 0; are
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Figure 6-8. Analysis of component model outputs as functions of the compo-
nent inputs and the component parameters. Input 1 for the initial component
was corrected to 1.

more equal, though not perfectly so. Additionally, the distribution is much closer to being
centered at zero, though, again, not perfectly so. As shown in Figure 6-8, the line dividing the
output-1-region and the output-0 region is now linear, regardless of the value taken by 6;. All of
these differences seem to agree better with the human-intuitive solution.

The input-output behavior was different than the behavior of the component that was
“discovered” in the previous section. Not only was the decision boundary much simpler, but the
slope of the decision boundary was reversed. When 0; is negative, the component always outputs
a 1. When 6 is positive, the component output a 1 only if it detected a “lack of a positive
number.” This strategy can be thought of as "positively identifying a target signal, unless it looks
a lot like a non-target signal." This is in contrast to the component characterized in Figures 6-5
and 6-6 which "negatively identified a target signal, unless it looked a lot like a target signal."

From this attempt to design a novel component, we learned the following:

1. By analyzing the componentence parameters, as well as the input-output characteristics of
novel components, we can gain insight into how components actually need to function.
This provides some hope that black box neural network models of novel components can
actually be transformed into novel hardware.

2. “Small” changes in problem statements can lead to big differences in component behavior.
This property is wonderful for device discovery.

In closing, we would like to re-emphasize the fact that the “mistake” discovered in this section (in
addition to the previous section) was discovered as part of an actual case study. By characterizing
the input-output characteristics of a black box model of a novel component, we were able to gain

insight into its actual function.
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Figure 6-9. Distribution of 6,for a neural network model of a novel neuromor-
phic component. Input 1 for the initial component was changed to 0.5.

6.6. Expanding the Library

In the previous attempt to create a novel component, we changed the value of Input 1 for the
initial neural network component from O to 1. We observed that this change greatly affected the
input-output characteristics of the resulting component, while minimally affecting the
performance. In an effort to discover more interesting components, we set the value of Input 1 for
the initial neural network component to 0.5. Final performance was not greatly affected by this
change - performance continued to exceed 98% accuracy.

By analyzing the distribution of the componentence parameter (Figure 6-9), we see that the
distribution is no longer centered at 0, which supports the previous hypothesis that a non-zero
componentence parameter mean is associated with a departure from the human-intuitive problem
solution. We observe that the componentence parameter distribution remains bi-modal, but the
left-most mode is more than twice as likely as the right-most mode. Furthermore, we note that the
inter-modal region of the distribution has a relatively high magnitude compared to previous
distributions of componentence parameters.

When analyzing the input-output behavior of the component, we see that the behavior of the
component is quite complex compared to the behavior of previous components. At a high level,
0, seems to shift the decision boundary downward and scale the decision region around its
“point.” For low values of 01, the component “detects” everything as a signal - essentially acting
like a simple delay component (Table 2-2). As the value of 6 increases, the component begins to
behave like the positive number detector described in Section 6.2.6 and shown in Figure 6-2.

For values of 0; surrounding the left-most mode, the component seems to detect low-magnitude
positive and negative values. For values of 0; surrounding the right-most mode, the component
seems to detect positive values, but, it can detect values around 1 better than it can detect values
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Figure 6-10. Analysis of component model outputs as functions of the com-
ponent inputs and the component parameters. Input 1 for the initial compo-
nent was changed to 0.5.

Figure 6-11. Example conversion of neural network to explainable function.
A piecewise linear function is fit, with nodes (white) and lines (red). The
decision boundary was derived from Figure 6-10, panel 4.

around 2. As a reminder, values of Input 2 were drawn from the range [-1, 1], even though the
plotted range of Input 2 is [-2, 2]. Because the component behavior changes rapidly beyond its
input range, the component may not “extrapolate” well beyond the range of its training data.

6.7. Converting Neural Networks to Explainable Models

Novel components cannot implement arbitrary neural networks. Therefore, neural network
approximations of novel component behavior need to be converted to explainable functions.
Here, we demonstrate a method to convert the neural network to an explainable model, and we

demonstrate that the process is reasonably robust to approximation error, at least for the problem
that we studied.
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Figure 6-12. Piecewise linear parameters as functions of 6,

By studying Figure 6-10, it is clear that 0; is scaling and shifting the decision area. In order to
convert the decision area to an explainable function, we approximated the decision boundary with
a piecewise linear function, as shown in Figure 6-11. We fit these lines for multiple values of 6;
and then plotted line parameters (slope m and intercept b) as well as node parameters (location on
x-axis) as functions of 0y, as shown in Figure 6-12. Conveniently, the parameters that defined the
decision boundary could be expressed as simple linear functions of 0.

After expressing the piecewise linear decision boundary parameters as functions of 0y, we can
plot the approximate decision boundaries, as shown in Figure 6-13. By comparing Figure 6-13 to
Figure 6-10, we see that the piecewise linear fit is a fairly good approximation. However, there
are some minor differences. For instance, by comparing the first panel of both figures, it is clear
that the piecewise linear fit has a distinct output-0 region that is absent from the neural network
approximation. These discrepancies can be explained by the few data points (few values of 0;)
that were used to create the piecewise linear fit. We can also see that the output of the neural
network approximation decision boundary involves a relatively gradual transition from O to 1,
whereas the piecewise linear decision boundary creates an abrupt transitions between outputs of 0
and 1.

We asked an RL agent to build circuits using the piecewise linear approximation of the neural
network approximation. The RL-agent needed to specify the value of 6. The RL agent was able
to choose the piecewise linear approximations of the novel component to perform the task with
100% success. The RL agent didn’t need to learn the input-output characteristics of the novel
component, it only needed to learn how to use the piecewise linear components. Thus, training
was much faster than when the RL agent needed to learn the input-output characteristics of the
novel component. Additionally, because we knew the range of 6; componentence values that
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Figure 6-13. Piecewise linear approximation of decision boundaries. Compare to Figure 6-10

were required to solve the problem, we were able to modify the output range of the RL agent to
allow it to learn faster - at least qualitatively.

This experiment demonstrated that we can extract useful information from neural network models
of novel components using simpler approximations. The simplifying approximations did not
seem to affect the performance of circuits that were built with the novel components, at least for
this problem of interest.

6.8. Discussion

6.8.1. Summary

We asked the Al-enhanced circuit design tool to design novel components and use those
components to perform a signal detection task. The tool was able to perform the task with high
accuracy (approaching 100%). By slightly changing the problem statement, we were able to
induce the Al-enhanced circuit design tool to produce novel modules with very different
input-output behavior. We developed methods to analyze the neural network models of the the
novel modules, and our analyses gave us insight, not only into the function of the novel modules,
but also into the stated problem. The analysis methods allowed us to develop explainable models
of the novel modules. RL was able to arrange the explainable models into circuits that could
perform the task with high accuracy, even though the explainable models were noticeably
different than the neural network models that were originally optimized for the task.

6.8.2. Future Work

Here, we discovered novel component behavior by using a training process that alternated
between training the RL agent (to output componentence values) and training the neural network
component model (to better use the componentence values output by the RL agent). This process
was quite time consuming. Novel module discovery could be potentially accelerated by making
the neural network module models a part of the RL agent. This could potentially alleviate the
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need to alternate between training the RL agent and training the neural network component
model, which could save time.

The problem that we studied involved a simple detection task that represented the the least
complex problem that was still interesting. Importantly, the task that we chose required the RL
agent to learn to output componentence parameters, and it required the novel component model to
learn to use the componentence parameters. The problem that we selected could not be solved
with a single component that had no componentence parameters. Future work should consider
more complex problems, such as detection problems where the distributions of target and
non-target signals overlap.

In this work, MAMMAL was manually switched into “component discovery mode” by an
investigator. The ability to manually switch MAMMAL into discovery mode is attractive for
scientists who are interested in developing new devices, components, or circuits. However, future
versions of MAMMAL should include a way for MAMMAL to automatically switch into
discovery mode when available components in the library are insufficient to perform the desired
task.
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7. DISCUSSION AND CONCLUSIONS

This work made several key contributions as listed below:

7.1. MAMMAL (Reinforcement Learning)

Al-enhanced codesign has the potential to impact many technical fields by accelerating the design
process and by enabling the maintenance of institutional knowledge. By simultaneously
considering multiple system levels, Al-enhanced codesign has the potential to revolutionize
system design.

This project laid the groundwork for Al-enhanced codesign by demonstrating that reinforcement
learning can be used to design circuits from components. We called this RL-based system design
tool MAMMAL (Section 2.2). Here, we demonstrated that MAMMAL can build circuits of
different lengths by choosing circuit components from a library (Chapter 3). Furthermore, we
showed that MAMMAL is capable of producing mixed actions. Trained RL agents were able to
choose both discrete components and real-valued parameters (Section 3.1.3). Additionally, we
discovered several methods for improving the performance of MAMMAL, such as
log-transforming rewards (Section 3.1.2). Notably, MAMMAL was tested on a real-world circuit
design task that is related to Sandia’s mission.

We recognize that circuit design is a complex field because circuits must do more than perform a
specified task — they must also meet specified design constraints. As such, we identified a path
towards incorporating such constraints into MAMMAL. We successfully demonstrated that
MAMMAL can build circuits while minimizing some objective function, like component cost
(Section 3.1.4). These same methods should generalize to other constraints such as size, weight,
and power.

Many circuit components, such as capacitors, have time-varying outputs with respect to the inputs
because of unobserved internal variables. In order to design circuits from such components, it
may be necessary for RL agents to observe multiple samples of a time series simultaneously.
Unfortunately, MAMMAL had trouble building circuits when time series inputs were presented
simultaneously rather than sample-by-sample (Section 3.1.5). However, we expect that future
innovations will enable observations of multiple time series samples. In particular, we are excited
to try other neural network architectures, such as recurrent neural networks.

Curriculum learning proved a boon for enhancing MAMMAL. By employing curriculum
learning, we were able to massively accelerate design without resorting to dense rewards that are
not available in the real world (Section 3.2.3). Curriculum learning allowed us to maintain a
linear growth in training time vs. signal length while using sparse rewards. While investigating
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RL acceleration methods, we discovered that some circuit design problems benefit from zero-shot
transfer learning (see, for instance, Section 3.3.1). Zero-shot transfer learning allowed us to
efficiently train MAMMAL on short circuits and then use MAMMAL to design long circuits
without further training.

7.2. Evolutionary Algorithms

In addition to reinforcement learning methods, we explored if evolutionary algorithms could be
used to rapidly prototype circuits. We hypothesized that evolutionary algorithms could be used to
rapidly build circuits by using emerging devices, such as the Mott memristor. To test this
hypothesis, we designed a simple evolutionary algorithm that was able to rapidly build signal
detection circuits from Mott memristors (Chapter 5). Additionally, we compared MAMMAL and
evolutionary algorithms (Chapter 4). Evolutionary algorithms can create one-off circuit designs
more quickly, but RL methods can more rapidly design many circuits. Because evolutionary
algorithms find solutions to specific problems, rather than families of problems, evolutionary
algorithms produce circuit designs that work better on test cases. While higher performance is
certainly desirable, it may be necessary to validate evolutionary algorithms to confirm that they do
not overfit the data. It may be possible to use evolutionary algorithms to optimize initial RL
designs in order to take advantage of the strengths of both methods.

7.3. Novel Device Discovery

The process of discovery is characterized by long periods of incremental development that are
punctuated with sudden insight. By stimulating insight, we can expect to accelerate discovery.
During this project, we developed methods that enabled MAMMAL to stimulate insight by
suggesting specifications for novel devices that can solve known problems. These methods will
revolutionize the search for new devices by providing novel, unexplored solutions that may be
unintuitive to humans. In future work, we expect that these methods will be extended from
devices to materials. In doing so, we expect that MAMMAL will be able to predict, not just the
function of a novel device, but also the structure.

7.4. Impact and Future Work

In the next year, we intend to improve MAMMAL to allow for more general use in designing
digital circuits, analog circuits, and even computer code. We will also work to improve
MAMMAL so that it can perform true codesign (design across multiple system levels). We intend
to implement codesign by allowing MAMMAL to design a hierarchy of nested modules at
multiple system levels. We also plan to implement neural networks that can enable MAMMAL to
design systems that have components with unobserved variables. Through PyMi [22], we will
integrate MAMMAL with Xyce [20], an open-source large scale circuit simulator to allow for
circuit simulations at higher fidelity. Beyond these design goals, we intend to test how
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MAMMAL performs when the size of the component library is increased and when the circuit
complexity is increased.

In conclusion, we remark that, as MAMMAL matures, it will disrupt the circuit design process as
we know it today. It is critical to continue developing MAMMAL. MAMMAL is the first RL
approach to create circuit designs from scratch, and we have found it to be wildly successful in
creating functional designs. Similar commercially-available circuit optimization techniques are
relegated to microelectronic design sub-tasks, such as chip floorplanning. While, these
commercially-available tools have already accelerated microelectronics design, MAMMAL can
be expected to further accelerate the process by removing the rate-limiting step: the development
of an initial human design. We see natural extensions from our methodology to similar RL
methods for engineering design, including parts and assemblies, civil infrastructure, and
commercial and industrial processes. We intend to develop similar RL techniques that are
applicable in these aforementioned technical fields.
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APPENDIX A. Component Diagrams

A.1. Delay Components

Probe
Parameters: None
Input O Terminate the circuit
Probe
Delay1l
Parameters: None
Inguté OOutth{ Delay the input by 1 time step
Delay = 1
Delay10
Parameters: None
Input Ooutgut Delay the input by 10 time steps
t t+10
Delay = 10
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Delta Delay

0

Input @Outgut
t t+0

Delay < 10

A.2. Detect Components

Parameters: Delay: 0 (Real)

Delay the input by d time steps

Detect(

0
|

Input OOutgut
t t+1

Detect O

Parameters: None

If the 2" input (top) is a 0, output the 15! input (left)
delayed by one time step. Otherwise, output 0.

Detectl

!

Input OOthut
t t+1

Detect 1

Parameters: None

If the 2" input (top) is a 1, output the 13 input (left)
delayed by one time step. Otherwise, output 0
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DetectAny

Parameters: Mean of detection
l distribution: u
]
Input OQutput d4- o
t t+1 If the 2"¢ input (top) is within £ 0.11 of the RL-
Detect Any specified mean (1, output the 1% input (left) delayed

by one time step. Otherwise, output 0.

A.3. Dendritic Components

Dendritic Detect

Parameters: Gain: G

Voo

Multiply the 2" input (top) by the Gain, G, and add
Input Qutput
t @ t+1 it to the 1% input (left).

Dendritic Detect

Leaky Dendritic Detect

Parameters: Gain: G
| e
Input Output - Leak Multiply the 2" input (top) by the Gain, G, and add
—t ~+1 it to the 1°" input (left). 0.1 units of “charge” leak
Leaky Dendritic Detect from the output before being sent to the input of the

next component/compar tment
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Leaky Dendritic Detect w/ Bias

Parameters: Gain: G; Bias: B
l G, B
Input Output - Leak Add the bias, B, to the 2" input (top), and multiply
— .
t t+1 the result by the Gain, G. Add the result to the
Leaky Dendritic Detect 1% input (left). 0.1 units of “charge” leak from the

output before being sent to the input of the next
component/compartment
Y11 =Gx(X+B)+Y,—L

Tunable Leaky Dendritic Detect

Parameters: Gain: G; Leak: L
l G L
Input Output - L Multiply the 2" input (top) by the Gain, G. Add the
-t <+1 result to the 13" input (left), and subtract the leak, L.
Leaky Dendritic Detect Yi1=GxX+Y,—L
Neural Network Model
Parameters: Parameter: 60;; Pa-
6. 6 rameter: 0,
1, 92
Input 3§\ Ouput
t <) t+1 Create a neural network that accepts inputs and 2
Neural Network Model free parameters 6; and 6,. The neural network

must use the parameters to customize the compo-
nent behavior since every neural network model
component is constrained to have the same inter-
nal neural network parameters (e.g., biases and
weights).
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APPENDIX B. Summaries of RL experiments

Below, we provide concise descriptions of each experiment. Please refer to Chapter 2 for
details.
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B.1. Delay Experiments

Experiment 1: Simple Delay Line

. Delay = 0 Delay = 1 Delay = N-1 Delay = N
Obse I"VE . Desirgd =N Desirgd =N Desi:led =N DeZi?gd =N
Place: #IIII) #
t=0 t=1 t=N
Purpose Create the simplest proof-of-concept for RL-enhanced circuit design.
Summary At each time step, an RL agent is given information about the current delay
and the desired delay. The desired delay varies from 0-5 time steps. The
RL agent places delay components that delay the input by one time step or
places a probe component, which terminates the circuit design process. If
no probe component is placed, the design process terminates after 10 time
steps.
Range [0, 5]
Current Delay Type Integer
. Channels 1
Observations Range [0.5]
Desired Delay Type Integer
Channels 1
Rewards Delay Difference (A) Value _lxa
Type Sparse
Actions Delayl Dela}.f 1nput.by 1 time s.tep . .
Probe Terminate circuit and circuit design process
Algorithm HER-DQN
Max # Components 5

Results

Circuits were created with nearly 100% delay accuracy.

Insights

RL can place components for circuits of variable lengths.
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Experiment 2: Delay Line w/ 2 Delay Types

. Delay = 0 Delay = 10 Delay = N-1 lay =
Obse rve . Dezifgd =N D(aesiaréd =N D:;Zed =N DDeii?gd :NN
Place: #IIII) #
t=0 t=1 t=N

Purpose Demonstrate that RL can be used to choose components from a library that
contains > 2 components.

Summary At each time step, an RL agent observes the current delay and the desired
delay. The desired delay is in the range [0, 100] time steps. If no probe
component is placed (to terminate the design process), the design process
terminates after 25 time steps. Note that most delays can only be created by
using a combination of Delayl and Delay10 components

Range [0, 100]
Current Delay Type Integer
. Channels 1

Observations Range [0, 100]

Desired Delay Type Integer
Channels 1

Delay Difference (A) Value I —log(4)/2
Type Sparse

Rewards
Over-Dela Value 0.95x A

y Type Sparse
. Delayl Delay input by 1 time step

Actions Delay10 Delay input by 10 time step
Probe Terminate circuit and circuit design process

Algorithm HER-SAC

Max # Components 10

Results

Circuits were created with nearly 100% delay accuracy.

Insights

RL can place > 2 components using continuous actions. Log-transforming
rewards is helpful so that RL equally weights Delayl and Delay10 errors.
There is no “backspace” component, which means that placing too many
delays is worse than placing too few delays because placing too many delays
cannot be fixed.
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Experiment 3: Delay Line w/ Continuous Parameters

Observe: | oeran pesired = N besired = N esied = N
5 5
e G G O—©
t=0 t=1 t=N
Purpose Demonstrate that RL can choose components and also set continuous pa-
rameter values.
Summary At each time step, an RL agent is given information about the current delay
and the desired delay. The desired delay varies from 0-100 time steps. The
RL agent can place 1) a delay component that delays the input by 1 time
step 2) a delay component that delays the input by 0-10 (real-valued) time
steps or 3) a probe component that terminates the circuit design process. If
no probe component is placed, the design process terminates after 25 time
steps.
Range [0, 100]
Current Delay Type Integer
. Channels 1
Observations Range [0, 100]
Desired Delay Type Integer
Channels 1
Delay Difference (A) Value I —log)(4)/2
Rewards Type Sparse
Over-Delay Value 0.95x A
Type Sparse
Actions Delayl Delay input by 1 time units
Delta Delay Delay input by 0-10 (real-valued) time units
Probe Terminate circuit and circuit design process
Algorithm HER-SAC
Max # Components 10

Results

Circuits were created with nearly 100% delay accuracy.

Insights

RL can simultaneously place components and set continuous component
parameters
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Experiment 4: Delay Line w/ Continuous Parameters & Costs

. Delay = 0 Delay = 5 Delay = N-1 lay =
Obse rve. Desired = N Desired = N Desired = N D'iiifgd =NN
5 3
Place: #llll) #
t=0 t=1 t=N
Purpose Demonstrate that RL can choose components, which have costs.
Summary At each time step, an RL agent is given information about the current delay
and the desired delay. The desired delay varies from 0-20 time steps. The
RL agent can place 1) a delay component that delays the input by 1 time
step 2) a delay component that delays the input by 0-10 time steps or 3) a
probe component which terminates the circuit design process. If no probe
component is placed, the design process terminates after 25 time steps. This
experiment is similar to the Delay Line w/ Continuous Parameters experi-
ment, but components have costs.
Range [0, 20]
Current Delay Type Integer
. Channels 1
Observations Range [0, 20]
Desired Delay Type Integer
Channels 1
. Value 1 —log;o(A)/2
Delay Difference (A) Type Sparse
Rewards Over-Delay Value 0.95 > A
Type Sparse
Value —173 x#Delay1
Delay1 Cost Type Sparse
1003
Delay10 Cost Value 1007 x#Delay10
Type Sparse
Actions Delayl Delay %nput by 1 time units . .
Delta Delay Delay input by 0-10 (real-valued) time units
Probe Terminate circuit and circuit design process
Algorithm HER-SAC
Max # Components 10

Results

Circuits were created with nearly 100% delay accuracy. Qualitatively, costs
appeared to be minimized.

Insights

RL can place components w/ continuous component parameters while min-
imizing costs.
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Experiment 5: Delay Line w/ Timeseries Input

Observe: | ouraw Decired < N Destred = N Desivad = N
o e @) O O
t=0 t=1 t=N

Purpose Components can affect outputs at multiple time steps. Circuit design tools
should be able to identify temporal patterns produced by components. In
order to identify temporal patterns, circuit design tools need to represent
inputs/outputs at multiple timesteps.

Summary Atevery time step, the RL agent observes every time step of the input signal,
as well as the current time step number. The desired delay is provided in the
form of a delta function. The RL agent can place 1) a delay component that
delays the input by 1 time step or 2) a probe component that terminates the
circuit design process. If no probe component is placed, the design process
terminates after 10 time steps.

Range [0, 5]
Current Delay Type Vector of Integers
Channels 1
Range [0, 5]
Observations Desired Delay Type Vector of Integers
Channels 1
Range [0, 10]
Current Time Step Type Integer
Channels 1
Rewards Delay Difference (A) Value I —logyp(4)/2
Type Sparse

Actions Delayl Dela}./ inputtby 1 time u'nits. .

Probe Terminate circuit and circuit design process

Algorithm HER-SAC

Max # Components 10

Results

Training was not successful.

Insights

RL has trouble learning which component of a vector input should be con-
sidered at a given time step. Further work is needed to determine how to
efficiently teach an RL agent this skill.
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B.2. Detect Experiments
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Experiment 6: Simple Delay Gate - Dense Rewards

Target= 04¢ Target= 14 Target= 144

O b Se rve . Non-target=rand,¢ Non-target=rand, Non-target=rand¢ Done
e S @ D)
t=0 t=1 t=N

Purpose Produce a minimum working example for an actual neuromorphic circuit
design problem.

Summary At each time step, an RL agent is shown 16 example of target signals and
16 examples of a non-target signals. The agent places one of the following
components: 1) a Detect] component that detects a 1, 2) a Detect0 compo-
nent that detects a 0, 3) a probe component that terminates the circuit design
process. If no probe component is placed, the design process terminates af-
ter N + 1 time steps, for integer N € [0, 10]. The job of the RL agent is to
build circuits to detect target signals. The Digital signal detection task was
used.

Range [0, 1]
Target Signal Type Binary
. Channels 16

Observations Range [0.1]

Non-target Signal Type Binary
Channels 16

Rewards Correct Component Value !

Type Dense
Detectl Detect an input of 1

Actions Detect0 Detect an input of 0
Probe Terminate circuit and circuit design process

Algorithm PPO (or DQN)

Max # Components 0-10

Results

Detection accuracy approached 100% when using dense rewards (rewards
given after each component was placed). Training times increased linearly
with signal length.

Insights

RL can learn to place components by looking at vector-valued (multiple
channel) inputs and outputs

RL can learn to place neuromorphic components when given dense rewards.
However, to be more useful, rewards should be sparse (given only at the end
of circuit design).

RL can learn to build neuromorphic circuits to discriminate between target
and non-target signals.
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Experiment 7: Simple Delay Gate - Sparse Rewards

Observe:

Place:

Target= 04¢ Target= 14 Target= 144

Non-target=rand,g Non-target=rand;g Non-target=rand,g Done

»llll) #
t=0 t=1

t=N

Purpose

Produce a minimum working example for an actual neuromorphic circuit
design problem with sparse rewards.

Summary

At each time step, an RL agent is shown 16 example of target signals and
16 examples of a non-target signals. The agent places one of the following
components: 1) a Detect] component that detects a 1, 2) a Detect0 compo-
nent that detects a 0, 3) a probe component that terminates the circuit design
process. If no probe component is placed, the design process terminates af-
ter N + 1 time steps, for integer N € [0, 10]. The job of the RL agent is to
build circuits to detect target signals. The Digital signal detection task was
used. This is similar to the previous experiment, but with sparse rewards.

Observations

Range [0, 1]
Target Signal Type Binary
Channels 16

Range [0, 1]
Non-target Signal Type Binary
Channels 16

Rewards

Value 1

Correct Detection
Type Sparse

Actions

Detectl Detect an input of 1
DetectO Detect an input of 0
Probe Terminate circuit and circuit design process

Algorithm

PPO (or DQN)

Max # Components

0-10

Results

Detection accuracy approached 100% when using sparse rewards (rewards
given only after each circuit was completed) as long as signal length was
less than 5. For signal lengths greater than 5, the RL algorithm did not
converge. Training times increased exponentially.

Insights

RL can use sparse rewards to learn to place neuromorphic components for
signal lengths less than 5. For signal lengths greater than 5, another method
will need to be developed to make training times linear with signal length.
Sparse rewards should be used because, for interesting problems, we won’t
know if each placed component is “correct”, but we will know if the circuit
output is correct.
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Experiment 8: Simple Delay Gate - Curriculum Learning

Observe:

Place:

Target= 044 Target= 144 Target= 144

Non-target=rand;s Non-target=rand;s Non-target=rand;, Done

#IIII) #

t=20 t=1 t=N

Purpose

Train RL agents under realistic conditions (sparse rewards) in linear time
(with respect to signal length).

Summary

At each time step, an RL agent is shown 16 example of target signals and
16 examples of a non-target signals. The agent places one of the following
components: 1) a Detect] component that detects a 1, 2) a DetectO compo-
nent that detects a 0, 3) a probe component that terminates the circuit design
process. If no probe component is placed, the design process terminates
after N + 1 time steps, for integer N € [0,10]. The job of the RL agent is
to build circuits to detect target signals. The Digital signal detection task
was used. This is similar to the previous experiment, but with curriculum
learning. In curriculum learning, RL agents first learn to construct circuits
for short signal lengths and then construct circuits for long signal lengths

Observations

Range [0, 1]
Target Signal Type Binary
Channels 16

Range [0, 1]
Non-target Signal Type Binary
Channels 16

Rewards

Value 1

Correct Detection
Type Sparse

Actions

Detect1 Detect an input of 1
Detect0 Detect an input of 0
Probe Terminate circuit and circuit design process

Algorithm

PPO (or DQN)

Max # Components

0-10

Results

Detection accuracy approached 100% when using sparse rewards (rewards
given after each component placed) for all tested signal lengths. Learning
was slower than when using dense rewards, but still linear (with respect to
signal length)

Insights

Curriculum learning allows for RL agents to learn to build neuromorphic
circuits in linear time (with respect to signal length) while still using sparse
rewards.
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Experiment 9: Delay Gates with Variable Delays

O b Se rve : Non-[iar?gette;(r)';snd16 Non-l-—i;?s:;élsndls Nc-)r:ftgaertgzetr: :;éfjls Done
o S D ) O
t=0 t=1 t=N
Purpose Demonstrate that RL agents can be trained to discriminate between target
and non-target signals, even when not every sample is linearly separable.
Summary At each time step, an RL agent is shown 16 example of target signals and
16 examples of a non-target signals. The agent places one of the following
components: 1) a Detect] component that detects a 1, 2) a DetectO com-
ponent that detects a 0, 3) a Delay component that detects nothing, or 4)
a probe component that terminates the circuit design process. If no probe
component is placed, the design process terminates after N + 1 time steps,
for integer N € [0, 10]. The job of the RL agent is to build circuits to detect
target signals. The Digital signal detection task was used.
Range [0, 1]
Target Signal Type Binary
Observations Channels 16
Range [0, 1]
Non-target Signal Type Binary
Channels 16
Rewards Correct Detection Value !
Type Sparse
Detectl Detect an input of 1
Actions DetectO Detect an input of 0
Delayl Do not detect anything
Probe Terminate circuit and circuit design process
Algorithm PPO (or DQN)
Max # Components 0-10

Results

Signal detection accuracy approached 100%.

Insights

Transfer learning allows circuits to be designed quickly.

RL can choose components from libraries that contain as many as 4 com-
ponents. Future experiments should test if current methods work on larger
libraries.
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Experiment 10: Delay Gates with Analog Detectors

ODSErVe: |nonirectrmndss| |nontoroctorandss | | o toroctorands Done
5 5
e G @ O— O
t=0 t=1 t=N

Purpose Demonstrate that RL agents can be trained to discriminate between real-
valued target and non-target signals.

Summary At each time step, an RL agent is shown 16 example of target signals and
16 examples of a non-target signals. The agent places one of the following
components: 1) a detect component that detects a signal with a mean chosen
by the RL agent and a range of 0.11, 2) a simple delay component, that de-
tects nothing, and 3) a probe component which terminates the circuit design
process. If no probe component is placed, the design process terminates af-
ter N + 1 time steps, for integer N € [0,20]. The job of the RL agent is to
build circuits to detect target signals. The Low SNR signal detection task
was used.

Range [-1, 1]
Target Signal Type Real
. Channels 16
Observations Range 1 1]
Non-target Signal Type Real
Channels 16
Rewards Correct Detection Value (#Correct - #Incorrect) /
#Total
Type Sparse
DetectAny Detect an input that is within 0.11 units of the RL-

Actions chosen mean
Delayl Do not detect anything
Probe Terminate circuit and circuit design process

Algorithm PPO

Max # Components 0-20

Results

Signal detection accuracy exceeded 60%. Curriculum learning allowed for
signal lengths of 10-20.

Insights

RL can learn to build neuromorphic circuits to discriminate between target
and non-target real-valued signals.
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B.3. Dendritic Detect experiments
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Experiment 11: Dendritic Delay Line (No Leaks)

Target= py¢ Target= ¢ Target= randig

O b Se rve : Non-target=rand;¢ Non-target=rand;¢ Non-target=rand;q

G

Place: bendrite) = m w 3 Done
t=0 t=1 t=N
Purpose Demonstrate that RL agents can be trained to perform detection tasks by
using existing neuromorphic hardware.
Summary At each time step, an RL agent is shown 16 example of target signals and

16 examples of non-target signals. The agent places one of the following
components: 1) a dendritic detect component that amplifies a sample by an
RL-chosen gain and adds it to the previous signal or 2) a dendritic delay
component that passes the previous signal through with no changes. The
job of the RL algorithm is to detect target, but not non-target signals, as
described in the previous experiment. The Medium SNR task was used.

Range [-1, 1]
Target Signal Type Real
Observations EZE;ZCIS [1_61’ 1
Non-target Signal Type Real
Channels 16
Rewards Correct Detection Value (#Correct - #Incorrect) /
#Total
Type Sparse
Dendritic Detect Multiply the input sample by an RL-chosen gain and
Actions add it to the previous signal
Delayl Pass the previous signal through unchanged
Algorithm PPO
Max # Components 10-40
Results Signal detection accuracy was approximately 91%.
Insights RL can learn to use existing neuromorphic hardware to build circuits to

detect signals.

Detection tasks exhibit higher performance when target signals are linearly
separable from non-target signals.

Detection appears to be most accuracte when target and non-target samples
have opposite signs. This highlights the benefit of having neuromorphic
hardware with an additional bias parameter in each dendritic compartment.
For this task, slightly longer signals are required for convergence, possibly
so that the RL agent observes a good distribution of each component type.
It also seems helpful to balance the proportions of each component type.

98



Experiment 12: Dendritic Delay Line (Leaky)

Target= pyg Target= pyg Target= randig

O b Se rve : Non-target=rand;¢ Non-target=rand;¢ Non-target=rand;q

Place: Done

Purpose Demonstrate that RL agents can be trained to perform detection tasks by
using biologically-inspired neuromorphic hardware.

Summary At each time step, an RL agent is shown 16 example of target signals and
16 examples of non-target signals. The agent places one of the following
components: 1) a dendritic detect component that amplifies a sample by an
RL-chosen gain and adds it to the previous signal or 2) a dendritic delay
component that passes the previous signal through with no changes. The
job of the RL algorithm is to detect target, but not non-target signals, as
described in the previous experiment. The Medium SNR task was used.
Unlike in the previous non-leaky experiment, 0.1 “charge” leaks from the
dendritic compartment before “charge” transfers to the next compartment.

Range [-1,1]
Target Signal Type Real
Channels 16

Observations Range [-1, 1]

Non-target Signal Type Real
Channels 16

Value (#Correct - #Incorrect) /
#Total
Type Sparse

Rewards Correct Detection

Leaky Dendritic Detect  Multiply the input sample by an RL-chosen gain and
Actions add it to the previous signal
Delayl Pass the previous signal through unchanged

Algorithm PPO

Max # Components 10-40

Results Signal detection accuracy was approximately 91%.

Insights RL can learn to use existing neuromorphic hardware to build circuits to
detect signals.
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Experiment 13: Dendritic Delay Line (Leaky) w/ Bias

Observe:

Place:

Target= py¢ Target= pi¢ Target= randiq
Non-target=rand;q Non-target=rand;q Non-target=rand,¢

G B G, B
§—@ -0 o

t=20 t=1 t=N

Purpose

Demonstrate that Al-enhanced circuit design tools can be used to rapidly
iterate on designs.

Summary

At each time step, an RL agent is shown 16 example of target signals and
16 examples of non-target signals. The agent places one of the following
components: 1) a dendritic detect component that amplifies a sample by an
RL-chosen gain and adds it to the previous signal or 2) a dendritic delay
component that passes the previous signal through with no changes. The
job of the RL algorithm is to detect target, but not non-target signals, as
described in the previous experiment. The Medium SNR task was used.
Unlike in the previous non-leaky experiment, 0.1 “charge” leaks from the
dendritic compartment before “charge” transfers to the next compartment.
Unlike in the previous experiment, components had a tunable bias term.

Observations

Range [-1,1]
Target Signal Type Real
Channels 16

Range [-1, 1]
Non-target Signal Type Real
Channels 16

Rewards

Value (#Correct - #Incorrect) /
#Total
Type Sparse

Correct Detection

Actions

Biased Leaky Dendritic  Add an RL-chosen bias to the sample, multiply the

Detect result by an RL-chosen gain, and add it to the previ-
ous signal

Delayl Pass the previous signal through unchanged

Algorithm

PPO

Max # Components

10-40

Results

Previous experiments were completed with the bias term set to 0. When
the bias term was allowed to be learned, signal detection accuracy increased
from 91% to 98%.

Insights

A bias term can improve the ability of neuromorphic circuits to detect target
signals.

RL can be used to place components and optimize at least 2 parameters.
Al-enhanced circuit design tools allow for rapid iteration on circuit designs.
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Experiment 14: Dendritic Delay Line (Leaky) w/ Tunable Leak

Observe:

Place:

Target= pi¢ Target= py¢ Target= randiq
Non-target=rand,q Non-target=rand;q Non-target=rand;q

Done

Purpose

Demonstrate that Al-enhanced circuit design tools can be used to prototype
new innovations, even if they do not work.

Summary

At each time step, an RL agent is shown 16 example of target signals and
16 examples of non-target signals. The agent places one of the following
components: 1) a dendritic detect component that amplifies a sample by an
RL-chosen gain and adds it to the previous signal or 2) a dendritic delay
component that passes the previous signal through with no changes. The
job of the RL algorithm is to detect target, but not non-target signals, as
described in the previous experiment. The Medium SNR task was used.
Unlike in the previous non-leaky experiment, 0.1 “charge” leaks from the
dendritic compartment before “charge” transfers to the next compartment.
Unlike in the previous experiment, components had a tunable leak term.

Observations

Range [-1, 1]
Target Signal Type Real
Channels 16

Range [-1, 1]
Non-target Signal Type Real
Channels 16

Rewards

Value (#Correct - #Incorrect) /
#Total
Type Sparse

Correct Detection

Actions

Tunable Leaky Den- Multiply the sample by an RL-chosen gain, and add
dritic Detect it to the previous signal. Subtract a tunable leak.
Delay1 Pass the previous signal through unchanged

Algorithm

PPO

Max # Components

10-40

Results

Previous experiments were completed with the leak term set to a constant
0.1. When the leakage term was allowed to be learned, signal detection
accuracy did not improve.

Insights

Al-enhanced circuit design tools allow for rapid iteration on circuit designs,
even when designs do not perform as desired.
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B.4. Novel Device Discovery Experiments

Experiment 15: Neural N

etworks for Novel Components

ObServe: |norimgernds| |noniorser=ronds | | Non-targeterand.c
6,1, 6,
Place: Done

Purpose Demonstrate that Al-enhanced tools can produce specifications for novel
devices that can solve the given problem.

Summary At each time step, an RL agent is shown 16 example of target signals and
16 examples of non-target signals. The agent places a neural network com-
ponent, which has 2 tunable parameters. The job of the RL algorithm is to
detect target, but not non-target signals, as described in the previous experi-
ment. Unlike in the previous experiment, components are neural networks.
The RL agent must tune the component input parameters 0, and 6, in order
to perform the task. The Separable About Zero task was used to allow for
easy interpretation.

Range [-1, 1]
Target Signal Type Real
Observations Channels 16
Range [-1, 1]
Non-target Signal Type Real
Channels 16
Rewards Correct Detection Value (#Correct - #Incorrect) /
#Total
Type Sparse
. Neural Network Model  Train neural network components to perform the
Actions
necessary task.
Algorithm PPO
Max # Components 10-40

Results

Al-enhanced tools were able to tune module input parameters (and compo-
nent models) to perform the task with nearly 100% success.

Insights

Al-enhanced novel device discovery tools can produce neural networks that

represent specifications

for novel devices that can solve identified problems.
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