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ABSTRACT

Estimation of two-phase fluid flow properties is important to understand and predict water and gas
movement through the vadose zone for agricultural, hydrogeological, and engineering applications,
such as for vapor-phase contaminant transport and/or containment of noble gases in the
subsurface. In this second progress report of FY22, we present two ongoing activities related to
imbibition testing on volcanic rock samples. We present the development of a new analytical
solution predicting the temperature response observed during imbibition into dry samples, as
discussed in our previous first progress report for FY22. We also illustrate the use of a multi-modal
capillary pressure distribution to simulate both early- and late-time imbibition data collected on tuff
core that can exhibit multiple pore types. These FY22 imbibition tests were conducted for an
extended period (i.e., far beyond the time required for the wetting front to reach the top of the
sample), which is necessary for parameter estimation and characterization of two different pore
types within the samples.
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ACRONYMS AND TERMS

Acronym/Term Definition
FY fiscal year
NNSS Nevada National Security Site
PFLOTRAN parallel flow and transport (https://pflotran.org/)
RTD resistance temperature detector
YMP Yucca Mountain Project
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1. INTRODUCTION

Estimation of two-phase fluid flow properties is important to understand and predict both water
and gas flow through the vadose zone for agricultural, hydrogeological, and engineering applications
such as vapor-phase contaminant transport and/or containment of noble gases in the subsutface.
To estimate properties and subsequently predict physically realistic processes, laboratory
experiments of spontaneous water imbibition with simultaneous temperature measurement and
modeling via numerical and analytical methods of the results are developed and discussed in this
report.

This report updates progress on, improvement to, and application of laboratory methods first
developed in fiscal year 2021 (FY21; Kuhlman & Heath, 2021) and reported on eatlier this FY
(Kuhlman et al., 2022b) for measurement of spontaneous water imbibition into large core samples
(e.g., ~ 6 cm diameter by ~ 10 cm long). In this report we present two ongoing activities related to
imbibition testing:

e development of an analytical solution to predict the temperature response observed during
imbibition into dry samples, as first discussed eatlier this FY (Kuhlman et al., 2022b); and

e illustration of the use of a multi-modal capillary pressure distribution to simulate both early-
and late-time data collected in recent imbibition tests conducted on core collected as part of
the site characterization effort in P-Tunnel at the Nevada National Security Site (NNSS).

Compared to imbibition tests in FY21 on NNSS core from other stratigraphic horizons (Kuhlman
et al., 2021), these FY22 imbibition tests were conducted for an extended period (i.e., far beyond the
time required for the wetting front to reach the top of the sample), providing imbibition data to
characterize two different pore types within the samples.

The details of the laboratory experimental setup are discussed in an eatlier report (Kuhlman et al.,
2022b). The following discussion uses an alternative approach to simulate the multiporosity nature
of the rock during water imbibition. Finally, we discuss future steps being carried out this year and
next year as part of the ongoing investigation into the hydrogeology of containment science.



2. LABORATORY EXPERIMENT

From 8 to 12 July 2022, an extended laboratory spontaneous imbibition experiment was performed
on a zeolitic tuff core sample from P-Tunnel at Aqueduct Mesa, Nevada. The zeolitic tuff sample is
identified as “U12p06 GI-4D 46.0-46.4” (equivalently “4D-46Z" in the abbreviated convention;
“4D” is the borehole, the number is the depth in the borehole in feet and “Z” indicates zeolitic).
This is a repeat of the test conducted in March 2022 and reported in Kuhlman et al. (2022b), but the
sample was jacketed to reduce temperature loss and potentially outward/inward vapor transport
along the sides of the core, based on lessons learned from thermal modeling with the analytical
solutions presented later in this report (see Section 4).

Figure 1. Sample 4D-46Z before jacketing showing seven resistance temperature detectors (RTDs)
(left) and after jacketing (right).

The balance was monitored at 0.1 Hz (Figure 2) and temperatures were recorded at seven heights
using resistance temperature detectors (RTDs) along the length core at 2 Hz (Figure 3). Adsorption
of water onto the rock surface of a dry porous medium is exothermic (i.e., releases a small heat
pulse), analogous to the latent heat released when liquid water condenses from steam. This occurs
because free water is converted to bound water in a dry porous medium, a process referred to as the
“heat of wetting” (Edlefesen & Anderson, 1943), “sorptive heating” (Murali et al., 2020), or the
“latent heat of adsorption” (Aslannejad et al., 2017).
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Figure 2. Mass imbibed data collected using a Python script during two spontaneous imbibition
tests on sample 4D-46Z. Top: linear time axis; Bottom: same data on square root time axis.

The mass imbibed time series, recorded from the balance, is shown in Figure 2 for both a linear time
scale and the diagnostic square root of time scale. Spontaneous imbibition is well-known to plot
linearly against the square root of time (Philip 1957; Tokunaga, 2020). The early-time flat portion of
the data, more visible in the root-time plot, is associated with the sample imbibing the standing
water in the sample holder before it draws more water in from the Mariotte bottle.

The origin of the difference between the March and July test may partially be due to ambient lab
temperature and ambient lab relative humidity (RH). A slight increase in temperature in July as
compared to March (~2 °C) would be associated with a reduction in the viscosity of water (~5%)
which explains some of the observed difference between the tests. The July test has a steeper mass
imbibed slope than the March test, which would be associated with a higher mobility (fluid relative
permeability divided by fluid viscosity). The ambient RH in July is higher (due to monsoon season in
Albuquerque) than in March. The test likely started drier in March, than in July.

The thermal response of the RTDs at early time for the July 2022 test is shown in Figure 3, and the
responses during the entire spontaneous imbibition test are shown in Figure 4. The effect of the
building’s heating and cooling system in the lab (823/B59) is evident in the late-time data for both
tests, which each show approximately 0.5 °C daily fluctuations, despite covering the sample holder
with a bag and covering the entire experiment with a polycarbonate box. Both the March 2022
experiment and the July 2022 experiment are shown in Figure 4.
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Figure 3. Temperature data collected using National Instruments LabVIEW during the July 2022
4D-46Z spontaneous imbibition test. Left: relative temperature (change from initial) at early time
(<800 min) for 7 monitoring locations on core; Right: unshifted data.

The analytical solution presented later in this report (see Section 4) will eventually be used to fit
observations of temperature change and constrain the rock thermal properties.
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Figure 4. Temperature data during both multi-day 4D-46Z spontaneous imbibition tests. Gray bars
indicate 8 PM to 5 AM each day. March 2022 test (thinner lines) started at 12:50 PM; July 2022 test
(thicker lines) started at 8:30 AM.

Many of the differences between the two tests were due to the time of year. The temperature was on
average two degrees warmer in July than in March, and the RH of the air was higher in July (~40%)
than in March (<20%). Photography of the wetting front was not possible for this re-test, due to the

black rubber jacket.
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3. MULTIMODAL PORE DISTRIBUTIONS

Using a single-porosity flow model, the late-time mass-imbibed data are predicted to be constant
(i.e., no additional inflow of water after the wetting front reaches the top of the sample). In a
previous report (Kuhlman et al., 2022b), we showed how the late-time slope (i.e., after the water
table has reached the top of the sample) observed in imbibition test results could be matched with a
multicontinuum model. This multiporosity conceptual model treats the rock as consisting of two
overlapping continua, each with its own physical properties, including permeability, porosity, and
capillary pressure and relative permeability curves.

Here we present an alternative approach to matching the two observed slopes in the mass imbibed
data (i.e., bottom subplot of Figure 2), which is like the approach used to model previous imbibition
tests conducted as part of the Yucca Mountain Project (Peters et al., 1987; Peters & Klavetter, 1988).
The late-time slope of the mass-imbibed data in these historic tests (Figure 5, left) are like the late-
time data observed in recent tests. Peters et al. (1987) constructed an ad hoc capillary pressure curve
(i.e., “constructed function” in Figure 5, right) for use in numerical models to best-fit observations.
Here, we propose a flexible functional form to allow automatic parameter estimation of multimodal
distribution parameters.
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Figure 5. Mass imbibed response (left) and constructed capillary pressure curve (right) for
imbibition into volcanic tuff (Peters et al., 1987).

The multimodal approach uses an extension to the multimodal form of the widely used unimodal
van Genuchten (1980) curve proposed by Priesack and Durner (2006). Their original form was used
by Heath et al. (2021) to fit to mercury intrusion capillary pressure (MICP) test data on 19 core
samples from the NNSS. We use a modified form that is more like the form implemented in
PFLOTRAN for the unimodal van Genuchten (1980) model and its extension to two-phase flow by
Parker et al. (1987). The multimodal model we implemented for two-phase flow of water and gas is
of the following form
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where S, is the dimensionless effective saturation, k,; and k.4 are the dimensionless relative
permeabilities for liquid and gas phases, N is the number of modes (i.e., porosities), w is a
dimensionless weight factor, m is the dimensionless van Genuchten exponent, « is the van
Genuchten capillary pressure scaling factor [1/Pa] (also known as the inverse air-entry pressure),
and p, is the capillary pressure [Pa]. The form of the effective saturation (1) comes directly from
Priesack and Durner (2006), but the liquid relative permeability model (2) is modified, and the gas
relative permeability model (3) draws on analogy with the modified liquid relative permeability
model. An implementation of this distribution is illustrated in Figure 6.

This general functional form is not currently implemented directly in PFLOTRAN (Hammond et
al., 2014), and thus it is implemented here through a table of values with linear interpolation. These
functions are implemented externally (i.e., a Python or MATLAB script), and a text file table is
created and imported via the PELOTRAN input file. PELOTRAN further requires the tables to be
written in the functional form p.(S.), rather than S.(p.) as shown in Equation 1 above. The
unimodal van Genuchten (1980) model can readily be inverted algebraically, but the more general
multimodal model is here inverted numerically through interpolation.

The early-time mass imbibed data are associated with the drier end of the capillary pressure curve
(dictated by my and a4 in Figure 6), while the late-time mass imbibed data (after 350 sqrt(sec) in
Figure 7) are associated with the wetter end of the capillary pressure curve (dictated by m, and ).
The balance or break between the two curves is adjusted by the two weights ,; w; = 1).

This multi-modal approach for multiporosity porous media is more efficient than the more general
multicontinuum approach given in Kuhlman et al. (2022b), but currently it only works to represent a
multiporosity fluid flow response in water imbibed data—that is, a multiporosity thermal response
and a multiporosity transport response would also be required for energy and solute transport.
Basically, the constitutive laws need to be constructed to accommodate the multiporosity nature of
the rocks for the given set of physics being modeled, and thus geomechanics could theoretically also
be represented with multimodal approaches. In contrast, the multicontinuum approach with
multiple overlapping continua that do not have multimodal constitutive laws can represent
multiporosity systems with fluid flow, heat flow, solute transport, and potentially mechanical
deformation as long as the governing equations include those processes, and thus each continuum
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represents a single unimodal porosity type of the multiporosity system. The multi-modal
multiporosity approach will allow more efficient estimation of two-phase fluid flow properties using
automated parameter estimation, which requires efficient forward model execution.
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Figure 6. Bi-modal modified Priesack & Durner (2006) model, given by Equations (1-3). Left:

moisture retention curve with air-entry pressures indicated (horizontal lines) for the two porosity
types of the bi-modal system; Right: relative permeability curves for liquid and gas.
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4, THERMAL MODEL DEVELOPMENT

This section provides a narrative on the development of an analytical solution to describe the
observed thermal response described in the previous sections. We discuss the different methods
investigated and their gradual improvement to illustrate the development process.

41. Moving Point Source Model

The observed rise in temperature during spontaneous imbibition is hypothesized to be the result of
the heat produced as the rock is wetted, known as the ‘heat of wetting’ (Edlefesen & Anderson,
1943) or the ‘latent heat of sorption’ (Aslannejad et al., 2017). The sorbing water on the leading edge
of the wetting front is the source of this heat. While the wetting front has some width, it is simplest
to first consider it as a source of heat of infinitesimally small width. That is, a good approximation
for the heat produced by the wetting front is the Dirac delta function, which is defined as

S(x—a)=0;x+#a
JZ 8(x—a)dx=1.

The Dirac delta function carries an impulse of unit magnitude at X = a and has dimensions equal to
the inverse of its argument. Two useful properties of the Dirac delta function are

[ remee—byar= {0y b Efo "
5(k(x — b)) = % 5(x— b) "

Consider the one-dimensional transient heat conduction equation along an infinite domain with a
constant point heat source moving at a constant speed # in the positive x direction. The temperature
T [K] can be modeled with the transient heat conduction equation with a source term and a loss
term to the surroundings:

0°T N 1 . 1 0T N Ph T

_ — x, [ — —_

oxz T 9P =0 o Y A
where k is the porous medium bulk thermal conductivity [W/(m - K)], ar is the porous medium
thermal diffusivity [m?/s], P and A are the perimeter [m] and cross-sectional area [m?] of the rock,
h is the heat transfer coefficient for heat loss to the lateral sutfaces of the rock due to the
surroundings [W/(m? - K)], and gp is the heat source term [W/m?] given by

gp(x,t) = GS(x — ut)

where G is a constant that represents the strength of the heat source.

This problem is taken from the welding literature and was solved by Ozisik (1993) through a
similarity transform into a new coordinate axis & = x — ut [m] that moves with the heat source at
speed u [m/s]. The solution has no boundaries (i.e., continues to infinity in both directions) or
initial conditions and utilizes a dynamic steady-state assumption; since the temperature does not
change significantly in the moving coordinate system, the time derivative can be eliminated which
simplifies the equation to an ordinary differential equation (ODE). The domain is split into two
regions on either side of the heat source that are then solved independently. The unknown constants
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in the two solutions are solved for by ensuring the continuity of temperature at the boundary and by
ensuring the jump condition’ is met. This results in the solution

u

7,6 = ™z, £ <o

T4(6) = ce "7 £

u u \11!
€= G[kl(ml B 20(7‘1) + k2 (mz + 2(1’['2)]

®)

where subscript 1 refers to the region to the left and subscript 2 to the region to the right of the
wetting front. This solution allows different thermal properties (k and a7) on either side of the
wetting front (thermal properties are often considered to be a function of water saturation, e.g., see
Somerton et al., 1974). A plot of the solution in both the space and time domains with arbitrary
constants is shown in Figure 8.
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Figure 8. Change in temperature for the moving delta function solution, showing space (left) and time (right)
profiles.

The predicted curves qualitatively produce a general shape of the temperature data observed during
spontaneous imbibition (Figure 3). In the time domain, the curve is characterized by a sharp rise in
temperature to a maximum followed by a slower decline. The asymmetry in the peak in the analytical
solution is due to two reasons: 1) the assumption of uniform velocity of the wetting front; and 2) a
higher thermal conductivity of the saturated rock behind the wetting front makes the material
conduct less into the dry part of the formation. The real phenomenon also contains an additional
cause of asymmetry: due to the square root time dependence of the position of the wetting front, the
wetting front does not move at constant speed, but is slowing down. This behavior would stretch
the right sub-plot of Figure 8.

There are several discrepancies between this model and the phenomenon in reality:
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1. The model contains a sharp peak, whereas the data contain more rounded peaks. This is
because the physical heat source has a finite width and is not infinitesimally narrow.

2. The speed of the wetting front should change over time and not be constant. This would
eliminate the possibility of utilizing the quasi-stationary condition, since the temperature in
the moving coordinate axis would change with time.

3. Core-scale heterogeneity: exchange of fluid between different multiporosity types (minerals
could have different release of energy during sorption of water; the release of energy tends to
be proportional to the specific surface area)—a multimodal or mutlicontinuum extension
may be needed.

The following improvement attempts to fix some of these shortcomings.

4.1.1.  Moving ‘Boxcar’ Source Model

To spread out the heat source from the previous solution, we consider a heat source defined by
gpc(xt) =GB, ($)

where B, is an impulse function with unit area defined as

0 E<—w/2

w w

BW:1/W '_E<E<E
0 ;E>w/2

where w is the width [m] of the pulse. The Dirac delta function is a special case of this function

where the limit is taken as w—0. This Boxcar function better represents a wetting front with non-
zero width.

The heat conduction equation with the updated Boxcar heat source term can be solved in a similar
manner to the previous problem. However, the domain must be divided into 3 regions, namely, the
3 regions specified in the definition of B,,. The solutions for the three regions are:

T.(6) = ™ el f< _wp2

_ U _u GA
T,(§) = Cqe [m2+2arz]5 + CBe[mf*l Zam]f +m —w/2< E<w/2

T3(8) = C4e_[m3+ﬁ]5 £>w/2.

w

By setting Tl( — E) = Tz( — %) and T (%) =T3 (%), and using the previous definition for m;,
(Equation 5) the free constants (C;) can be determined.

To obtain a proper energy balance at the boundaries of the three regions, the thermal conductivity
must be continuous across the domain. If a difference in conductivity between regions 1 and 3 is
desired, then region 2 must contain a space-dependent thermal conductivity that connects the
conductivities of regions 1 and 3. This would, of course, modify the solution of region 2, rendering
the solution given above invalid for different conductivities in regions 1 and 3. However, if the
energy balance at each of the individual boundaries is disregarded (in a case where the difference in
heat flux on each side of the boundary is negligible), then an energy balance between regions 1 and 3
across the entirety of region 2 can be obtained by setting:
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The characteristic shape of the solution in the time-domain is shown in Figure 9.
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Figure 9. Temperature rise predicted for boxcar source in the time domain.

This model provides insight into a slightly more realistic model of the wetting front, which has some
width. It produces curves more like the general shape of the curves from the zeolitic tuff data
(Figure 3), which has rounded rather than sharp peaks. However, the parameter w controlling the
width of the wetting front is not physically derived. It may be possible to obtain an estimate for the
average width of the wetting front during the experiment, but this value varies over the course of the
imbibition experiment (sharper or narrower wetting front at the start of the experiment and a more
diffuse wetting front at the end). This parameter provides more of an aesthetic improvement in the
approximation of the curve, rather than an improvement that captures a new aspect of the relevant
physics. Given this information, a source term modeled with the Dirac delta function achieves most
of the fundamental characteristics of the curve while being a more practical function to work with
analytically.

4.2. Stefan Problem Approach

The process of spontaneous imbibition has some similarities to the Stefan problem from the phase-
change literature (Carslaw & Jaeger, 1959; Ozisik, 1993) describing the temperature of a medium
undergoing a phase change. The phase change occurs at the moving interface between phases. The
phase change includes latent heat released at the interface. The solution to the Stefan problem,
therefore, describes both the temperature in the two regions as well as the position of the interface.
Ignoring heat flow due to advection of water, the imbibition process contains both the moving
interface and the release of latent heat at the interface. Therefore, a simplified model can be
constructed using a solution to the Stefan problem.

The Neumann solution to the Stefan problem (Ozisik, 1993) describes the temperature T and the

position of the interface s(t) in the semi-infinite domain 0 < x < 0o assuming not only continuity
of temperature, but constant temperature (i.e., first type boundary condition) at the interface. The

problem is formulated as
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where T is the initial temperature of the solid phase, T; is the initial temperature of the liquid phase,
T, is the fixed temperature at the interface, k; is the thermal conductivity of region i (solid or
liquid), @; is the thermal diffusivity, p is the porous medium density [kg/m3], and H is the latent
heat of the phase change [J/kg] at the interface.

The second equation at the interface is known as the Stefan condition, which is essentially an energy
balance stating that the outward heat flux at the interface must be equal to the rate of heat liberated
at the interface. The rate of heat produced is proportional to the speed of the interface since the
amount of heat produced is proportional to the amount of the medium which underwent a phase
change.

The Neumann solution is given as

erf (x/2(ast)1/?)

—erf(x/2(a;t)/2) '

1
T\(t) =(Tm—Ty) 1 — erf(A(as/a)1/?) '
s(t) = 2A(ast)1/?

where lambda is determined by solving the transcendental equation:

o ﬁ (aTs> 1/2 T —T; e—Moars/ar) )\H\/E

_|_ =
erf (1) ks Tm— To 1 — erf[A(ars/ar)/2]  ¢p(Tm — To)

Ty

Here ¢y, is the specific heat capacity [J/(kg - K)] and erf(z) is the error function [NIST, 2022, their
equation 7.2.1]. We model the imbibition problem using this solution by treating the solid and liquid
regions of the Stefan problem as the wetted and dry regions of the imbibition problem. Taking T’y
=T;=0,T,, = 2 K (a temperature increase above background), and using thermal properties of
volcanic rocks, we produce the plots in Figure 10.
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Figure 10. Temperature rise prediction for Stefan problem in space (left) and time (right) domains;
ks =0.79 WimK, k; = 0.253 W/mK, p = 1584 kg/m?, ¢, = 1165 J/kgK, and H = 4000 J/kg

The Stefan problem captures some aspects of the problem that were not captured in the previous
models. First, it is formulated in the semi-infinite domain rather than the infinite domain which
more accurately models the phenomenon since the imbibition process has a definite beginning at x
= 0 and t = 0. Next, it defines the heat evolved at the boundary in terms of the latent heat of the
‘phase change’ as well as the speed of the wetting front. Finally, it allows for a non-constant speed of
the wetting front, which is inherent in the imbibition problem. Using the same values as those used

in the plots of Figure 10, the position of the wetting front height is given as s(t) = (0.00103 %)
S

\Jt. The height of the wetting front peak during spontaneous imbibition is known to be proportional
to the square root of time (Philip, 1957; Tokunaga, 2020). The coefficient agrees to an order of
magnitude to the imbibition rate deduced from the temperature peaks observed during imbibition

into zeolitic tuff (0.0008 m/+/S).

However, there are some significant shortcomings of this model. The semi-infinite domain, while
more accurate than the infinite domain, does not properly account for boundary effects at the far
end of the core. Next, the Stefan problem has constant temperature at the interface, since the
temperature associated with the phase change is known to be constant, at constant pressure. This is
clearly not exhibited in the temperature rises observed in the zeolitic tuff data. A more complete
model would account for variable yet continuous temperature at the interface, determined largely by
the amount of heat released at the interface. The Stefan problem has a fixed temperature at an
unknown location, while the imbibition problem has an unknown temperature at a known location
(the wetting front).

4.3. Hybrid Stefan and Point Source Representation

Consider the one-dimensional heat conduction problem in the region 0 < x < L with a continuous
moving point heat source associated with latent heat given by g,y (x,t):

0°T 1 o _ 10T Ph
axz T RIEt = oot
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The problem is formulated with homogeneous third type boundary conditions, otherwise known as
Robin boundary conditions, which prescribes the heat flux to be proportional to the temperature at

the boundary with heat loss coefficient h;. As h; goes to infinity, the boundary condition reduces to
the first type (Dirichlet) with fixed temperatures. As h; goes to zero, the boundary condition is
reduced to a homogeneous second type (Neumann) with fixed heat flux. In this formulation the
thermal properties on either side of the wetting front are assumed to be the same (as opposed to the
point source solution illustrated in the first subsection). In practice, the saturated rock would have
slightly different values for thermal conductivity and diffusivity, but we assume that these
differences are negligible.

This formulation of the problem is like the Stefan problem since the magnitude of the heat source is
proportional to the speed of the moving interface. Instead of modelling the interface as a boundary
where there is a supply of heat, the interface is modeled with a Dirac delta function proportional to
the latent heat.

A heat source associated with the release of energy by latent heat is given by
gru(xt) = G6(x — s(t))

which has the value of zero everywhere except at x = s(t) (the location of the wetting front) and
has an area of G [W/m?].

To physically determine the magnitude of G, we consider the amount of heat liberated due to the
heat of wetting in a differential slab of length ds in the x direction. This differential heat d@Q [J] is
given by dQ = dmH, where H is the heat of wetting and dm is the mass of the differential slab [kg],
equivalent to pdV (dV is the differential slab volume [m3]), leading to dQ = pdVH. The volume of
the differential slab is dV = Ads where A is the cross-sectional area of the slab, which gives dQ =
pAHds. The heat per unit area is then given by dQ/A = pHds. The time rate of heat (i.c., power)
produced per unit area is simply the time required for the wetting front to pass through this slab, dt;
G = (dQ/dt)/A = pHds/dt. This is in fact, the same expression for the heat produced at the
interface in the Stefan problem. However, previously it was incorporated into the Stefan condition
rather than as the magnitude of a Dirac delta heat source. This results in a heat source given by

ds
gru(xt) = pH - 6(x — s(1))
The height of the wetting front is known to be proportional to the square root of time, so the

position of the wetting front is s(t) = U/t where u o S is proportional to the sorptivity [m /\/g]
This results in a heat source of

gun(ot) = pH 2% 5@ —w/o)
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The next two subsections illustrate two different solution methods for solving this system of
governing equations with source term and boundary conditions. First, we solved the system using
Laplace transforms.

4.3.1. Laplace Transform Solution Method

Taking the Laplace Transform of the governing equation and the boundary conditions results in the
following subsidiary equations

[ee]

T, 1 Hf s V6 dt = —pF + g
dxz T kP Oe 2t (x—wytydt="—pT+37

kaTO T =0
- Qx('p)-l_ 11 =Y,

kaT Lp)+h,T=0
ax( ’p) 2 - Y

Where p is the Laplace transform parameter and an overbar indicates a Laplace-transformed

u
variable. Using the substitution 7 = — wt, dr = — 2.2dt the Laplace transform of the Delta

function can be found as

=— J e_p(g)ZS(T + x)dt
0 0
- j e @) 5(r — (= x) dr

using the property of the Dirac delta function shown in Equation (4a),

0
T\2 x\2
f e_p(ﬁ) S(t—(—x))dr = e_p(ﬂ) :
Thus, the subsidiary equation becomes
2T
d=T pH P(u) _ < h)T
dx2 tka

Using Mathematica (Wolfram, 2021) and the mpmath Python library (Johansson et al., 2017), the
governing equation and associated boundary conditions were posed in Laplace space and
numerically inverted back to the time domain. The behavior for select types of boundary conditions
are shown in Figure 11.
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Figure 11. Temperature rise predicted by hybrid Stefan/point source approach; space profiles (top
left); time profile without heat loss (top right); time profile with non-zero heat loss on sides of core
(bottom)

In contrast to the Neumann solution of the original Stefan problem, the temperature at the interface
(the temperature of the peak) is not constant, but decays over time. This can be partially attributed
to the heat loss at the end boundary (x = L), which the Neumann solution does not include. In the
case with no heat loss to the cylindrical boundary, for values of x < L, this solution resembles the
Neumann solution. However, as x approaches L, the temperature at the interface significantly
decreases as more heat is lost at the boundary x = L. In the case with a moderate amount of heat
loss to the circumferential boundary, the temperature at the interface decreases gradually as x
increases and decreases abruptly as x approaches L. This trend in the temperature of the peaks can
be somewhat observed in the zeolitic tuff data, although other effects such as evaporative cooling
and variation in the surrounding temperature add uncertainty to the later time data.

This solution is not only a solution to the imbibition problem but can also be thought of as a
solution to the finite domain Stefan problem with a known equation for the position of the
interface. Whereas in the Neumann solution the temperature at the interface was known and the
position of the wetting front was determined, using this formulation, the position of the wetting
front is known and the temperature at the interface is determined.

The next sub-section presents an alternative method for solution to the hybrid Stefan/Dirac delta
problem using a Green’s function approach, rather than a Laplace transform that requires a
numerical Laplace transform inversion.
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4.3.2. Green’s Function Solution Method

This same conceptual problem can be solved with the use of Green’s functions, rather than Laplace
transforms. The one-dimensional transient heat conduction equation on the region 0 < x < L with
heat loss to the cylindrical boundary with Dirichlet boundary conditions is formulated as
°T 1 . 1 aT Ph T
oz T pgm) = oot
T0,8) =11(t)
T(Lt) = fa(t)
T(x,0) = F(x).

This problem has the solution, using the method of Green’s functions (Ozisik, 1993), of

T(x,t)
JL aJt L
= — drf
x'=0 k =0 x'=0

¢ a6(xet|x7)| t it x,
—2 = f@dr—a| S @ de
=0 x=0 =0 x'=L
where the Green’s Function for the above partial differential equation is
p q
2 & Ph mm
=7 Z e_“T(ﬁ’%lJ’Ak)(t_T)sin(ﬁmx) sin (B ; Bm = A
m=1

For the case when the boundary behaviors are constant with time and zero (f1(t) = 0, f2(t) =0,
and F(x) = 0), the solution simplifies to

[ee]

2a Ph t Pr (L
T(xt) = 7L Z e_“T(ﬁ%l+ﬁ)tsin(ﬁmx) f e“T(ﬁiﬁm)Tf sin (Bx') gy (x,7) dx' dr.
m=1 =0 x'=0

u
Given the heat source term of g,y (x,t) = pH, 76(x — uA/t), the integral with respect to x’

becomes

L
fx_osm(ﬁmx)pH IS(x —u\f) dx’'

L
= pH —— ( sm (Bx') 8(x' — un/T) dx’
= pH ﬁ sin (Bmun/T)

This results in an updated solution of

25



t

Ph Py i
T(xt) = ”iZH > emarlstaDsin g ) f ar(go)esin (Bt
m=1 =0 T

The integral can be evaluated as

t aT(Bfn +P_h)rsin (ﬁmu\/?) d
f o T

D) \Z_rf{mlerf([;gi: - iem;)l erf (i?:)}

where i is the imaginary unit, R indicates the real component of the complex term, and &, =

aT(ﬁ,Zn Z’;) This results in the final closed-form solution:
H Bm\* 1 u u
T(xt) = uaT,O \/7 z —&2, mt sin(Bmx) e(zgm) _{mlerf(ﬂl+igm\/z>l erf(ﬁm )}
Em 28m 2¢,,

To evaluate this solution, the infinite sum is truncated at N, where N is large enough for the sum to
converge (N = 50 was found to be sufficient in most cases). In mpmath, Richardson extrapolation
is used to accelerate the sum and approximate the infinite sum in fewer terms.

An analytical solution for the above problem with third type (Robin) boundary conditions is also
obtainable using a Green’s Function. However, the eigenvalues [, must be determined as the root
of a transcendental equation, which is more difficult to compute when ~50 eigenvalues must be
calculated. Regardless, homogenous Dirichlet boundary conditions are currently an adequate
approximation for the experimental conditions presented earlier.

This Green’s function solution is equivalent to the solution found via the numerical inverse
transform but is faster to evaluate numerically, has no issues with evaluating at t = 0 (unlike the
Laplace transform approach, where t—0 corresponds to p—0), and produces the same curves
shown in Figure 11.

4.3.3. Nondimensionalization

The problem can be formulated in terms of the dimensionless variables

art kT CpT

X
A= Tt parH  H

The transformations for x and t are standard dimensionless transformations for heat conduction
problems, while the transformation of T uses a reference temperature of H/c,. This can be thought
of as the rise of temperature of an infinitesimal slice of the rock due to the heat of wetting H in the
region, which is useful when the initial conditions and both boundary conditions are zero. These
transformations reduce the governing partial differential equation to

926 v a0 1
agz T 207000 — WD) =5 +C6; 0<y<1 0<7<z;
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u
with the use of the property of the Dirac delta function given by Equation 4b, and where v = "7

hL?
and C = T are dimensionless parameters. In terms of the dimensionless parameters, the solution

is

Bmv)? e

0(x,1) = v\f Z —e\2¢e, sin(Bmx) {%[erf (% + iem\ﬁ>l erf (g?:)}
where ,, = mm and &, = \/ﬂT

The parameter v is the ratio of the wetting front speed scaled to a square-root time axis (i.e., with
the units of sorptivity) and the square root of the thermal diffusivity. In soil science, the typical
interpretation of imbibition tests is [ = S\/E, where [ is the infiltration [m/s] (volume of water
imbibed, divided by the cross-sectional area of the sample) and sorptivity (S) the slope with units m/
\/S. This dimensionless quantity v is therefore a type of hydrological-thermal Péclet number (i.e.,
advection/diffusion), which illustrates the balance of water advection and thermal diffusion. The
analytical solution only takes diffusion into account, so it would be inappropriate for large v, where
the convection of heat would be significant compared to the diffusion of heat.

The parameter C quantifies balance between heat loss to the sides of the sample (Ph) and heat
conduction down the length of the sample (Ak). The term is proportional to the Biot number. If
heat loss to the surroundings is larger than conduction in the rock, the dimensionless source term
coefficient becomes large. A small value of C would be characteristic of a well-insulated one-
dimensional cote.
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5. CONCLUSIONS AND NEXT STEPS

This report gives a status update on further advances in a new laboratory testing approach that uses
temperatures to track the wetting front during imbibition. We present both an analytical solution to
be used for matching to the observed thermal pulse, and an alternative conceptualization (multi-
modal capillary pressure curve) to recreate both the observed early- and late-time slopes in the mass
imbibed curves during imbibition tests.

The alternative conceptual models for double-porosity fluid flow can both re-create the observed
behavior in core-scale lab tests. The multicontinuum approach (Kuhlman et al., 2022b) is more
general, but the multi-modal flow approach (given here) is more efficient at the core scale
investigated here. Their efficiency and ability to propetly capture the relevant physics of fluid flow at
the field scale must still be investigated.

An analytical solution was developed for the heat transfer problem introduced in first FY22 progress
report. This analytical solution is the first analytical solution we know of to explain this phenomenon
observed in our laboratory and reported previously in the literature in paper and other porous

media.

A drainage testing capability has been procured for performing tests using a small laboratory
centrifuge. This capability will be used in the next fiscal year to investigate the two-phase flow
properties of rocks that have permeabilities too low to test with imbibition methods; also, the
drainage capability may better examine larger pores than the imbibition methods that are most
sensitive to smaller pores.
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