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ABSTRACT JAN 3 v 1995
Residual thermal stresses in ceramic matrix composites containing either ellipsogalsw]- l
inclusions or short fibers (i.e., fibers of finite length) are considered. First, the

residual stresses in ellipsoidal inclusions are uniform, and they are analyzed using a
modified Eshelby model. Although closed-form analytical solutions are obtained,

their formulations are formidable. When the aspect ratio of the ellipsoid is 0, 1, or
infinity, simple analytical solutions can be obtained using different models, and

they are in excellent agreement with those obtained from the modified Eshelby

model. Second, residual stresses in short fibers are nonuniform, and they are

analyzed using a modified shear lag model, in which imaginary fibers are

introduced to satisfy the continuity condition at the fiber ends. The analytical

solutions are compared to the experimental results.

INTRODUCTION

The mechanical properties of ceramics are intimately related to their microstructures.
The brittleness of ceramics can be reduced by incorporating dispersed inclusions
such as second phases, fibers, or whiskers [1-3]. Such ceramic composites are
fabricated at elevated temperatures. As they are cooled to the room temperature,
residual thermal stresses develop due to the thermomechanical mismatch between
the matrix and the inclusions. Accordingly, these residual thermal stresses must be
considered in the material design and various applications.

The purpose of the present study is to analyze the residual thermal stresses in
ceramic composites containing either ellipsoidal inclusions or short fibers. When
the inclusions are ellipsoidal, closed-form analytical solutions for the residual
stresses can be obtained using a modified Eshelby model [4,5]; however, their
formulations are formidable. For the special cases of disc-shaped, spherical, or
fiber-shaped inclusions (i.e., the aspect ratio of the ellipsoid is 0, 1, or infinity), the
residual stresses can be analyzed using simplified models, which provide simple
analytical solutions. The analytical solutions are then compared to both
experimental [6] and finite element [7] results, and effects of the aspect ratio and the
volume fraction of inclusions on residual thermal stresses are examined. When the
inclusions are short fibers, closed-form analytical solutions for the residual stresses
can be obtained using a modified shear lag model [8]. To satisfy the continuity
condition at the fiber ends, a technique of assuming imaginary fibers in the matrix is
adopted. The predicted axial strain along the fiber length is then compared to the
existing experimental measurements [9].
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ELLIPSOIDAL INCLUSIONS

The residual thermal stresses in an ellipsoidal inclusion embedded in an infinite
matrix were analyzed in the Eshelby model [4], which was subsequently modified
to account for a finite volume fraction of inclusions [5]. The results showed that
residual thermal stresses in ellipsoidal inclusions are uniform and are functions of
the thermomechanical properties of the constituents of the composite, the
temperature change for stress development, and the aspect ratio and the volume
fraction of inclusions. This modified Eshelby model has been adopted by Li and
Bradt [10] and by Hsueh and Becher [11] to calculate residual thermal stresses in
whisker-reinforced ceramic composites, in which whiskers were simulated as
ellipsoidal inclusions. The ceramic matrix is polycrystalline and is isotropic in both
elastic constants and the coefficient of thermal expansion (CTE). The inclusions
can have preferred orientations which, in turn, can result in anisotropies in both
elastic constants and the CTE. These anisotropies were considered by Li and
Bradt, and the solutions for the residual thermal stresses were formulated in matrix
forms. Hsueh and Becher considered anisotropy in the CTE only for the
inclusions, and closed-form analytical solutions were obtained for the residual
thermal stresses. It was found that compared with the anisotropy in the CTE, the
anisotropy in elastic constants has a minor effect on the residual thermal stresses
[11]. Although solutions for the residual thermal stresses in the ellipsoidal
inclusion obtained from the modified Eshelby model are closed-form, their
formulations are formidable. However, when the ellipsoidal inclusion has a special
shape such as disc-shaped, spherical, or fiber-shaped, simple analytical solutions
can be obtained using different models and they are summarized as follows.

Disc-Shaped, Spherical, and Fiber-Shaped Inclusions

Using Cartesian coordinates, X1, X7, and X3, with the X3-axis as the axis of
symmetry for the ellipsoidal inclusion, the inclusion has a radius @ in the X1 and the
X2 directions and a radius ¢ in the X3 direction and its aspect ratio is ¢/a. When c/a
approaches zero, the inclusion becomes a disc with radius ¢ and thickness ¢ and
a>>c. The representative volume element of the composite is a disc-shaped
inclusion sandwiched by two discs of matrix (Fig. 1a). In the X3 direction, there is
no constraint and the residual thermal stresses are zero in both the matrix and the
inclusion (i.e., 03=0). The solution for the residual thermal stress in the inclusion
in the X1 (and the X?) direction, o1, can be obtain from conditions of (i) continuity
of the displacement between the inclusion and the matrix in the X1 (and the X?2)
direction, and (ii) mechanical equilibrium, such that [11]

o1 = (o — 1 )AT/[(1-ve)/ Ee + f(1=vp)/(1 = f)En] (1)

where E is Young's modulus, v is Poisson's ratio, the subscripts € and m denote
the ellipsoidal inclusion and the matrix, respectively, fis the volume fraction of the
inclusion, a1 is the CTE of the inclusion in the X1 (and the X?2) direction, o is




the isotropic CTE of the matrix, and AT is the temperature change for stress
development.

Fig. 1. Schematic showing the representative volume element for composites
containing (a) disc-shaped (c/a<<1), (b) spherical (c/a=1), and (c) fiber-shaped
(c/a>>1) inclusions.

When c/a equals to one, the inclusion becomes a sphere with a radius a. The
representative volume element of the composite is a composite sphere (Fig. 1b).
This problem has been analyzed when the CTE in the inclusion, o, is isotropic. In
this case, the thermal stress in the spherical inclusion is hydrostatic, and the
solution has been given in Ref. [12]. When comparison with the solution obtained
from the modified Eshelby model for the case of ¢/a=1 is made, de=2a1+0a3)/3 is
adopted where 3 is the CTE of the inclusion in the X3 direction.

When c/a is much greater than one, the inclusion becomes an infinitely long fiber

with a radius g@. The representative volume element of the composite is a composite
cylinder (Fig. 1c). The residual thermal stress in the fiber has been analyzed, and
the analytical solutions are given in Ref. [13].

Comparison

The residual thermal stresses in two composites, SiC whisker-reinforced Al203 [6]
and graphite fiber-reinforced aluminum [7), are considered. It is noted that the
graphite/Al composite is a metal matrix composite. However, its elastic residual
thermal stresses have been calculated using a finite element method [7], and they
can be used to compare with the present analytical solutions.

SiC whisker-reinforced Al203 composites: Residual thermal stresses have been
measured for a hot-pressed a-Al203 matrix containing different volume fractions
of B-SiC whiskers using X-ray diffraction [6]. It has been reported that the
measured average residual thermal stresses, o, in the inclusion agree well with
those predicted from the modified Eshelby model [6]. It is noted that elastic
constants of the single-crystal SiC whisker are highly anisotropic {10]. Adopting
the average elastic property for SiC whiskers, the calculated magnitude of & by
Hsueh and Becher {11] is only ~5% lower than that predicted in Li and Bradt's
analysis, in which anisotropy in elastic constants is considered.




Graphite fiber-reinforced Al composites: Elastic residual thermal stresses have
been calculated for a continuous unidirectional Pitch 55 graphite fiber-reinforced
A201 aluminum composites using a finite element method [7]. Two types of fiber
arrays, square and hexagonal, were adopted in the finite element modeling [7]. The
material properties are listed in Table I. The CTE of the graphite fiber is highly
anisotropic. Using the finite element method, the residual thermal stresses per each
OC increase in the temperature were calculated for various fiber volume fractions.
The calculated radial stress is not uniform around the interface due to the interaction
between fibers, its variation around the interface becomes greater as the volume
fraction of fibers increases, and the maximum radial stress at the interface is
considered in the finite element results [7].

Table I. Material Properties of Graphite Fiber-Reinforced Aluminum Composites

E (GPa) v a1 (x10°9/9C) | a3 (x10-6/0C)
graphite 385 0.2 25 0
aluminum 70 0.35 23.6 23.6
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Fig. 2. The residual thermal stresses, 01 and 03, in ellipsoidal inclusions per °C
increase in temperature calculated using the modified Eshelby model as functions of

the aspect ratio of inclusions, c/a, for 10 vol% graphite/Al composites. The
analytical solutions for disc-shaped, spherical, and fiber-shaped inclusions obtained
from different models as well as finite element results are also shown.

Using the given material properties in Table I, the stresses, 01 and 03, in the

ellipsoidal inclusion per OC increase in the temperature are calculated as a function
of the aspect ratio, ¢/a, for f=0.1 in Fig. 2. The calculated results from the three
analytical solutions for disc-shaped, spherical, and fiber-shaped inclusions are also
shown. For f=0.1, the finite element results are not sensitive to the fiber arrays,
and only one set of finite element results for o1 and o3 is shown in Fig. 2.
Detailed comparison between the results from modified Eshelby model and those




from analytical solutions for disc-shaped and spherical inclusions is shown in the
insert of Fig. 2. Itis noted that the anisotropy in CTE of the inclusion is not
considered in the composite sphere model [12]. Hence, the residual hydrostatic
stress, O, in the inclusion calculated from the modified Eshelby model is aiso
shown in the inserted figure to compare with that obtained for the composite sphere
model. Excellent agreement is obtained in Fig. 2. The magnitude of 03 increases
from zero but the magnitude of 07 decreases from a finite value as c/a increases
from zero, and both 03 and o] reach their asymptotic values when c/a is
sufficiently large.

The maximum interfacial radial stress, o7, and the axial stress in the matrix,
03(m), have been calculated using the finite element method for various fiber
volume fractions, f. Since the finite element results were obtained for continuous
fibers, the asymptotic values of 0] and 63(m) obtained from the modified Eshelby
model] are shown as functions of fin Fig. 3 to compare with the finite element
results. Excellent agreement between the analytical solutions and the finite element
results is obtained when fis less than 0.3. The difference between the analytical
and the finite element results at high volume fractions of fibers (e.g. />0.3) is due
to fiber-fiber interaction, which is considered in finite element solutions but not in
analytical solutions. For finite element results, the square array of fibers shows a
greater fiber-fiber interaction than the hexagonal array of fibers (Fig. 3) [7].
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Fig. 3. The calculated asymptotic values of 61 and 63(m) per °C increase in

temperature for graphite/Al composites. The finite element results for square and
hexagonal arrays of fibers are also shown.

SHORT FIBERS

To obtain analytical solutions for the stress distribution in fiber-reinforced
composites, the shear lag model [14] has been used extensively; however, the
stresses at the fiber ends need to be predetermined in the analysis. For a fully




embedded fiber, the fiber ends are stress-free if they debond from the matrix.
When the fiber ends are bonded to the matrix, stress transfer occurs at the bonded
ends, and the stresses at bonded ends are finite. However, these finite stresses are
not predetermined values. To define the boundary condition at the bonded ends, a
technique of adding imaginary fibers to the shear lag model was developed recently
[8]. While detailed analyses for the above problem can be found elsewhere [15],
the procedures in deriving solutions are summarized as follows.

Analyses

The shear lag model for the representative volume element of composites containing
short fibers is shown in Fig. 4. A fiber with a radius @ and a length 2!/ is embedded
at the center of a coaxial cylindrical matrix with a radius b and a length 2I'. The
cylindrical coordinates, 7, 6, and z, are used. The fiber is bonded to the matrix at
both the interface (i.e., at ~=a) and the ends (i.e., at z=%[). During cooling of the
composite from its fabrication temperature, thermal strains are induced in both the
fiber and the matrix. An isotropic thermal expansion coefficient, ouy, is considered
for the matrix. Transversely isotropic thermal expansion coefficients, or in the
radial and the tangential directions and ¢ in the axial direction, are considered for
the fiber. Due to the thermomechanical mismatch between the fiber and the matrix,
residual stresses are induced, and stress transfer occurs between the fiber and the
matrix through both the interface and the fiber ends.

Fig. 4. Schematic showing the shear lag model for analyzing the residual thermal
stresses in composites containing short fibers. The region between dashed-lines
shows the imaginary fibers added to define the continuity condition at the ends of
the real fiber.

The geometry described in Fig. 4 is symmetric, and only the region z20 is
discussed. Stress transfer between the fiber and the matrix in the region 0<z</ can
be analyzed using a shear lag model; however, two questions remain. The first
question regards whether stress transfer occurs in the region /<z<!', in which there
are no fibers and only the matrix exists. The second question regards the stress at
the fiber end (i.e., at z=/) which is required as a boundary condition in solving the
stress transfer problem; however, this stress is not a predetermined value. To
address the above two questions, the technique of assuming imaginary fibers in the
matrix is developed. The region between the fiber ends and the matrix surface (see
the region between dashed-lines in Fig. 4) is treated as two imaginary fibers, which




have the matrix properties. With the imaginary fiber, stress transfer in the region
I<z<[' can also be analyzed using a shear lag model provided that the stress in the
imaginary fiber at z=/ is predetermined. The matrix has a free surface at z=/'.
Unless the stress at z=/ is zero, stress transfer in the region /<z<!' should occur.
Due to the discontinuity of material properties at z=/, the stress at z=/ is expected to
be different from zero. Hence, stress transfer occurs in both regions, 0<z</ and
I<z<I', and one shear lag model is required for each region to analyze stresses.
However, due to the unknown stress at z=/, the solution of stress distribution
within each region contains one unknown parameter. It is noted that the two
regions join at z=/. Hence, both the axial stress and the shear stress along the
interface obtained from the above two shear lag models for the above two regions
should be continuous at z=/. These two continuity conditions at z=/ provide
solutions for the two unknown parameters, and the solution for stress transfer in
the entire composite is complete.

Comparison

The stress-induced axial strain along the length of a fully embedded fiber has been
measured using fluorescence spectroscopy [9]. A model composite was fabricated
by embedding a single PRD-166 alumina-zirconia fiber in a glass matrix, for which
either Pyrex or soda-lime silicate (SLS) was used. The material properties are listed
in Table I1 [9]. The fiber has a radius, @, of 10 um, and a length, 2/, of 1.2 mm
and 1.4 mm, respectively, for PRD-166/Pyrex and PRD-166/SLS composites. The
matrix radius is about 100 times the fiber radius (i.e., /a=100), and the matrix
length is about three times the fiber length (i.e., /'=3/). Also, since the
measurements were performed at ~229C, AT is taken as the difference between

229C and the softening point (see Table IT) of the glass matrix.
Table II. Material Properties of PRD-166 fiber, Pyrex and SLS [9]

Property PRD-166 | Pyrex SLS
Young's modulus (GPa) 380 61 74
Poisson's ratio 0.27 0.3 0.3
Softening Point (°C) - 820 700
Thermal Expansion Coefficient (x10-0) {9 3.2 (3.85)*19.2 (10.9)*

* Adjust for crystallization shrinkage.

The measured stress-induced axial strains along the fiber length are shown in Figs.
Sa and b for PRD-166/Pyrex and PRD-166/SLS composites, respectively. The
strain has a finite value at the fiber end, and its magnitude increases and reaches an
asymptote in the central region. The positive and the negative signs for the strain
correspond to tension and compression, respectively. It is noted that crystallization
occurs in the glass matrix during processing and results in a volume shrinkage
which, in turn, imposes a compressive stress on the embedded fiber [9]. To
account for the shrinkage of the matrix due to crystallization, o is increased in the
present study to match the predicted to the measured asymptotic values of the




stress-induced strain. Based on this modification of o, the predicted stress-
induced axial strains along the fiber axis are shown in Fig. 5, and good agreement
between the predicted and the measured results is obtained. The predicted stress-
induced axial strains along the imaginary fiber (i.e., in the matrix) are also shown in
Fig. 5; however, the experimental measurements of matrix strains are not available
for comparison. Compared to the fiber, the matrix has a greater stress-induced
axial strain around the fiber end. This is due to the lower Young's modulus of the
matrix compared to the fiber.
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Fig. 5. Distributions of the stress-induced elastic axial strain along the fiber length
for (a) PRD-166/Pyrex and (b) PRD-166/SLS composites. The predicted elastic
axial strain in the imaginary fiber (i.e., the matrix) is also shown.

CONCLUSIONS

Residual thermal stresses in ceramic matrix composites containing either ellipsoidal
inclusions or short fibers (i.e., fibers of finite length) are considered. First, the
residual stresses in ellipsoidal inclusions are uniform, and they are analyzed using a
modified Eshelby model. Closed-form analytical solutions are obtained; however,
their formulations are formidable. When the aspect ratio of the ellipsoid is 0, 1, or
infinity, simple analytical solutions can be obtained using different models, and
they are in excellent agreement with those obtained from the modified Eshelby
model. Excellent agreement is also obtained between the analytical solutions and
the finite element results for graphite/Al composites when volume fraction of
inclusions is less than 0.3. The difference between the analytical and the finite
element results at high volume fractions of fibers is due to fiber-fiber interaction,
which is considered in finite element solutions but not in analytical solutions.
Second, residual stresses in short fibers are nonuniform, and they are analyzed
using a modified shear lag model. To satisfy the continuity condition at the fiber
ends, a technique of assuming imaginary fibers in the composite is adopted. The
predicted stress-induced axial strain along the fiber length is in excellent agreement
with the existing experimental measurements. Along the fiber length, the predicted
stress-induced axial strain has a finite value at the fiber ends, it increases with the
distance from the fiber ends, and reaches an asymptotic value in the central region
of the fiber.
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