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Extension of Interferometric Synthetic Aperture
Radar to Multiple Phase-Centers: Midyear LDRD
Final Report — second edition

Douglas L Bickel and John M. DeLaurentis

Abstract

This document contains the final report for the midyear LDRD titled “Extension of
Interferometric Synthetic Aperture Radar to Multiple Phase-Centers.” This report presents an
overview of several methods for approaching the two-target in layover problem that exists in
interferometric synthetic aperture radar systems. Simulation results for one of the methods are
presented. In addition, a new direct approach is introduced.
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OBJECTIVE

This report is to serve as the final report for the “Extension of Interferometric Synthetic Aperture
Radar to Multiple Phase-Centers” midyear LDRD. The objective of the LDRD is stated in the
following abstract submitted as part of the LDRD process:

Interferometric Synthetic Aperture Radar (IFSAR) is a technology which has the
potential to satisfy the high demand for accurate and timely terrain data from both
government and commercial entities. [FSAR will also likely be used in targeting systems
in the near future. Currently, Sandia is a recognized leader in IFSAR systems and
technologies. The next major advance in IFSAR will be in the area of multiple phase-
centers.

Sandia’s Rapid Terrain Visualization IFSAR system has already shown that multiple
phase-centers provided a significant advance in phase unwrapping. In addition, multiple
phase-centers could provide improvements in resolution. More importantly, multiple
phase-center IFSAR processing takes a large step in the direction of true 3-D imaging,
which allows resolution of multiple targets in layover regions. The solution to this
problem is important for urban scenes, targeting, imaging in foliage, and automatic
target recognition (ATR). Results from this project will remove one of the competitive
advantages that LIDAR has over IFSAR in urban environments.

In addition, results from this work would have significant spill-over into other key
technology areas, such as multiple platform bistatic imaging, and endo-clutter ground
moving target indication (GMTI). The multiple phase-center IFSAR work is highly
related to the problem of position location of moving targets, and it is likely that results
from this work could be re-used in this problem.

SCOPE OF WORK

The scope of work, as presented in the original LDRD, is given below. At the time the LDRD
was written, it was hoped that the LDRD would find support to become a full LDRD rather than
just a midyear LDRD. The additional work of a full LDRD would allow us to collect, calibrate
and process real data sets using the algorithms presented in this document. An LDRD extension
would have enabled work on enhancing these algorithms and practical implementation in terms
of efficiency of the algorithms presented in this document.

For the remainder of FY05, the work would be focused on the development of algorithms
and techniques for processing multiple phase-center IFSAR data. Specifically, work
would be performed to develop algorithms for 3-D target resolution in layover for 3 to 4
phase-centers. The work would involve analysis and simulation. If there are additional
funds available at the end of this project, an attempt will be made to apply the techniques
to actual SAR data sets. This assumes that available data sets are adequate for this
LDRD.



INTRODUCTION

The next generation of radar systems will support multiple phase-centers (more than two) for
introducing more sophisticated radar applications. An example of such a system is the JSTARS
radar system used to track moving targets. With the success of the JSTARS radar system, other
multiphase center radars, such as the German AER-II [1], will become more prevalent.

Sandia National Laboratories has been a recognized leader in advanced systems, algorithms, and
technologies. To maintain this leadership, SNL needs to become a leader in the next generation
of radars.

As mentioned, multiple phase-center systems are important for ground-moving-target-indicator
(GMTI) radar systems. SNL has also developed a 3-phase center system for mitigating
ambiguities in the Rapid Terrain Visualization (RTV) terrain mapping radar [2].

The focus of this report will be on the application of multiple-phase-center system to resolving
the radar layover problem. This problem is a step in the direction of true 3-D imaging with a
radar system.

OVERVIEW

The document is organized to give a description of the problem and examine proposed solutions.
In particular, we focus on the two-target layover problem in detail. We show the similarities and
differences of this problem with the endoclutter ground moving target problem. We show that
the endoclutter ground moving target problem is a subset of the two-target layover problem.

The document then examines solutions to the problem. Many of the solutions proposed in
literature are not well-suited for the two-target layover problem. One particular solution
proposed in literature that has some promise, is examined. This is the spectral MUSIC algorithm.
Using simulation, we show some of the limitations of this approach.

Finally, we present a new direct approach that focuses specifically on the two-target problem.
The solutions presented in literature tend to attempt to solve the general number of targets
problem.

-10 -



THE TWO-TARGET LAYOVER PROBLEM

Since this is a mid-year LDRD and funding is limited, this document will focus on the resolution
of two targets in layover under the assumption that the volume available for the antennas is
limited. It turns out that a very important layover case is the two-target case of layover of a
building [3, 4, 5]. Even in the more complicated case of vegetation and steep mountains, we
should be able to derive more information about the target structure using 3 antennas than we
could with 2 antennas. Therefore, the two-target case is a very important problem to solve. Also,
the limited volume case is generally very important because space and separation of antennas is
often limited unless multiple passes of the sensor are used. Multiple passes of the sensor bring
their own set of issues, such as temporal decorrelation and flight path estimation and resampling
[6] Nevertheless, the multiple pass problem is an important problem, but not one we will dwell
on in this report.

In traditional two-phase-center interferometric SAR (IFSAR), there is an assumption that each
range-Doppler cell contains only a single target or spatial frequency. Layover causes this
assumption to be violated. Note that a finite resolution cell width in terrain also causes this
assumption to be violated. We only consider this latter issue very briefly in the wideband case
where we have a “large” spread of spatial frequencies within the range-Doppler resolution cell.
In particular, in this report will focus on two distinct spatial frequencies within a single range-
Doppler resolution cell. As stated above, we will refer to this as the two-target layover problem,
which we now describe below.

The case of two targets in layover for the standard two-phase-center IFSAR system was
presented in [7]. Another perspective of this issue, related to the GMTI problem, was presented
in [8]. The bottom line is that there are not an adequate number of degrees-of-freedom to resolve
two targets with only two phase centers. We need at least 3 or more phase centers to resolve the
two-target case. As mentioned above, a very important layover case is the two-target case of
layover of a building. The problems caused by two-antenna IFSAR processing of a building
layover is shown in the Figure 1. It is common to see an additional edge in IFSAR on the side of
the buildings nearest the radar, as highlighted by the red arrows in the Figure. This additional
edge has been termed the “front porch” effect [4] because it was first noticed in high-resolution
IFSAR data from an SNL radar and appeared as a false porch or deck on the near-range side of
one of the buildings within the Tech Area.

Figure 2 illustrates the geometry of building layover in a cartoon. The figure shows that the radar
sees the response from the top of the building and the ground within the same range-Doppler
resolution cell. The effect of using two phase centers to examine the two targets, is that we can
only estimate one direction-of-arrival for both targets. Depending upon several issues, which will
be discussed shortly, the result of the layover is potentially lower correlation (increased position
“noise”), and a displaced target location. On the average, the two-phase-center IFSAR system
will report a target location at an angle between the top of the building and the ground. The
target is measured by the radar to be within the range bin illustrated, and so the final solution
must be located somewhere along the range bin circle. Thus, the front of the building in
traditional IFSAR systems appears to be lower and pulled out, creating an artificial porch.

-11 -



Building Layover Effects

Figure 1. Examples of Building Layover in Shaded Relief DEM Data from RTV Albuquerque Collect.

range bin

ground

Figure 2. Illustration of Building Layover
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The mathematical description of building layover was first discussed in [7]. Following this
reference, the van-Cittert Zernike theorem shows that for layover the complex correlation due to
layover, u, is given by:

el ]} -] 4

where
X = 2Bp, tan ¢
l"oﬂu
1 roof
p=
Iroof + ]ground
4B
a=—
A1y cos @

B = the orthogonal component of the baseline

1

roof +L grouna = 1ntensity of return from roof and ground respectively

A = the wavelength of the radar

1y = the range to the target
P9, H as shown in Figure 2

The above equation makes the simplifying assumption that the boresight of the antenna is
pointed at the center of the building, and that the radar impulse response function is flat across
the resolution cell.

Under the condition that the intensity of the roof and the ground are the same in Eq. (1), the last
term in this equation becomes a cosinusoidal function of height. Note that in this case, the
complex correlation has no phase. This means that the IFSAR will yield a corresponding height
of mid-way between the roof and ground. This is the “front-porch” height. In addition, this
cosinusoidal function modulates the correlation as a function of the height of the building
relative to the wrap height of the IFSAR sensor. This latter fact is interesting. It says that two
antennas do yield two pieces of information. The phase of the complex correlation yields an
estimate of the intensity weighted positions within the resolution cell. This is not news for
IFSAR. The other is the modulus (magnitude) of the correlation, which yields information about
whether or not the assumption of one target is valid. This fact will be discussed more in the
model order section of this document.

In general, Figure 3 illustrates the two-target problem that we address in this document.
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A3

Figure 3. Illustration of Geometry for Two-Target Problem
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RELATIONSHIP OF THE LAYOVER PROBLEM TO
ENDOCLUTTER GMTI

A very important problem in multiple phase centers is the location of a moving target within the
main beamwidth of the antenna. Note that the detection of a moving target within the main beam
of the antenna is a different problem than the location of a moving target within the main beam
of the antenna. In general, deciding whether a target is moving or not takes less information than
saying how fast the target is moving. The result is that the location of a moving target requires
more degrees-of-freedom, hence more phase-centers, than the moving target detection. We will
focus on the moving target location and its relationship to the layover problem, so the title of this
section is a little misleading.

The presentation and conclusions in this section are somewhat simplified from the full-blown
space-time-adaptive-processor (STAP) development to facilitate the understanding of the
relationships of these problems. The general conclusion that will be presented is valid. The
conclusion is that the layover problem is the more general case and requires more sophistication
in the processing than does the moving target location problem. Note that this does not mean that
the resolution of one problem versus the other is easier to accomplish. It only means that the
moving target location is a subset of the general layover problem and due to its nature, permits
simpler algorithms to resolve.

Assume that we have a moving target that has a location within the main antenna beam. The
instantaneous Doppler of this moving target in a SAR image will be the combination of the
Doppler due to the moving target and due to the moving SAR platform. This moving target will
“layover” onto a range-Doppler resolution cell that has the same Doppler due to the motion of
the SAR platform. In other words, the moving target will “layover” onto a stationary clutter cell.
Now if the amplitude of the moving target is much brighter than that of the clutter that it “lays
over” onto, we could use a simple along-track interferometer or monopulse to estimate the true
location of the moving target. Then, given the estimate of the location of the target, we could
remove the component of Doppler due to the moving SAR platform from the total Doppler and
resolve the radial velocity from the residual Doppler. Note that the assumption that the moving
target is much brighter than the clutter in the same range-Doppler cell is a crucial assumption.
This assumption has reduced the required degrees-of-freedom by essentially saying that there is
only one target present in each range-Doppler cell. In other words, we are assuming that there is
no clutter to interfere with the moving target. The result is that a standard two-phase-center
antenna used as an interferometer is sufficient to resolve this problem. We note that this is like
the standard IFSAR problem where we can assume a single spatial frequency within each range-
Doppler resolution cell as observed by the aperture along the baseline. The only difference is that
we orient the baseline in the along-track direction for GMTI, and in the elevation direction for
IFSAR.

The problem becomes more complicated when we cannot ignore the contribution of the clutter
that shares the same range and Doppler resolution cell with the moving target. We established
one of the bounding cases above when we assumed that the clutter had essentially zero power.
This leads to the two-phase-center interferometer detecting the true location of the moving target.
The other bounding case is where the moving target returns essentially zero power, in which case
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we will estimate the location of the stationary clutter cell with the two-phase-center
interferometer. It should be noted that in this latter case, the clutter location should be the same
as we would estimate from Doppler. (As a hint of things to come, this last note will turn out to be
the key to the discussion in this section.)

Now we discuss what happens between the two bounding cases. To do this, we will simplify the
discussion by presenting only the probabilistic expected result, which allows us to avoid the
difficulties of fluctuation statistics, etc. On the average, the target location estimated by a two-
phase-center antenna, where neither the moving target nor the clutter is negligible, will be
somewhere between the true location of the moving target and the location of the clutter. The
average estimated location will be weighted by the relative intensity of the two targets. In other
words, it will follow a similar development to the building layover presented in a previous
section. The estimated location of the moving target by the two-phase-center interferometer will
be biased by towards the location of the clutter. The degree of bias will depend upon the ratio of
the intensity of the clutter to the intensity of the moving target. Since both intensities are
unknown a priori, the best we can do in general is to detect that a mover is present by noting
when the location reported by the along-track interferometer differs from the location of the
stationary clutter (derived from Doppler) by some specified threshold.

To resolve this problem, we need more information which can be derived from adding a third
phase center. We will present this three-phase-center GMTI problem from two different points of
view. The first point of view is a very simple one. The second is a little more complicated, but
lends itself better to comparison with the elevation IFSAR layover problem. A little thought
should convince the reader that the two points of view are essentially equivalent, assuming that
baseline decorrelation is negligible.

In the simpler case, we delay each of the phase centers and subtract the results as show in Figure
4. Stationary targets will cancel; whereas, moving targets will not cancel as long as the target is
not at a “blind velocity”. With three phase centers, we get two different phase values for the
mover delayed in time. We can use this phase difference over time to estimate a Doppler due to
target motion. After estimating the Doppler due to target motion, the target location can be
separated out from the total Doppler position of the moving target.

Another way to examine the problem, shown in Figure 5, is to look at it as a two-delayed
interferometer, instead of as three delayed antennas. To simplify the discussion, we assume that
the antennas are equally spaced and travel at a constant velocity. Using these assumptions, we
can cancel stationary clutter for antennas and using the resulting pairs after the difference to form
an interferometer. In this case, we can estimate the location of the moving target. Using the total
Doppler and the estimated location, the line-of-sight velocity of the mover can be estimated.

- 16 -
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Figure 4. Three Phase-Center Delayed Canceller
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Figure 5. Three Phase-Center Delayed Interferometer
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We now look at the IFSAR case from Figure 3 in a manner similar to the delayed interferometer
case just mentioned for GMTI. Instead of delaying, we will “shift” the phase-center pairs by
signal processing. We will assume that we know the location of target P1. In the absence of
noise, we can develop a situation similar to the previous case for GMTI by “shifting” the
interferometers and subtracting. The “shifting” and subtracting operation, in this case, becomes
the steering of a null at the target P1. The interferometric signal after these operations can be
shown to be:

sin {2; B, (sin 6, —sin g, )}

X = exp{j%(Bz —Bl)(sin 6, —sin 6, )} 2)

sin [2;[ B, (sin @, —sin )}

Given that we know the location of the target P1 and the baseline lengths, we can solve Eq. (2)
for the location of target Pa.

In the above discussion, we have assumed that we know the location of one of the targets. In this
case the target location is relatively straight forward. Unfortunately, unlike the GMTI case, the
IFSAR case cannot make this assumption. Even more unfortunate is the fact that the problem of
locating both targets is a much more complicated problem. If the location of one of the targets,
either P1 or P2, is not known, the problem requires steering two nulls simultaneously until the
total return is minimized. This problem is non-linear and there are multiple local minimums. In
order to determine the overall global minimum requires a full search of two-dimensions for the
two-target case. In general, the search requires an Ns-dimensional search of the array response
for Ns -targets. This problem is very important in signal processing; however, it is an expensive
problem in terms of computation. Many, many articles have been written about this problem and
much effort has been spent on it. We will discuss some of the approaches in the next section.
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CURRENT STATE-OF-THE-ART

Most of the current literature available in this area focuses on the general spectral estimation
problem [10, 12]. Certainly, the problem we are dealing with in this LDRD is strongly related to
the general spectral estimation problem. The problem is that the current literature tends not to
include issues specific to IFSAR, such as baseline decorrelation, and speckle. The exception to
this is the [9]. Also, the focus on generic solutions tends to overlook any simplification that
might be available for the very important two-target problem case.

Spectral Estimation and Resolution

The spectral estimation problem is concerned with obtaining the estimate of the signal spectrum
in the presence of interference. Often it is assumed that we have multiple sinusoids in Gaussian
noise. In the case where the separation of sinusoids is greater than the Rayleigh resolution limit,
the maximum likelihood estimator becomes a periodogram [10], i.e., the standard Fourier
transform image formation that is typically done in SAR. In array terminology, the equivalent of
the periodogram is typically referred to as “beamforming”. These techniques are also referred to
as non-parametric methods because they do not rely on assuming a particular form of received
data. These are as opposed to parametric methods that will be discussed below.

The problem with beamforming in IFSAR is that the Rayleigh resolution is essentially equivalent
to the ambiguous angle of the largest baseline for the system. For RTV, our Rayleigh resolution
was about 100 m in height. If we rely on Rayleigh resolution for angular position measurement,
we need to have very large antenna separation, (large baselines). For RTV, we would have
needed about a 60 m baseline (about what was used on the space shuttle) for the Rayleigh
resolutions that would approach the IFSAR performance we achieved in RTV.

We mentioned above the existence of parametric methods. The parametric methods assume a
model for the received signal, such as multiple distinct sinusoids in Gaussian noise. If the model
is correct, we have additional information that permits us to improve the resolution of two
closely spaced signals and reduce surrounding interference. As a real simple example, assume
that we have a single sinusoid in Gaussian noise. The non-parametric technique would involve
forming the Fourier transform with the appropriate window function. The result would be a
function that has the form of the Fourier transform of the window function shifted by the
frequency of the sinusoid. The Rayleigh resolution is proportional to the time between the first
and last samples. In the parametric method, we would take advantage of the fact that we know a
priori that the desired signal is a single sinusoid. Then the problem becomes estimating the
parameters of the sinusoid, such as its frequency, amplitude, and initial phase. In IFSAR, we
typically focus on the spatial frequency estimation. The resolution of this frequency estimate is a
function of signal-to-noise ratio, in this case. The ML estimator for this case is to interpolate to
find the peak of the periodogram (under the condition that the amplitude of the sinusoid is
unknown) [10]. In IFSAR, we use the phase of the maximum likelihood estimator for the
complex correlation between the two phase centers to resolve the spatial frequency beyond the
Rayleigh resolution limit.
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Maximum Likelihood Estimation for Sinusoids in Noise

The maximum likelihood (ML) method for multiple sinusoids in noise is presented in [10, 11].
The derivation of the ML estimator for multiple sinusoids in noise is given in the appendix to
facilitate understanding of the concepts that will be presented.

The main problem with the maximum likelihood estimator for multiple sinusoids is that the
solution is highly non-linear and requires a search for a global minimum unless the signals are
spaced far apart, as mentioned above.

In [10], the non-linearity of the ML estimator is shown via an example of two closely spaced
sinusoids in the absence of noise. We will repeat that example shortly, but first we will separate
the sinusoids a bit more to start out with. The form of the sinusoids is given in the following
equation.

x(n)=exp(j27fin)+exp(j27 fon+ jo) 3)

The first case we examine is when the separation of the targets is greater than the Rayleigh
resolution. Figure 6 shows the results of the ML estimator when f; =0.5, f;, =0.65, and

p=r/4.

We note from Figure 6 that if we search for a local maximum in the wrong place, we will arrive
at the wrong answer. In Figure 7, we project the 2-D figure to 1-D frequency (search space). The
result is that the peaks are separated well enough in this instance that a 1-D Fourier transform
would be adequate. In fact, as noted above, the ML estimator becomes the periodogram when the
sinusoids are separated adequately.

The next case we examine is when the sinusoids are closer in frequency than the Rayleigh
resolution. Figure 8 shows the results of the ML estimator when f; =0.5, f, =0.52, and

¢ = /4. Figure 9 shows the projection into 1-D frequency. Again, we have ignored noise.

Notice that in this case there is very little separation between the peaks. It is especially difficult
to tell in the projection into 1-D frequency. It would be even more difficult if the figure did not
include shading and an artifact meant to keep the calculation from dividing by zero. The shading
and artifact make the separation of the two sinusoids much more discernable in the figure.
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Figure 6. ML Estimator for Two Well Separated Sinusoids Without Noise
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Figure 7. Previous Figure Projected into 1-D Frequency
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Figure 8. ML Estimator for Closely Spaced Sinusoids Without Noise

Figure 9. Projection of Previous Figure into 1-D Frequency
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Non-Optimal Methods

Since the problem of estimating sinusoids that are closer together than the Rayleigh resolution is
so important, much literature has been written on the subject. In addition, because the ML
method is very computationally expensive, a lot of the literature tends to focus on suboptimal
approaches. The suboptimal approaches attempt to trade performance for simpler processing
algorithms. What these algorithms are willing to sacrifice is the ability to estimate frequencies
noisy environments and/or with closely spaced sinusoids. Also, these algorithms sometime give
up the guarantee of convergence to the global solution.

There are two typical main methodologies used in the above simplification for the problem of
multiple closely spaced sinusoids in noise. The first approach attempts to simplify the search for
the global solution. Many of these algorithms attempt to simplify the multidimensional search to
a one-dimensional search. The second approach has become very popular and uses subspace
methods. The former includes methods such as CLEAN [13], RELAX [14], and Alternating-
Projection (or AP) [11]. The basic idea behind these techniques is that we try to iterate and
eliminate one prominent signal at a time. The latter approach includes MUSIC, Min-Norm,
ESPRIT, and other subspace algorithms.

Approximations to ML Methods

For our purposes described in this document, it is not clear that these techniques that attempt to
simplify the global search are very useful. The CLEAN algorithm is known to require
significantly more phase centers than incoming signals [15]. The AP technique requires equally
spaced antenna phase-centers. The only one of these techniques that appears to show promise is
the RELAX technique. In simulations the RELAX technique, as extended to multilook IFSAR,
showed promise [16]. However, in practice with an actual system, the success observed in the
simulation was not repeated [17]. Although we did not focus on the RELAX algorithm in this
report, it is probably still worth considering in the future.

Subspace Methods

The next method mentioned above relies on the separation of signals from noise via subspace
methods. The two things that really thrust the subspace methods into popularity is the simplicity
of the numerical calculations when compared to the ML problem, and the fact that subspace
methods will eventually achieve the optimal results given enough data. The subspace methods
are suboptimal in that they do not converge to the CR-bound solution nearly as rapidly as the ML
estimator. This leads to subspace methods requiring relatively high SNR for a given amount of
data, when compared to other techniques. Nevertheless, simplicity counts for a lot and the
techniques have been studied at length. The main interest in this report on the subspace
techniques is that it will has been shown in [17] that the techniques can be used in practice and
yield higher resolution than beamforming techniques under the right conditions [12].

There are several popular subspace algorithms. MUSIC [18] is the most popular and there are
many variants of it. Root-MUSIC is very popular, but requires equal spaced samples because it
solves for the roots of a polynomial. In this report, we will consider spectral MUSIC, because it
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permits more general array geometries. The performance of spectral MUSIC is not quite as good
as root-MUSIC, and unlike root-MUSIC, it requires a 1-D search.

Another subspace method that is similar to MUSIC is the Min-Norm [12] method. It is based
upon linear prediction and also requires equal spaced samples.

A final subspace method that we will briefly mention because it is popular in literature is the
ESPRIT [19] method. The ESPRIT method will not be considered here because it requires pair-
wise symmetry in the array and requires twice as many elements for a given number of signals.
The cost in the number of elements yields some performance improvement.

Derivation of MUSIC

We repeat the derivation of the MUSIC algorithm from [20] here, simply so that this report is
self-contained. This development closely follows the development in [21].

Assume that the correlation matrix obtained from Eq. (39), R, for an array of antennas can be
described by the following equation:

R=APAT + 621 (4)
where

P = a diagonal matrix containing the signal power information from S
A = a matrix A(@) discussed in the appendix

I = identity matrix

a,% = the variance of the noise

Eq. (4) assumes there are N, different target locations and K different phase centers, and that
Ny <K.

For the correlation matrix in the form shown in Eq. (4), it can be shown that the N largest
2 2

2 : 2
5.i t o, and the rest of the eigenvalues are oy, where oy

eigenvalues are o is the signal power

for the i target. It is important to note that the eigenvectors corresponding to the N largest

eigenvalues span the signal subspace. The rest of the eigenvectors correspond to the smallest
eigenvalues and are orthogonal to the signal subspace. (Refer to [10] for discussions of both of
these properties.)

The eigenvalue/eigenvector equation for the correlation matrix can be written as:
(R-41)g; =0 ()

where
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q; = the i eigenvector of the correlation matrix

4; = the i™ eigenvalue of the correlation matrix

For the (K — N, —1) smallest eigenvalues (where 4; = o2 ), the eigenvector equation becomes:

(R-071)g; =0 (6)
Substituting Eq. (6) in Eq. (4), yields:

APAT 4. =0 (7)
It is very important to note that Eq. (6) and Eq. (7) are only appropriate for the eigenvectors that

correspond to the noise eigenvalues. Assuming that there is no correlation between the target
frequencies in the 4 matrix, then:

al-H q;,=0 (8)
where

a; = the i column vector from the A(®) matrix

Eq. (8) is the key to the MUSIC algorithm. It says that we estimate the signal subspace as
orthogonal to the noise subspace. What Schmidt did in [18] was to note that the noise subspace is
orthogonal to the signal subspace and to take advantage of this fact.

In a noisy environment, Eq. (8) does not hold exactly. Therefore, the MUSIC algorithm estimates
the frequencies by looking for the N, peaks in the following function:

f(a))zM; )

Z 2

i=L+1

H
a; 4q;

It is very important to point out that Eq. (9) is not a true spectrum. It is referred to as a “pseudo-
spectrum”, because, as we will see later, the amplitudes of the peaks in Eq. (9) have very little
correlation with the true amplitudes of the spectrum. MUSIC only estimates the frequency of the
sinusoids and must be used in conjunction with some other algorithms to determine amplitudes.
We will show examples of this later.

Another key point is that MUSIC, as well as most other techniques we have discussed so far,

require an estimate of the number of sinusoids present. Discussion of this is presented in the
section on model order.
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Eq. (9) is referred to in literature as spectral MUSIC. It has been noted [23] that if the samples
are equal spaced, then Eq. (8) can be solved for the roots that are nearest to the unit circle. This is
termed the root-MUSIC method in literature.

The practical difficulty with MUSIC and Eq. (9) is that in practice, we often have no a priori
knowledge of the correlation matrix. We must estimate the correlation matrix from noisy data.
The result is spurious peaks in Eq. (9) and suboptimal performance at low SNR.

It should be pointed out that for the case where there is one less signal than there are sensors, the
MUSIC algorithm becomes the Pisarenko harmonic decomposition (PHD) algorithm [22].

Geometric Interpretation of Subspace Methods

In [Schmidt], there is a very clever geometrical treatment of the problem of antenna arrays and
subspaces. The treatment and terminology derived from this treatment is commonly found in
literature. We will attempt to make this geometrical interpretation accessible in the following
discussion. We will follow [18, 19] in this presentation.

In the appendix (on ML), the signal received by the antenna was modeled in Eq. (39) as:
X=4(0)S (10)

It is very important to this development to note that we are ignoring noise from Eq. (39).

In this model, the array response to targets at angle ® is included in A(®). A4(®) are vectors from
the set of all steering vectors that describe how the array responds to targets at all angles [19].
Note that we are assuming for now that the array response is only a function of one target angle,
©. This implies that the phase centers for the array are contained along a line and have ideal
behavior. The assumption that the array response is a function of only one variable means that
the response can be visualized as a curve that “snakes” around in space. This curve must, at least,
connect to itself at when ® is 2z radians. This curve is referred to as the “array manifold”
because in the general case where the array phase centers are not along a line, the response is a
more complex surface that can be described mathematically as a manifold [24]. Array
performance and ambiguities can be described in terms of the array manifold [18, 24] but we will
not consider that in this report. Figure 10 shows a cartoon of a made-up manifold.

Since the array manifold describes the response of the array, Eq. (10) says that the signal
received at the antenna is the superposition of scaled (by S) steering vectors along the array
manifold. The specific steering vectors in Eq. (10) are those vectors, chosen from the array
manifold, which correspond to the direction of the targets viewed by the array. Therefore, the
number of steering vectors that are combined to make up the received signal is equal to the
number of targets viewed by the array. Notice that the columns of the steering matrix 4(®) are
made up of select vectors (i.e., the vectors for the directions of the targets) chosen from array
manifold.
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Figure 10. Geometrical Interpretation of the Array Manifold for Linear Array.

At this point, we take a chance that we will repeat ourselves, and risk boring the reader because it
is important to make this point. Again, Eq. (10) says that in the absence of noise the solution is a
superposition of the vectors from the columns of A(®), which in turn come from the array
manifold. The number of columns in 4(®) corresponds to the number of distinct target directions
that are present. Let the number of distinct signal directions be N, then Eq. (10) says that the

solution is contained in the N -dimensional subspace “spanned by the columns of 4(®)” [19].

(A good reference on subspace is [25].) This subspace is referred to as the signal subspace [18].
Eq. (10) says that the solution is the vectors contained in the intersection of the signal subspace
with the array manifold. It is critical to note that we are still talking about the case where there is
no noise present. The following picture illustrates the geometrical interpretation of Eq. (10). In
the figure, we assume there are two targets present, i.e., N, =2. In this case, the signal subspace

becomes a plane. The intersection of the signal subspace with the array manifold is shown in
Figure 11 below. The solution from this intersection are the vectors a(;) and a(6,).
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Figure 11. Geometrical Interpretation of Target Location and Signal Subspace Methods

The next step is to add noise to this interpretation. We then get the equation from the appendix:

X =A4(0)S+N (11)

The ML method says that in the presence of noise, N, we attempt to find the combination of
vectors along the array manifold that best fit the noisy data, X. It is apparent that this involves an

N, -dimensional search of the nonlinear array manifold. This leads to the complexity of the ML
method.

The geometric interpretation of the subspace methods is now presented. In subspace methods, we
attempt to estimate the best fit subspace given the data. Then we attempt to find the points of
closest approach of this subspace to the array manifold. This approach is suboptimal, in that it
does not achieve the ML performance in low SNR situations. However, as the amount of data
available for the estimate becomes infinite, the error in the estimate of the subspace reduces, and
the subspace solution approaches the correct (noiseless) solution. Therefore, subspace solutions

do converge to the correct solution. This is one of the nice properties of the subspace techniques
that have led to their popularity.

As a caution, we have shown figures that correspond to real, rather than complex, signals

because they are easier to draw and visualize. In truth, the array manifold; hence 4A(®) and the
signal subspace, are complex values and should be treated as such.
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Array Interpolation Methods

Array interpolation methods (e.g., [26]) enable us to use methods that require equal sample (or
some other constraint on) spacing for arrays that do not have equal sample spacing. For example,
array interpolation would allow us to use root-MUSIC, Min-Norm, Alternating Projection, or
ESPRIT. The methods that require equal sample often have some slight performance benefits
over those that do not have this constraint. The additional cost of array interpolation is that the
interpolation is only valid over a small range of angles of the target; therefore, new sets of
interpolation functions are required to cover the entire range of angles. The range of angles
depends upon the desired performance. A tighter range of angles will yield better position
performance.

Beamforming and Non-parametric Techniques

This section briefly touches upon tomography, beamforming, and nonparametric techniques.
Much of the material here follows from [12]. Traditional beamforming, as mentioned earlier, is
the spatial counterpart to the periodogram in time-series analysis. The beamformer attempts to
pass signals from the desired direction while at the same time attenuating signals from all other
directions under the assumption that the signals from the other directions are spatially white. The
beamformer has the resolution of the Rayleigh resolution limit and the familiar sidelobes due to
spectral leakage. The beamformer concept is common to standard far-field SAR processing. The
beamformer is a non-parametric technique, meaning that it does not assume a priori information
is available about the spatial spectrum of the signal.

The beamformer is not the only non-parametric method available. Another common one is
Capon’s method. There are several variants on Capon’s method, but essentially this method
attempts to pass through the signal from the desired direction while attenuating signal that the
array detects from other directions. The difference from the beamformer is that Capon’s method
is “data dependent” [12]. “It produces better resolution and lower sidelobes than the
beamforming method by adaptively rejecting spectral components different from the current
filtered spatial frequency.” [9]. As noted, the achieved resolution and sidelobe performance are
potentially better than the beamforming method. The cost is that the correlation matrix must be
known or estimated. Capon’s method achieves better resolution than beamforming, but worse
than MUSIC. Capon’s method is meant to be a true spectral estimator, but typically has poor
amplitude estimation performance. This has led to many variations to this algorithm published in
literature. The Capon’s method is used quite a bit by the Europeans, and should be considered in
future investigations because it tends to work better in low SNR environments than does
MUSIC.

In the case where the far-field assumption is not quite adequate, especially for large baseline,
focusing is required. Typically, when focusing is required the 3-D imaging is referred to as
tomographic processing [27, 28, 29, 6]. The focusing may be quite simply the standard quadratic
focus vector [6, 29]. It should be noted that any of the techniques mentioned in this paper could
be used to form the 3-dimensional images required. The authors tend to think of focusing
different height slices as true tomography through traditional beamforming, as in [28]. If we pick
a few angles to focus on, this does not address the issue of height estimation. However, if enough
slices are processed, it does lead toward true 3-dimensional imaging.
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The question of which of the above method to use is a complex trade-off of several factors.
These factors include, but are not limited to: the array size (e.g., baseline length); the required
processing; the performance of the method; the spatial resolution desired; is the data sparse in the
angular direction; is the array sparse; etc.

Maximum Likelihood and Extended Targets

The assumption that the targets observed by the radar system are sinusoids is not completely
accurate. In literature, this is usually termed the “narrowband assumption” [30]. The narrowband
versus wideband question is strongly related to baseline decorrelation in traditional IFSAR. The
narrowband assumption says that we assume that the signal stays correlated across the entire
array. For IFSAR this means that we can consider the signal to come from one specific direction,
i.e., it behaves like a point target. In truth the signal come from all angles contained within the
range-Doppler resolution cell. If the returns are sufficiently strong; the angular extent of the
resolution cell large enough; and the baseline large enough, then the narrowband assumption
does not hold.

In [30], it states that if “the effective rank of the signal subspace is larger than the number of
signals present”, we need to consider the signal a wideband signal. In IFSAR, this occurs when
the signal correlation is due to baseline decorrelation and other issues is low. A good discussion
of including baseline decorrelation effects is presented in [9]. One of the issues pointed out in [9]
is that the terrain slope needs to be known to take into account the baseline decorrelation. For
fairly flat terrain and modest baselines, the received signal can be considered narrowband. In the
case where baseline decorrelation starts to become important for the largest baseline, the return
signal cannot be assumed to be constant across the array. In this case we have a wideband signal.

MODEL ORDER

One of the key issues in direction-of-arrival problems is referred to as the “model order”
problem. This is simply the estimation of how many signals are present. As discussed previously,
the typical problem assumes constant amplitude sinusoids in noise. Parametric techniques, unlike
non-parametric techniques, require a knowledge or estimate of the number of sinusoids present.

For this LDRD, we are focusing on the two-target case which simplifies matters. Assuming that
there is at least one target present, we are left with two hypotheses: there is one target present; or
there are two targets present.

In general, model order selection is a large topic. The name and the techniques come from
dealing with the autoregressive model. A good discussion of these techniques can be found in
[10, 12]. In the case of using subspace techniques or eigenanalysis techniques, we can test the
eigenvalues of the cross-correlation matrix against a threshold to estimate the number of signals
present [10].

For IFSAR there are a couple of interesting methods that use information available through
standard IFSAR processing. One of the methods assumes that the noise power in the image is
known. The other assumes that the smallest baseline is quite small.
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The former method has been used extensively for detecting volume decorrelation in IFSAR
systems from vegetation [31]. This method presumes that decorrelation in the IFSAR sensor is
generally dominated by thermal noise. Then we can use the fact that a “spread” in targets within
a resolution will allow cause decorrelation beyond just thermal noise. The detection of target
spread is accomplished by the following:

H A
~ - /ugeom
Hny

<threshold (12)

where

4 = correlation estimated from the data

. sar . .
Hopr = il = estimate of correlation component due to SNR
sar +

snr = estimate of the SNR (unitless)
Hgeom = estimate of geometric decorrelation due to “spread” of target

Certainly, since Eq. (12) is a ratio, it can be written in terms of logarithms and the threshold
could be specified in deciBels.

A similar method would be to use the ratio of the correlations between the large and small
baseline. If the signal-to-noise ratios are the same for each image, the correlation due to thermal
noise cancels. The corresponding threshold for this method is reduced by the baseline
decorrelation of the smaller baseline.

As mentioned above, another simple technique proposed in [10] under the assumption that the
sources are narrowband, is to test the eigenvalues of the correlation matrix against a threshold
related to the expected noise. One advantage of the correlation threshold technique over the
eigenvalue method is that we do not need to calculate the eigenvalues of the correlation for each
pixel. The correlation, presented above, comes as a natural product of traditional IFSAR
processing, so it is available at no extra cost. We could use the correlation to select only those
areas likely to have multiple targets and only perform the estimation of the two frequencies on
those targets.

METHODS INVESTIGATED

Because of the various issues mentioned above, this report will focus on two different
approaches. The first approach uses spectral MUSIC combined with the amplitude estimation
from the appendix. The second approach attempts to solve the equations for the case of two
sinusoids. The rest of this report will discuss these approaches.
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SUBSPACE APPROACH

By process of elimination, the spectral MUSIC technique appears to be a reasonable candidate
for resolving closely spaced two-target problem in IFSAR. As noted above, MUSIC is not a true
spectral estimator, and because of this it cannot estimate the amplitudes. As suggested in [17],
we examined using the frequencies estimated by spectral MUSIC in the maximum likelihood
estimate of the amplitude from Eq. (47) in the appendix.

SIMULATION AND RESULTS

A simulation that uses the spectral MUSIC and maximum likelihood amplitude was developed.
The simulation extends the standard simulation of IFSAR data from the one-target to the two-
target case. The simulation still assumes that the targets and the noise are circular-Gaussian
distributions. The phase modulation, in the absence of noise, contains the range differences
information. The simulator allows adjustment of the relative amplitudes of the two targets; the
location of the two targets; the signal-to-noise ratio; and various radar geometry parameters,
including baseline lengths. The simulation allows the number of looks to be an independent
variable. The simulation assumes two targets and three phase centers. Currently the simulation
assumes that there are always two targets present. It is very important to note that all target
separations considered in this section are well below the Rayleigh resolution limit of about 100
m.

A simple example is presented to demonstrate the simulation and illustrate the limitation of using
the MUSIC pseudo-spectrum. In this example, the small baseline is 0.1 m, and the large baseline
is 0.3 m. The range is 8 km, and the grazing angle is 40°. The height of the first target is set to 0
m, and the second is set to 30 m. The SNR of the first target is 20 dB, and the SNR of the second
target is 15 dB. The number of looks used was 30. The results of the MUSIC pseudo-spectrum
are shown in Figure 12. The amplitude estimate is in Figure 13. There are a couple things to
notice about the MUSIC pseudospectrum. First, the “amplitude” in the pseudo-spectrum does
not correspond to the signal strength. The amplitude corresponding to the target at angle 0° is
actually 5 dB brighter on the average than the other target. From the pseudospectrum in this
example, it appears the opposite is true. In general, the amplitudes from the pseudo-spectrum
appear to be random and have little correlation with the true amplitudes. The estimated heights
from MUSIC in this example are -1.7 m and 39.5 m.

The above illustration is meant to show that the MUSIC spectral estimator only estimates
frequencies and must be used in conjunction with another estimator to estimate the amplitudes of
the signals. The example above is common but not typical. A more typical result is shown below
in Figure 14 and Figure 15.
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Now we examine statistics using the same parameters presented above, except for this case we
will assume that first and second target are equal strength and that both have an average SNR of
20 dB. Also, we will place the height of the second target to 50 m. The histogram of heights
estimated for over 3000 trials by the above method is shown in Figure 16. The histogram shows
a bell curve looking distribution centered around 0.2 m and 49.5 m. The standard deviation for
the target at 0 m height is 2.6 m and the standard deviation for the target at the 50 m height is 2.5
m.

Before leaving this example, it is informative to show the results that would be achieved from
traditional IFSAR processing from the largest baseline. Figure 17 shows the results from
traditional IFSAR of the estimated height. Notice that the average value of the height estimated
is nearly the average height of the two targets, 24.9 m. The distribution has a larger spread of
about 4.4 m. Actually, we only get the average height of the two targets for the case where the
targets have the same average intensity [7]. In general, the height favors the brighter target. Also
note that the distribution has more spread. This will be used to advantage in the section on
model order.

Notice that the figure for traditional IFSAR processing appears to show a height distribution
which is not multimodal, as in the MUSIC case. We emphasize here that traditional IFSAR is a
parametric technique which assumes that there is only one target direction, i.e., spatial frequency,
present. Traditional IFSAR processing achieves resolution much greater than Rayleigh
resolution by estimating the frequency of a single sinusoid. The MUSIC technique assumed that
there were two different target directions present; hence the bi-modal distribution.

Another comment should be made on the comparison of the single target versus two target height
estimation. The height noise standard deviation for a single 20 dB SNR target would be about 0.6
m. This is significantly below the observed 2.5 m for the two-target case from this simulation.
The comparison is really “apples and oranges”, because even though the noise is lower for a
single target than in the two-target estimation case, the noise using traditional IFSAR processing
for the two-target case is much worse than achieved with MUSIC.

Next, we vary reduce the angular separation between the targets to see how the algorithm
responds. We repeat the above simulation for the second target at 30 m now, instead of at 50 m.
The result of the height estimates illustrated in Figure 18. The distributions are centered at 0.5 m
and 29.5 m. The standard deviations around this are 4.4 m for the lower target and 4.5 m for the
higher target. Note that the distributions are closer together. Another thing that should be noted is
that I could detect only one peak about 1.7% of the time. In this case, I ignored this data."

71t should be noted that for this report, a reasonable threshold scheme was used to eliminate spurious peak;
however, no attempt was made to optimize this threshold.
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We continue to reduce the angular separation and simulate setting the upper target at 15 m. In
this case, 45.1% of the time only one target was found. The distribution of the remaining samples
is presented in Figure 19. The distributions have merged in this case, and appear to be noisier. It
is interesting that the loss of bimodal characteristics of the distribution coincides with the
inability to find two peaks in the MUSIC pseudo-spectrum. The distributions are centered around
-2.6 m and 17.8 m, respectively, and appear to have about a 7.8 m standard deviation. The
standard deviation and mean are estimated assuming we can separate the distributions for the two
targets, but we cannot.

Now, we increase the signal-to-noise ratio of both targets for the case where the two targets are
separated by 15 m. The SNR is bumped up to 25 dB for both targets. The improvement is quite
noticeable from Figure 20. The separation between the distributions is visible again. The average
peaks of the distributions are at -0.4 m and 15.4 m respectively, with an apparent standard
deviation around each peak of about 4.4 m.

We adjust the simulation to examine what happens when both targets do not have the same
intensity. For this case the height is set back to 30 m, but the targets are set to 20 dB SNR for the
target at 0 m height, and 15 dB SNR, for the target at 30 m height. The height distribution is
shown in Figure 21. The average height for the lower target is 0.1 m and the average height for
the higher target is 29.4 m. The standard deviation for the lower target is 4.3 m and for the higher
target is 7.7 m. Notice that the higher target is also 5 dB less in SNR than the lower target. The
percent of the time that only one target was found has grown to 9.1%.
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The effect of number of looks is investigated by repeating the previous simulation while
increasing the number of looks from 30 to 100. The results are shown in Figure 22 for this case.
The percent of only one target is about 0.1%, for this case. The average estimated height is 0.2 m
for the lower target and 29.1 m for the higher target. The standard deviation has improved to 2.4
m for the lower target and 4.5 m for the higher target.

The small baseline is reduced in the simulation. For this, we go back to 30 looks and both targets
having 20 dB SNR. Figure 23 shows the histogram. In this case, we reduce the small baseline to
0.0375 m. The percent of one target only detections is 23.3%. The average estimated height for
the lower target is -0.7 m, and 30.7 m for the higher target. The standard deviation is about 8.3 m
for both the higher and lower targets.

The large baseline is increased. The same parameters as the previous simulation are used, except
large baseline is 0.4 m and small baseline is 0.1 m. Figure 24 gives the histogram for this
simulation. There were no single target detects. The average lower target height is 0.2 m, and the
higher target is at 29.7 m. The standard deviation about 2.3 m for this case.
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DIRECT METHOD

In this section we present a direct method for analyzing the SAR layover phenomenon involving
two targets in a single range-azimuth resolution cell. The two-phase-center IFSAR assumes that
each range-azimuth bin contains at most one target, but in scenes where the height changes
abruptly, as is the case for some buildings, this technique suffers from SAR layover; the return
signal is the superposition of two signals from two point targets, with different heights, that have
been mapped into the same range bin, see Figure 3. We propose a direct method that uses a
three-phase-center IFSAR to resolve this layover problem. Aside from its utility in solving the
layover problem, the direct approach may also prove to be a useful tool for analyzing the
resolution limit imposed by noise.

For the coherence factor, x4, that arises from a scene in which two-point targets reside in a single
range resolution cell, the Van-Cittert Zernike Theorem yields,

1 g 1 g
u(k;)= 7 _:]2 exp (jk; sin 6 )+ 7 +2]2 exp( jk; sin 6, ) (13)

where

#(k;) = coherence factor for one pair of phase centers (/=1,2,3, k >k, >k3), with
k; =2zmB; | %

B, = baseline length

A; = center wavelength

0, = angle of arrival of the signal from point target at p; (see Figure 3)

I; / (1) +1,) = relative intensity of the point target at p;

m =1 or 2, depending on whether the antenna is used in the standard mode or multiplex
mode respectively

Here, we adopt the convention that the points in a cell are labeled in such a way that
2d =sin6, —sinf, > 0.

In polar coordinates the coherence factor ,u(kl )becomes

I 1
,u(kl) = exp(j/’cls)[l1 +112 exp(—jkld)+ 2 +212 exp(jkld)}

=\ﬂ<kz>\exp{" [k’”’l(hffz dm

(14)

where
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‘ﬂ(kz)‘zf i + !

> =+2 Nl cos(2k;d) (15)
(h+L)" (h+L) (L+1))

2

t,(a,ﬁ)ztan_l[(1—2a)tan(k,,8)} (16)
s=(sin@ +sin6;)/2 (17)
d =(sin6, —sin6;)/2 (18)

The unwrapped phase of ,u(kl) is given by
yi=ks+4 (L /(L +1y).d), 1=1,2,3 (19)

We show that the preceding equations are sufficient to enable us to solve for the three unknowns:
s, dand I; / (I 1 +1 2) . We begin by presenting a criterion for detecting the presence of two

targets, next we consider the case /; / (L+1)=1, / (Iy+1,)=1/2, and finally we examine the
more difficult case Il/(ll +1,)# 12/(11 +1,).

From the expression for the magnitude squared, we see that ‘ y(k, )‘ <1 if and only if two targets
are present in the same range resolution cell. Here, we assume that there are at most two targets

in the same range bin. Also, assuming that two targets are present, it can be shown that for
kl > km y

k,, A
sgn< —/—y; — =sgn<1-2 20
g {k[ Vi ym} g { [1+[2} ( )

where m,l € {1, 2,3} and

-1, x<0
sgn{x}=4 0, x=0
+1, x>0

In particular, if sgn {’2—'" y; - ym} =0 it follows that 1, /(I; +15)=1,/(1; +1,)=1/2. In this
/
case, we can solve for d from the magnitude squared (see Eq. (15)) to obtain

d:kilcos—l(z\u(k,)\z—1) 21)
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where ‘ u(k; )‘ is a measured quantity. Since #;(1/2,d)=0, the sum s is given by:

1

_1 22
s k,yl (22)

We turn now to the case Il/(ll +1,)# 12/(11 +1,).

Let us assume that sgn{];—myl —ym}>0 so that 1_2[1/([1+[2)>0 or 0<[1/(I1+I2)<1/2-
/

The case sgn {(km [k ) V= ym} <0 is similar. We introduce the surface S defined by (see Figure
25a and Figure 25b)

S={Z(a,B) |0<a<1/2,0< B <x/(2k)} (23)
where
Z(a,B)=(n—-t1 (. B), y2—ta(. B) ., 13~ 13(. B)) (24)

and 1;(a, B) is defined by Eq. (16). (Since, by assumption 0 <, /(; +1;)<1/2, we need only
consider values for a between 0 and 1/2. Also, we assume that the difference d satisfies the
inequalities 0 <d < 7z/ (2k1 ) , so that we only need to consider values for § between 0 and

0<d< 7z/ (2k1 ) .) The unknown parameters can be determined from the unique intersection of
the surface S with the line L defined by

L={r(n) | || <b) (25)
where

r () = (kin. ko, k) (26)
and b is an upper bound for |s|. At the intersection of S and L, we have

km=y;—t;(a,B), for [=1,2,3 (27)

Let us denote by &, ,3, and 77 the values of a, 8, and 7, respectively, at the intersection. Since
the intersection is unique (see [33]), it follows that

L/(L+1L)=a (28)
d=p (29)
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and
s=n (30)

as desired. The figures (Figure 25a and Figure 25b) display the surface S, the line L, and their
intersection for two different choices of the parameters: k1, k2, and 3.

To provide for a more computationally efficient method of searching for the intersection, it may

be advantageous to represent the surface in standard form. For this, we choose a coordinate
system that enables us to represent S in the form

Sz{(zl,zz,g(zl,zz)) ‘ (ZI,ZZ)GD} (31)

for some domain D and function g (21, 22) . This is possible because the Jacobian matrix of Z

has rank two (see [32]); in fact, every pair of rows in the Jacobian matrix has non-zero
determinant, so we may use the coordinate system defined, at least locally, by

=y —t(a.B), [=12. (32)

The functions « (zl, Zy ) and S (zl, Zy ) , defined implicitly by Eq. (32), satisfy

a(zl,zz):l[l—m}:l[l—m} (33)

2 tan (k,3) 2 tan (k; 3)
and

tan (k) tan(y; —z;)
tan(k B) tan(y —z)

G(z,20,0)= =0 (34)

for the domain D ={(z,2,):0<y; —z <7/2,1=1,2, and tan(y,—z,)/tan(y, —z;) <ky/ky}.

(Here, the function G (zl 29, B ) , used to define f, is obtained by rearranging the last two

expressions in Eq. (33).) The function f(z,z,) is defined implicitly by Eq. (34), and, in turn, is
used to define &(zj,z,) via Eq. (33). We note that G(z,z,, 8) is a strictly decreasing function
of with G —>ky /ky,as S0 and G — 0 as BT z/(2k;). It follows that S(z;,z;) is defined

for every ordered pair (z;,z;, )in the domain D. It can be shown that the function

u(zl,zz):(a(zl,zz),ﬂ(zl,zz)) (35)

is one-to-one on the domain D. In this coordinate system, we have
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zlzyl—tlou(zl,zz), [=1,2, (36)
and the function g(z,z,)is given by

g(z1.22) =13 -t30u(z,2,), (37)
By inserting the map u into Eq. (24), we obtain

Zou(zl,zz):(Zl,zz,g(zl,zz)) (38)
We have produced the standard representation for the surface S.

We note that it is not necessary to compute the (zl, Z ) -coordinate system. We may plot the

surface S using the definition of Z(a, p ) given by Eq. (24) and then find the point Z(a, p ) that

is closest to the line L. We have introduced the coordinate transformation as a means of
providing for an alternative approach to finding the intersection. Also, this change of variables
gives us an explicitly defined method for representing S in standard form.

The figures show the intersection of S and L for the case when the separation between the two
targets is approximately two thirds the distance required by the Rayleigh criterion. In Fig. 25a,
the smaller baselines are nearly equal; k; =1, k, =0.55, and k3 =0.45. In Fig. 25b, the smallest

baseline is one fifth the length of the longest baseline; k; =1, k5 =0.8, and k3 =0.2 . In either

case, the intersection is clearly discernable; however, the difference in the “slopes” at the
intersection is greater for the case involving the longer baselines. This agrees with the intuitive
conjecture which asserts that the longer baselines are less sensitive to noise. The validity of this
conjecture is evident in this experiment as well as in several of the experiments presented in this
report.

The advent of noise in the system causes a translation in the surface and, in turn, produces a shift
in the location of the intersection. This effect may be studied using the model developed for this
method. Additional study may provide methods that would enable us to optimize the design
parameters of a multi-phase-center IFSAR. In addition to providing a practical method for
resolving the layover problem, this method may prove to be a useful tool for analyzing the limit
to the resolving power of the system in the presence of noise.
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DISCUSSION OF RESULTS

Although there are only a few simulations and they are for only the subspace estimation
techniques, we will use these to make some general conjectures. The first conjecture is that the
general trends that are observed for the MUSIC technique are likely true for the ML method. For
example, increasing the SNR of the targets allows us to resolve targets that are closer together.
This is true for ML, as well as MUSIC, methods. The main difference between the ML and
MUSIC method is that, where convergence can be achieved, the ML method will outperform the
MUSIC method in lower SNR environments. The trends between the two are similar.

Another trend that is observed is that increasing either the small or largest baseline improves
performance. Increasing the SNR and baseline length follows from our intuition from the
traditional IFSAR case. There are a couple of new insights for the two-target case. One is that the
farther apart the targets are in angle (e.g., farther apart in height), the better the performance.
Another is that performance of estimating both targets improves as their amplitudes become
similar. The reader should note the words “both targets” as being the key in the last sentence.
The reason for this is that as one target gets brighter than the other, the results tend back toward
the traditional [IFSAR for the single target case. We have already seen that the single target case
performs better than the two-target case.

A final note on this section is about what we mean by the word “performance”. In this case we
are meaning the bias and spread of the estimates of the spatial frequencies of the two targets.
Recall that we have assumed that we are trying to estimate parameters of the sinusoids. These
parameters are the frequency and the amplitudes of these sinusoids. We want to know how well
the algorithms perform in estimating these parameters. Since we are operating below the
Rayleigh resolution criteria, these algorithms are sometimes lumped in with the “super-
resolution” techniques. In the case of parametric techniques, the “resolution” is a measure of the
spread of the estimate of the frequency parameter. We see from the simulation results that the
higher the spread in the distribution of the spatial frequency estimate (height, in the plots), the
more difficult it is to distinguish, let alone estimate the frequencies of, two closely spaced
targets.

One thing that has not been emphasized in this report is the errors associated with choosing the
wrong model for parametric estimates. We have briefly touched upon these in the section on
extended targets. Maybe more subtle was the discussion throughout this report on the errors
made by traditional IFSAR when it assumes a model of a single target when in fact there are two
targets present. It is obvious from this last example that using parametric techniques is important
for their success.

It was noted that the two-target method did not perform as well as traditional IFSAR for a single
target. One way to improve this is to add more phase centers. The problem with this is that it is
expensive to add more phase centers and more radar channels. It is likely that ML methods and
the direct method will provide some additional improvement, as well.
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PRACTICAL CONSIDERATIONS

A list of practical considerations and other ideas are presented in the section, in no particular

order.
1.

We do not need to estimate multiple targets except where indicated by the “model order”
process. This will save greatly on processing.

We could fly by twice with a two-antenna IFSAR and use techniques described in [34].

Three phase-centers do not provide enough degrees-of-freedom to estimate layover
within a single range-Doppler bin. However, ambiguities can be resolved throughout the
image with three phase centers, as long as there is not an ambiguity within the bin with
two targets.

In practice, using ML may not be as complicated, because traditional IFSAR gives us a
starting point and searching past an ambiguity is unnecessary because we cannot resolve
an ambiguity within a range-Doppler bin anyway with only 3 antennas.

Estimating only two targets for complicated targets, such as trees and layover in hills is
likely an improvement over assuming one target in traditional IFSAR, but this requires
additional study.

The van Cittert-Zernike theorem says that there is height information within the
magnitude of the correlation. It seems like it would be noisy, but perhaps adjacent
information around the building could be used in conjunction with the magnitude of the
correlation to solve building layover in another manner.
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POSSIBLE FUTURE WORK

Since this was a mid-year LDRD, the time and funding did not permit us to investigate
everything we would like to have for this topic. In fact, it felt like we were just getting
momentum at the time the LDRD ended. (This topic was proposed for a full LDRD; however,
the full LDRD did not receive funding.) Some of those additional investigations are listed
below.

1. It would be highly desirable to apply this to real data sets. We recognized from the outset
that this would be difficult to do on midyear LDRD funding, so it was not included only
as desirable, and not as a requirement for this LDRD. In addition, available data sets for
this purpose are quite limited.

2. Further simulation and testing of the direct method are appropriate and desirable.

3. Examine throughput performance improvements for all algorithms considered in this
report.

4. Investigations of other spectral estimation techniques, such as Capon’s algorithm,
RELAX, array interpolation, and some of the wideband algorithms, as they apply to
IFSAR could be valuable.

5. Intriguing properties of the amplitude estimation were noted in the simulations, but not
presented in this report. It would be interesting to further examine these properties.

6. Investigation of the performance of the two target algorithms for the more complicated
layover structures of trees and sloped terrain.

7. Extension of the algorithms to more phase centers and more targets.

8. Investigate the tie-in of these methods with true 3D imaging in sparse target
environments.

9. Development of design algorithms for choosing appropriate system designs, e.g., baseline
lengths, etc. for multiple baseline systems. Also, development of tools for estimating
performance given a particular system and baseline lengths, etc.

10. Further investigate the performance of the proposed model order selection method.

11. Do a more extensive comparison of these methods with traditional endoclutter GMTI
methods and STAP to better understand the relationship between the two and understand
where applications of each method make sense.

12. Investigate combining MUSIC and ML approaches.

13. Finally, I mention again the need to apply it to real data, because it is important. That is
where the rubber meets the road.
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CONCLUSIONS

We have presented a couple of methods, including the development of a unique new method for
estimating two targets with three or more phase centers. A simulation was developed for
emulating IFSAR for two targets, such as buildings. The simulation results are presented for one
of the methods. We also briefly compared the multiple phase center problem in IFSAR with the
multiple phase center problem in GMTI, and found that the multiple phase center problem

These techniques show promise for resolving important two target problems, such as building
layover. They certainly provide great improvement when two targets are present, over the
traditional IFSAR, which assumes that there is only a single target present. They will likely
provide improvement for more complicated targets, such as trees and sloped terrain, as well. It is
probably unreasonable to assume that multiple targets can be resolved as well as a single target
without the expense of many phase centers. It is possible to obtain the multiple phase centers at
the cost of multiple passes by the target.

We ignored the very important and difficult task of calibrating and maintaining calibration of
multiple phase center systems. This task should in no means be underestimated, particularly in
costing a new system, and in the development and maintenance of multiple systems.
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“Well, I can't put it any more clearly, sir, for it isn't clear to me.’

-- Alice in Disney's version of "Alice in Wonderland"
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APPENDIX: MAXIMUM LIKELIHOOD ESTIMATOR FOR
SINUSOIDS IN GAUSSIAN NOISES

Assume that we have

K =number of elements in the array

N, =number of distinct target locations (sinusoids)

N; =number of samples or “snapshots”

Assume that we receive a return signal of the following form:

X =A4(0)S+N (39)

where

A(@) = the array manifold matrix (array response to targets at angle ® , sometimes

referred to as steering vector), K by N matrix
S = the signal emitted by targets, Ny by N; matrix
N = the noise matrix, K by N; matrix

X = the output matrix from the array, K by N; matrix

The joint probability density function (PDF) is given as in [11]:

Ny

f(X)—Hﬁexp(—ﬁ‘xi -A(@)Sif]

(40)

=1 mdet

where
x; = i"™ column in X (which has N; columns)
s; = i™ column in S (which has N; columns)
det[ ] is the determinant

Throwing away the constant, the log-likelihood function becomes:

N
L=—NLKlog62—§ZL:‘xi—A(@)si‘z (41)
i=1
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Maximizing with respect to o? leads to:

2N
dL NK (1) & 2
= —0=--L +(—j X —A(0)s; 42
o o7 7)) Ll 4(@)s (“2)
N

) 1 L 2

= —A(©)s; 43
o NLKZ;“XZ ( )Sl‘ ( )

where:

6?2 = the maximized o>
Substituting back in and again throwing out constants, the ML estimator becomes:
o 3 A(0)s ’
max<—N;Klog| —— ) |x;, —4(0O)s;
0.5 L g N, K = i ( ) i (44)

or equivalently:

Ny
mm{z\x,. _A(@)s,.f} (45)

0,5 |5

As pointed out in [11], the above derivation has just shown that the ML estimator for sinusoids in
Gaussian noise reduces to the least-squares problem given in Eq. (45).

The next step follows from [10, 11] is to minimize the amplitude (s~

;) assuming that we know

the spatial frequencies of the target locations (®). Taking the derivative and setting it to zero
leads to:

A (xl- - Asi) =0 (46)

leading to the solution:

= (4"a) " A, @47)

2
} (48)

Plugging back into Eq. (45) yields:

min {%

o' |5 x,~—A(G))(AH(@)A(@)))_1 AH(G))X.

]
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The following is readily recognizable as the projection matrix [25]:
-1
Py=4(0)(4" (0)4(0)) 4" (0) (49)

The projection matrix, P, is the matrix that projects the data vector, x; onto the subspace of the

matrix containing the array steering vectors, A(@) . Now Eq. (48) becomes:

N; ) N; I N; u Hon
min{2|xi—PAxi| }:mén{Z(xi—PAxi) (xi—PAxl-)}zmén{z<xi X —X; PA PAxi)}

© L= =1 i=1
(50)
We can observe that maximizing the projection minimizes Eq. (50) as follows:
Ny )
L(©)=>|Px] (1)
i=1
where
L (@) = the likelihood ratio quantity we want to maximize with respect to ®
A final interesting form can be obtained when we define the sample covariance matrix as:
NL
R= LZx,.x,.H (52)
N ia
Eq. (52) can be combined with Eq. (51) to give:
L(®)=tr{P,R} (53)

where

tr{ } = the trace operator.
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