
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Evaluation of oneAPI for
FPGAs

Presented by: Nicholas Mi l ler

Nicholas Miller, Jeanine Cook, and Clayton Hughes

SAND2021-7308CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

2

Motivation

FPGAs have historically faced challenges for HPC
 Development environment not amenable to agile application and hardware co-

design
 System integration and deployment complexity

Application-specific accelerators (ASAs) have shown promising results in
both power and performance but are costly to build and deploy

With recent investments in high-level synthesis tools, FPGAs could serve
as a stepping stone for ASAs

3

Evaluate Intel’s oneAPI tools for FPGA
Programmability and Performance

Introduction to oneAPI

Programming framework that provides a
single interface for multiple targets
 DPC++ which builds upon SYCL
 Can target GPUs, CPUs, and FPGAs

Includes libraries to accelerate certain
application domains

Open specification

4

https://software.intel.com/content/www/us/en/develop/tools/oneapi/commerci
al-base.html#gs.3lc6t2

miniAMR

Adaptive mesh refinement proxy
application

Simulates an object moving through a mesh
and adaptively refines the mesh in order to
save on computation

Computation is a simple 7-point stencil
which takes an average

Only the computation-heavy stencil
calculation is moved to the FPGA
 Mesh refinement and communication sections of

the program stay the same

5

Sandia National Laboratories, https://www.osti.gov/servlets/purl/1258271

Base Host Code

Create temporary arrays to
hold data going to and
coming from the FPGA

Buffers only accept 1D
arrays so flatten the 3D array

Create the SYCL buffer

Call the FPGA kernel

Expand the returned data
and store it in the host
arrays

6

Base FPGA Kernel Code

Create accessors to get data from
the host

Create local memory to store
variables within the programmable
fabric

Load data from FPGA SDRAM (global
memory) into programmable logic
BRAM (local memory)

Compute a 7-point stencil using the
local memory

Store data from local memory to
global memory

7

Optimizations

8

Combining Memory Transactions

• The optimization that provided the largest performance boost was to
combine all the variable computations in a block into a single
communication and computation step

• This reduced the number of calls to the SYCL runtime by 40x

Submit
kernel to

queue

Transfer
variable to

FPGA

Compute
stencil over

variable
Return data

to host 40x

Submit
kernel to

queue

Transfer 40
variables to

FPGA

Compute
stencil over
40 variables

Return data
to host 1x

Host code execution from base code

Host code execution after combining memory transactions

9

Host Changes - Combining Memory Transactions

Packed all variables into a
single array sent to the
FPGA

10

FPGA Changes - Combining Memory Transactions

Compute on all 40 variables in
each kernel call
 First bring all 40 variables into

local memory
 Then compute the stencil of on all

40 variables

11

Reduce Local Memory Usage

Instead of always storing all 40 variables in the kernel, only store a single
variable which is being computed upon

Reduces the overhead of the local memory usage by 40x without
noticeable slowdown

12

Host

Global
Memory

Local MemoryComputation
Pipeline

Global
Memory

40x

Global
Memory

Local
Memory

Computation
Pipeline

Host Host

Data flow in combined memory transactions code Data flow to reduce local memory usage

FPGA Changes - Reduce Local Memory

Compute the stencil directly
after bringing a single
variable into local memory

Removed the outer loop
previously at line 20

13

Flattening Arrays

Converted all multi-dimensional arrays in the host code to 1D, which
eliminated the need to convert for the buffer creation

Reduces host side pre- and post- processing needed on every kernel
invocation

14

Create
temporary 1D

array

Copy host data
from 4D array
into temporary

array

Create buffer
using memory

address of
temporary

array

Run kernel
Copy data from

temporary
array back into
host 4D array

Create buffer using
memory address of host

array
Run kernel

Host code execution from combined memory transactions code

Host code execution after flattening arrays

Host Changes - Flattening Arrays

Completely removes the need for packing the host data into arrays

Uses the original host side arrays memory locations for buffer creation so
the data is copied from and to the FPGA more efficiently

Now only the following steps are needed:
1. Create the buffer using the host memory address
2. Enqueue the kernel to be run on the FPGA

No modifications required in kernel code

15

Buffering SYCL Runtime Calls

Calling the SYCL runtime for the kernel queues and submits it while the
FPGA works on the stencil calculation

This only works if the execution of the kernel is long enough to hide the
SYCL runtime overheads

• Blue: Queued for
submission

• Yellow: Submitted
and waiting to run

• Orange: Executing

16

Host Changes - Buffering SYCL Runtime Calls

Create a vector that stores the buffers of each kernel invocation

All buffer destructors are called when the function exits, and the vector
destructor is called

Data is transferred back as needed – controlled by the SYCL runtime until
destructor is called

If only using a single block there is no functional change as we are
queuing kernel invocations over blocks

17

Unrolling Computation Pipeline Loop

Unroll the outermost loop to create multiple concurrent pipelines
 Each variable computed independently

18

Global Memory

Loop Control Logic

Computation Pipeline

Local Memory

Global Memory

Loop Control Logic

Computation
Pipeline

Local Memory

Computation
Pipeline

Local Memory

Computation
Pipeline

Local Memory

Computation
Pipeline

Local Memory

Single Compute Pipeline Multiple Compute Pipelines -- Unrolled Outer Loop

FPGA Changes - Unrolling Computation Pipeline Loop

Compiler hint to inform
unroll depth

19

Results

20

Experimental Setup

Run on the Intel Devcloud system

Submitted to node by OpenPBS scheduler

Increased number of blocks in a run to compare for the buffering tests

21

CPU 2 x Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz

FPGA Family Arria 10

FPGA Device 10AX115S2F45I2SGES

oneAPI Version Beta08

System Memory 196 GB

Base Parameters No Parameters

Increased Blocks Parameters --num_refine 4 --max_blocks 9000 --num_objects 1 --object 2 0 -1.71 -1.71 -1.71 0.04 0.04 0.04
1.7 1.7 1.7 0.0 0.0 0.0 --num_tsteps 25

Performance

0 5 10 15 20 25 30 35 40

Combined Memory Transactions

Reduced Local Memory

Flattened Arrays

Buffered-Base Parameters

Buffered-Multiple Blocks

Unrolled 2

Unrolled 4

Unrolled 8

36.85

33.36

13.08

13.04

3.10

2.48

2.47

2.51

Slowdown Compared to Processor

22

Utilization

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Base

Combined Memory Transactions

Reduced Local Memory

Flattened Arrays

Buffered

Unrolled 2

Unrolled 4

Unrolled 8

Device Resource Usage

DSPs MLABs RAMs FFs ALUTs

23

Summary

Manufacturing and materials advances have brought application-specific
accelerators closer to reality

FPGAs may be a cost-effective path for exploring ASAs

Evaluated the miniAMR proxy application using Intel’s oneAPI tools to
determine maturity and viability of HLS for ASA development

Showed that application was easy to port but difficult to optimize

https://www.shutterstock.com/g/tashatuvango

24

Questions?

25

