This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2021-7308C

Sandia
National
Laboratories

Evaluation of oneAPI for
FPGAs

Presented by: Nicholas Miller

©ENERGY NASK
Wamrm Acvmee Brisfy Ambremabue
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

Nicholas Miller, Jeanine Cook, and Clayton Hughes

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

Introduction

31 Motivation

FPGAs have historically faced challenges for HPC

= Development environment not amenable to agile application and hardware co-
design

= System integration and deployment complexity

Application-specific accelerators (ASAs) have shown promising results in
both power and performance but are costly to build and deploy |

With recent investments in high-level synthesis tools, FPGAs could serve
as a stepping stone for ASAs

Evaluate Intel’s oneAPI tools for FPGA |
Programmability and Performance

4| Introduction to oneAPI

Intel® one API Base Toolkit

P rog ra m m i ng fra m eWO r k th at p rOVi d e S a Direct Programming API-Based Programming Analysis Tools

single interface for multiple targets e, oo B e

Intel® Distribution Intel* oneAP| Data .
for Pythen* Analytics Library Intel® Distribution for GDB*

= DPC++ which builds upon SYCL e o o et s e

oneAP| Base Toolkit
Intel® oneAPl Video

= Can target GPUs, CPUs, and FPGAs b cratP colect

Communications Library

Intel® oneAP| Deep Meural
Metwork Library

Includes libraries to accelerate certain BT
application domains

Open specification ‘ ‘
CPU GPU

Supported Hardware Architectures!

FPGA

tHardware suppadt vares by individual oneaP| el Additonal architecture support will be expanded owver time,
*Other names and brands may be claimed as the property of others.

https:/ /software.intel.com/content/www/us/en/develop/tools/oneapi/commerci
al-base.html#gs.3lc6t2

s1 miniAMR

Adaptive mesh refinement proxy
application

Simulates an object moving through a mesh
and adaptively refines the mesh in order to
save on computation

Computation is a simple 7-point stencil
which takes an average

Only the computation-heavy stencil
calculation is moved to the FPGA

= Mesh refinement and communication sections of

the program stay the same

for some number of timesteps do
for some number of stages do
communicate ghost values between blocks
perform stencil calculation on variables
if stage for checksums then
perform checksum calculations
compare checksum values
end if
end for
if time for refinement then
refine mesh
end if
end for

Sandia National Laboratories, https://www.osti.gov/setrvlets/putl/1258271

6| Base Host Code

Create temporary arrays to

I for (int in = 0; in < sorted_.index[num_refine + 1]; in++) { .

2 bp = &blocks [sorted_list [in].n]; hOld data 80|ng to and
3 for (var = 0; var < var-max; var4-+4) .

1 sycliirange<I> num_array { Hlulir_:iwl <size.t >((x_-block_size + 2) # COmlng from the FPGA
5 (v-block_size + 2) % (z_block_size + 2)) };

6 fereate a buffer that goes to the fpga

7 double* inputArray = new double |(x_block_size + 2) =

8 (y-block_size + 2) % (z_block_size + 2)];

1:: create a buffer that comes from the fpga BUfferS Only accept 1 D

doublex outputArray = new double[(x_block_size + 2) =
l‘l .“{ y_block_size +.2) .* (z_hlm-k_r_iir,v .—|— 2)]; - arrays SO ﬂatten the 3D array
12 f flatten the 4d array to a ld array for the buffer
13 for (int 1 = 0; 1 <= x_block_size + 1; i++)
14 for (int j 0; j <= y-block_size + 1; j++4)
15 for (int k = 0; k <= z_block_size + 1; k++)
16 inputArray [k + (z_.block_size + 2) * (j + (y-block_size + 2) * i)]
17 = bp->array [var] [i][j][k]: Create the SYCL buffer
18 sycl i buffer<double, 1> input_buffer(inputArray, num_array);
19 {
20 syel :: buffer<double, 1> output_buffer (outputArray, num_array);
21 fpga_kernel(input_buffer , output_buffer):
22 [foutput_buffer detructor called here
23 }‘u'rinl- the data back to the block array Ca” the FPGA kernel
24 for (int i = 1; 1 <= x_block_size; i++)
25 for (int j = 1; j <= y_-block_size; j++)
26 for (int k = 1; k <= z_block_size; k++)
27 bp—>array [var|[i][j][k] = outputArray [k + (z_block_size + 2) =
28 (i + (v_block_size + 2) x i)];

29 }»"_'il||bll1 buffer detructor called here EXpand the returned data
v and store it in the host
arrays

7| Base FPGA Kernel Code

S

-
(=t I=1]

|

| S o

o = LS b

Sl SR S Sl S

o
=l SRR |

30

o e

void fpga_kernel(sycl:: buffer<double, 1>& input_buffer ,
sycl:: buffer <double, 1>& output_buffer) {

Device gueue submit
queune_event = device.queue.submit ([&](sycl:: handler& cgh) {
Create FPGA side accessors to the buffers
aunto accessor.in
input_buffer. get_access<sycl::access::mode:: read_write >(cgh);
aunto accessor_ont =
output_buffer. get_access<sycl::access::mode:: discard_write >(cgh);

cgh.single_task <class Stencil_kernel >([=]() {
double work [12][12][12];
double local_array [12][12][12];
for (int 1 = 0; 1 <= 11; i++)
for (int j = 05 j <= 11; j4++4)
for (int k = 0; k <= 11; k++)
local_array [i][j][k] = accessor_in[i][j][k];
for (int i 1; i <= 10; i++)
for (int j = 1; j <= 105 j+4++4)
for (int k = 1; k <= 10; k++)
work [i][]j][k] (
local_array [i L][illk

] +
local_array [i]][) 1][k] +
local_array [i][j][k — 1] +
local _array [i][]j][k] +
local_array [i][j][k + 1] +
local_array [i][j + 1][k] 4
local _array[i + 1][j][k]) / 7.0
for (int i = 1; i <= 10; i++4)
for (int j = 1; j <= 10; j++)
for (int k 1; k <= 10; k++4)
accessor_out [i][j][k] work [i][j]lk];

Create accessors to get data from
the host

Create local memory to store
variables within the programmable
fabric

memory) into programmable logic
BRAM (local memory)

Compute a 7-point stencil using the

]
Load data from FPGA SDRAM (global |
local memory |

Store data from local memory to
global memory

Optimizations

« The optimization that provided the largest performance boost was to
combine all the variable computations in a block into a single
communication and computation step

 This reduced the number of calls to the SYCL runtime by 40x
Submit Transfer Compute

kernel to variable to stencil over
queue FPGA variable

Return data 4OX

to host

Host code execution from base code

Submit Transfer 40 Compute
kernel to variables to stencil over

I
ol Combining Memory Transactions m
I

Return data 1 X

to host

queue FPGA 40 variables

Host code execution after combining memory transactions

1o| Host Changes - Combining Memory Transactions

1 for (int in = 0; in < sorted_index|[num_refine + 1]; in++) {

2 bp = &blocks [sorted_list [in].n];

3 sycl::range<l> num_array{ static_cast <size_t >(varmax * (x_block_size + 2) =*
Packed a” Variables into a 4 (v_block_size + 2) * (z_block_size + 2)) };

h //ecreate a buffer that goes to the fpga

G doubles inputArray = new double[var.max * (x_block_size + 2) =

single array sent to the

7 (v-block_.size + 2) *+ (z_block.size + 2)];
] [fereate a buffer that comes from the fpga
FPGA 9 double* outputArray = new double[var_max * (x_block_size + 2) =
10 (v-block_size + 2) = (z_block_size + 2)];
11 /[flatten the 4d arrav to a ld arrav for the buffer
12 for (var = 0; var < var.max; var++)
13 for (int 1 = 0; 1 <= x_block_size 4+ 1; i4++)
14 for (imt j = 0; j <= v_block_size + 1; j++)
15 for (int k = 0; k <= z_block_size + 1; k++)
16 inputArray [(var * (x_block_size + 2) % (y_block_size + 2) =
17 (z-block_size + 2)) + (k + (z-block_.size + 2) =
18 (i + (y-block.size + 2) = i))] = bp—>array[var|[i][j][k];
19 syel o buffer<double, 1> input_buffer (inputArray, num_array);
20 {
21 sycl:: buffer<double , 1> output_buffer (outputArray , num_array);
22 fpga_kernel (input_buffer , output_buffer);
23 }
24 //write the data back to the block array
25 for (var = 0; var < var.max; wvar++)
26 for (int 1 = I; 1 <= x_block_size; i++)
27 for (int j = 1; j <= v_block_size; j++)
28 for (int k = 1; k <= z_block_size; k++4)
29 bp—>array|[var|[1][j][k] = outputArray|[(var * (x_block_size + 2) =
30 (v-block_size + 2) #* (z_block_size + 2)) 4
a1 (k + (z_block_size + 2) * (j + (y_-block_size + 2) * i))];

32)

11| FPGA Changes - Combining Memory Transactions

Compute on all 40 variables in
each kernel call

= First bring all 40 variables into
local memory

= Then compute the stencil of on all
40 variables

14
15
16
17
18
19
20
21
22
23
24
25
26

-
i

28
29

31
32
33
M
35

void fpga_kernel(sycl:: buffer<double, 1>& input_buffer ,
sycl :: buffer<double, 1>& output_buffer) {
/[Device queue submit
queune_event = device_quene.submit([&](sycl:: handler& cgh) {
//Create FPGA side ac buffers
auto accessor_in =
input_buffer. get_access<svel ::access ::mode:: read_write >(cgh);

cessors to the

aunto accessor_ont =

output_buffer. get_access<sycl ::access ::mode:: discard _write >(cgh):
cgh.single_task<class Stencil_kernel >([=]() {

/create a local copy of the data for increased perfor
double local_array [40][12][12][12];
for (int var = 0; wvar << 40; var++)

for (int 1 = 0; i <= 11; i++)

for (int j = 0; j == 11; j++)

]
for (int k = 0; k <= 11; k++)
local_array [var][i][3][k] =
accessor_in [(var * (12) = (12) * (12)) + (k + (12) =
accessor_out [(var = (12) = (12) = (12)) + (k + (12) =

array mance

(G + (12) = i))]:
for (int var = 0; var < 40; var++)
for (int i = 1; i <= 10; i++)

for (int j = 1; j <= 10; j++)
for (int k = 1; k <= 10; k++)
GG+ (12) * i))] = (
local_array [var][i — 1][j][k] +
local _array [var]|i
local _array [var]]

1][k] +

i 'k

local_array [var][i (k] +

local _array [var]|i [k +
i + 1
i

|
|
|
|
| I
LI

[
[j
[
] 1]
local_array [var][i]]] k] +
local _array [var][i + k]) /[7.0;
b:
b:

|
Reduce Local Memory Usage m

Instead of always storing all 40 variables in the kernel, only store a single
variable which is being computed upon

Reduces the overhead of the local memory usage by 40x without
noticeable slowdown

/ \ Host Global - > Host
Memory
Global Global
Memory Memory

\ / 40X

Computation Local
Computation Pipeline Memory
Pipeline Local Memory
v

Data flow in combined memory transactions code Data flow to reduce local memory usage ‘

13| FPGA Changes - Reduce Local Memory

1 wvoid fpga_kernel(syel::buffer<double, 1=& input_buffer ,
2 sycl::buffer<double, 1>& output_buffer) {
3 '/ Device queue submit
. . 4 queune_event = device_queue.submit ([&](svel :: handler&k cgh
Compute the StenC|| dlreCtIy] [/ Create FPGA side accessors rl(s[T|]Le{' buffers) 1
. . . i} anto accessor_in =
after brlnglng a Slngle 7 input_buffer . get_access<sycl::access::mode:: read_write >(cgh);
s} anto accessor.ount =

Va rlable Into |Oca| memory lﬁ output_buffer. get_access<syel :: access ::mode:: discard_write >{cgh);

cgh.single_task<class Stencil_kernel >([=]() {
11 [/create a local copy of the array data for increased performance

12 double local.array [12][12][12];

Removed the outer loop 1 for (int var = 0 var < 10; var+4)
. . 14 for (int i = 0; i <= 11; i++)

prewously at line 20 15 for (int j = 05 j <= 11; j4+4)

16 for (int k = 0; k<= 11; k++)

17 local_array [i]|[j][k] =

18 accessor_in [(var * (12) = (12) = (12)) + (k + (12) =

19 G+ (12) + i)

20 for (int i = 1; i <= 10; i+4)

21 for (int j = 1; j <= 10; j++)

22 for (int k = 1; k <= 10; k++)

23 accessor_out [(var + (12) *= (12) = (12)) + (k + (12) =

24 (3 + (12) = i))] = (

25 local _array [i — 1][j][k] +

26 local_array [i][j — 1][k] +

27 local _array [i]|[j][k — 1] +

28 local_array [i][j][k] +

29 local_array [i]|[j][k + 1] +

30 local _array [i][j + 1][k] +

31 local_array [i + 1][j][k]) / 7.0

32 H:

33 H)s

3}

121 Flattening Arrays

Converted all multi-dimensional arrays in the host code to 1D, which
eliminated the need to convert for the buffer creation

Reduces host side pre- and post- processing needed on every kernel
Invocation

Create buffer
using memory
address of Run kernel
temporary
array

Copy host data

Copy data from
from 4D array

Create

temporary
array back into
host 4D array

temporary 1D

array into temporary

array

Host code execution from combined memory transactions code

Create buffer using
memory address of host Run kernel

array

Host code execution after flattening arrays

Completely removes the need for packing the host data into arrays

Uses the original host side arrays memory locations for buffer creation so

|
;1 Host Changes - Flattening Arrays m
the data is copied from and to the FPGA more efficiently ‘

Now only the following steps are needed:
1. Create the buffer using the host memory address

2. Enqueue the kernel to be run on the FPGA |
No modifications required in kernel code
1 for (int in = 0; in < sorted_index[num_refine + 1]; in++4) {
2 bp = &blocks[sorted _list [in].n];
3 sycl ::range<l> num_array{ static_cast <size_t >(var_-max =
4 (x_block_size + 2) % (y_-block_size + 2) * (z_block_size + 2)) }; I
5 {
6 sycl :: buffer<double, 1> input_buffer (bp—>array, num_array);
7 fpga_kernel (input_buffer); I
s
9

} |

16l Buffering SYCL Runtime Calls

Calling the SYCL runtime for the kernel queues and submits it while the
FPGA works on the stencil calculation

This only works if the execution of the kernel is long enough to hide the
SYCL runtime overheads

ST ee—e—me—

. _ZTE14%ercd_inernel [Submred] e Blue: Queued for

_TTE S5ane] kel [Submimed) . .

—— ~— = submission

- _ETS14Sensil_kemael {Submitied) -
_ ZTEN A5 enpil |_kmmad {Submitied) .
T TSt tane (i = * Yellow: Submitted
_ _ZTE14Stanc_keral {Submitied)

_ZTE145enci_kbemel (Submitied) -

st TS s Sress

Bttt S — 0

| FrEtSuas . ZTSHeSMne_aer (Sutmined)

Em—— TS aSnol_iermel (Submieed)

| e— EeTe

TS s) 2781 v e

TS el () TS5 knena (Suberioes

| FTSMSImnc el (Qumcedt)

| ETEMnc el [Quwnd)

B i

and waiting to run

$$$$$$$ smrwl | Submited)

* Orange: Executing
=

Create a vector that stores the buffers of each kernel invocation

All buffer destructors are called when the function exits, and the vector
destructor is called

Data is transferred back as needed - controlled by the SYCL runtime until
destructor is called

If only using a single block there is no functional change as we are
gueuing kernel invocations over blocks

|
71 Host Changes - Buffering SYCL Runtime Calls m
|

1 std::vector<svyel:: buffer<double, 1>> input_buffer;

2

3 for (int in = 0; in < sorted_index|[num_refine + 1]; in++) {

1 bp = &blocks [sorted_list [in].n];

5 input_buffer . push_back(svel :: buffer <double , 1>(bp—>array ,

6 sycl ::range<l>(static_cast <size_t >(var.max * (x_block_size + 2) =

7 (v-block_size + 2) = (z_block_.size + 2)))));

8 fpga_kernel (input_buffer[in]); I
9

| I

gl Unrolling Computation Pipeline Loop

Unroll the outermost loop to create multiple concurrent pipelines
= Each variable computed independently

Global Memory Global Memory

Loop Control Logic Loop Control Logic

Computation Computation Computation Computation

Pipeline Pipeline Pipeline Pipeline

Local Memory § Local Memory j Local Memory

Single Compute Pipeline Multiple Compute Pipelines -- Unrolled Outer Loop

Computation Pipeline

Local Memory

Local Memory

9| FPGA Changes - Unrolling Computation Pipeline Loop

1 void fpga_kernel(syel:: buffer<double, 1=& input_buffer) {
2 //Device queue submit
3 queune_event [kernelCounter % 2] = device_queune.submit ([&](sycl:: handler& cgh)
C iler hint to inf N

Ompl er In O In Orm] [/ Create accessors

i aunto accessor_in =
UnrO” depth 7 input_buffer. get_access<sycl::access::mode:: read_write >(cgh);

8 cgh.single_task <class Stencil_kernel >([=]() {
0 double local_arrayv [12][12][12]:
10 #pragma unroll X //replace X with the number of unrolls 0, 2, 4, or 8
11 for (int wvar = 0; var < 40; var++4) {
12 for (int 1 = 0; i <= 11; i++)
13 for (int j = 0; j <= 11; j++)
14 for (int k = 0; k <= 11; k++4)
15 local_arrayv|[i]|[j][k] = accessor_in|[(var * (12) = (12) =
16 (12)) + (k + (12) = (3 + (12) = i))];
17 for (int i = 1; i <= 10; i++)
18 for (int j = 1; j <= 10; j++)
19 for (int k = 1; k <= 10; k++4)
20 accessor_in [(var = (12) = (12) = (12)) + (k + (12) =
21 GG+ (12) i))] = (
22 local_array [i — 1][j][k] +
23 local_array [i][j — 1][k] +
24 local _array [i][j][k — 1] +
25 local _array [1][j][k] +
265 local_array [i][j][k + 1] +
27 local_array [i][] + 1][k] +
28 local_array [i + L]|[j][k]) / 7.0
29 }
30 b
31 });

32}

Results

211 Experimental Setup

Run on the Intel Devcloud system
Submitted to node by OpenPBS scheduler

Increased number of blocks in a run to compare for the buffering tests

CPU 2 x Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
FPGA Family Arria 10
FPGA Device T0AX115S2F4512SGES
oneAPI| Version Beta08
System Memory 196 GB
Base Parameters No Parameters |
--num_refine 4 --max_blocks 9000 --num_objects 1 --object 2 0-1.71 -1.71 -1.71 0.04 0.04 0.04 I

IEREEEEE) 08 S PRIt 1.7 1.7 1.7 0.0 0.0 0.0 --num_tsteps 25

22| Performance

Slowdown Compared to Processor

Unrolled 8 2.51

]
Unrolled 4 - 2.47
[]

Unrolled 2 2.48

Buffered-Multiple Blocks - 3.10
|
Fattencd Arrays | '

Reduced Local Memory 33.36

36.85

Combined Memory Transactions

o
Ul

10 15 20 25 30 35 40

23| Utilization

Device Resource Usage

Unrolled 8

Unrolled 4

Unrolled 2

Buffered

Flattened Arrays

Reduced Local Memory
Combined Memory Transactions

Base

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

EDSPs EMMLABs EMRAMs EFFs BALUTs

21 Summary

Manufacturing and materials advances have brought application-specific
accelerators closer to reality

FPGAs may be a cost-effective path for exploring ASAs

Evaluated the miniAMR proxy application using Intel’'s oneAPI tools to
determine maturity and viability of HLS for ASA development

Showed that application was easy to port but difficult to optimize

Questions?

