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Holistic scrutiny in experiments, analyses, and theories made
significant progress towards resolving the solar problem
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Motivation: Calculated Fe opacity severely underestimates
the measured opacity = But why?

Revisit Fe results: Re-scrutiny in experiments, analyses, theories

Time resolved measurements
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Time-resolved iron and oxygen opacity measurements can provide stronger constraints to

advance opacity science and resolve the solar problem
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fFirst O opacity:

T.=160 eV
n=8e21 cm?3
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Modeled solar structure disagrees with observations

Sandia
National
Laboratories

Simulation: Standard solar model

Inputs:
 Abundance * Opacity
* EOS * Etc.

Measurements: Helioseismology

Analysis of 2D-resolved
pulsation reveals the solar
structure
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Modeled solar structure disagrees with observations @ lsborates

Error in modeled density
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Modeled solar structure disagrees with observations @laboraturies
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10-30% mean-opacity increase in the solar model is needed to @{%}“.
o . aboratories
resolve this discrepancy

Opacity: K,

* Quantifies radiation absorption

* x,(T, n,) .. input for solar models

CZB condition:  Opacity models have never been
1.=182 eV
n,=9x10%? cm3 tested
Solar mixture opacity at Convection Zone Base (CZB)
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C. Blancard et al., The Astrophysical Journal 745, 10 (2012)



10-30% mean-opacity increase in the solar model is needed to @ﬁ:{‘iﬂ‘ﬁ‘m
o . Laboratories
resolve this discrepancy

Opacity: X, Fe is a likely suspect:
* Quantifies radiation absorption » 2" ]argest contribution
* x,(T, n,) .. input for solar models * Most difficult to model
CZB condition:  Opacity models have never been
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The SNL Z machine uses 27 million Amperes to create x-rays @ﬁ:{}g“:‘a.

Laboratories

P~ 220TW (£10%), V.., ~ 1.6 MJ (£7%)

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)



using bright radiation generated by Z-pinch
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[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)




lron opacity at solar interior conditions is measured
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Calculated iron opacities are significantly lower than
measurements as T,, n, approach solar interior values

Bailey, Nagayama, Loisel, Rochau et al., Nature 2015

Anchor3 :
0B T=198eV; n=4x102 cm? * If true, it accounts for about /; the
} opacity increase needed to resolve
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* Flaws in experiment?
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Both theory and experiment are i
challenging in HED science;
Neither should be ruled out.




Systematic opacity measurements with Cr, Fe, and Ni
identified three main opacity model-data discrepancies

l Anchor2: T, ~ 180 eV, n, ~ 30x10%! cm™3 '
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LAST TWO years: Vwe made signiticant progresses by re-scrutinizing
Fe results, measuring first O opacity, and recruiting young

Revisiting Fe results:

Experiments:

[in prep.]

* Time-resolved measurements
* Plasma diagnostics [in prep.]
* Fe absorption measurements

Analyses:

e QOpacity [in prep.]

* Background [1]

* T,andn, [in prep.]

-

* More experiments for Fe at anchor2, 3 J

Remaining 7 shots will help us accomplish more

Theory:
Line broadening [2,3]
e Two-photon opacity [4]

("

B O EEEE O U BB B

[1] Dunham et al RSI (2021) _ [2,3] Gomez et al PRL (2020), PRL(2021)? ___[4] More et al HEDP (2020)
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First O opacity

* First oxygen x-ray opacity measurement
* T,=160 eV, n,=8e21 e/cc (anchorl)
e 3 shots with different O amount

. * Prepared for anchor2 but not performed)
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Experiments:
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Analyses:
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* First oxygen x-ray opacity measurement
* T,=160¢eV, n=8e21 e/cc (anchorl)
e 3 shots with different O amount

* Prepared for anchor2 but not performed

AN Y,
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kSuccessful recrulting: Dan Mayes (postdoc), Malia Kao (grad. student) )

Despite of the significant progresses, more work needed to resolve the solar problem ‘

[1] Dunham et al RSI (2021)

[2,3] Gomez et al PRL (2020), PRL (2021)?

[4] More et al HEDP (2020)
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LAST TWO years: Vwe made signiticant progresses by re-scrutinizing
Fe results, measuring first O opacity, and recruiting young

Revisiting Fe results: Remaining 7 shots will help us accomplish more
Experiments: Theory:
* More experiments for Fe at anchor2, 3 * Line broadening [2,3]
[in prep.]
e Time-resolved mea Result from last ZFS workshop /

B O EEEEE O U BB B

* Plasma diagnhos

) - Original data (3 shots, old analysis)
* Feabsorptionr L Refined data (9 shots, new analysis)
Analyses: - E ’
* Opacity [inprep.] 5 [ |
* Background [1] SE
_ * T,andn,[inprep.] O [

Still statistically significant
Wavelength |model-data disagreement
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Time resolved measurements are attractive for three E

reasons
1. Experimentally test the temporal gradient effects ‘
2. Understand and refine our experiments [

3. Perform time-resolved opacity experiments

I.  Minimize temporal gradient concern
ii. Fe opacity at multiple conditions from a single experiment
iii. Fe opacity at higher temperature and/or density

Let’s adopt Sandia Ultra-fast X-ray Imager (UXI) to our experiments |



‘ Two UXI cameras were successfully installed to record up
to 16 frames

Anchor 1 Fe
Mg K-shell spectroscopy —— ‘
Density from line width Temperature from line ratio
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‘ Simulations™® predicted that sample temperature goes
up and down while density monotonically decreases
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* Nagayama et al PRE (2016)




Time-resolved measurement suggested different sample

evolution
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Time-resolved measurement suggested different sample
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Time-resolved measurement suggested different sample E

evolution
220 ':=[ | | | l [ [ ‘ |J. | ‘ I [. | l=: 7 L: II ” I ] | ” I 7 | I I. | | I I. [ -
= T,(t) SlmLIatlon : n,(t) \ Simulation : ‘
E f g - -
< 210 & f \ T 54 @ 6f \x 23285 —
> = | Win B ! / \ =
2 E / AL T E F e' \ 23365 -
v 200 | NH = 4 CcE / \ E [
= . . . : !
5 190 Currently, we are investigating: E
S 150]° 'mpact of the gradients:
;C: — Can the measured gradient explain the discrepancies? =
& | :
170 ]
* Experiment refinement: €
160 : : : : oy = I
- Can we reach higher density by shielding the preheat? 6
Temper h? ‘
Density: Constantly low -2 Is the sample expanded much earlier? Preheat?

* Nagayama et al PRE (2016)



successfully measured time-resolved Fe absorption spectra
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Time-resolved opacity determination requires a large volume of time-resolved calibration data |




‘ Two relevant theories were scrutinized and refined
significantly for resolving the Fe model-data discrepancies

Spectral line broadening [1,2] Two-photon opacity [3]
— Plasma diagnostics — BB, BF discrepancies ‘
— BB line-width discrepancy
0.12 Cumulative Fe opacity from ions 14+ to 20+
[ Obrien-Hooper (MERL) 10000 ¢ I
0.10 F Lee model (MERL) " .
: : |‘ 1000 - B
Q o0.08F - 100
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S 004 2 2 o
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0.02 | L NN [
- Lz s 0.01
[ _ =~ - |
0-0920 1650 1660 1670 1680 Wavelength [A]
What's new? Photon energy (eV) What’s new? I
* Electron capture [1] * Omitted from existing opacity models
« Remove 3 approximations [2] * Performed most complete calculations ever

[1] Gomez et al PRL (2021). [2] Gomez et al submitted to PRL (2021). [3] More et al HEDP (2020)



LAST TWO years: Vwe made signiticant progresses by re-scrutinizing
Fe results, measuring first O opacity, and recruiting young
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LAST TWO years: Vwe made signiticant progresses by re-scrutinizing
Fe results, measuring first O opacity, and recruiting young
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* First oxygen x-ray opacity measurement
* T,=160 eV, n,=8e21 e/cc (anchorl)
e 3 shots with different O amount

. * Prepared for anchor2 but not performed)




Oxygen opacity measurements are essential to resolve the solar @ Sandia
problem

Laboratories
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If oxygen measurements are lower than models predict, it could partially cancel the improved agreement between solar
models and helioseismology resulting from past Z iron opacity experiments [Bailey et al., Nature 2015]

If oxygen measurements are higher than predicted, it will further help resolve the solar problem

Basu and Antia, Phys. Reports 2008; Serenelli, ApJ 2009; Blancard ApJ 2012; Seaton MNRAS 1994



Oxygen opacity spectra are relatively simple, but strongly @ Sandia
affected by approximations for plasma density effects
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Important physics: Important physics:
* Opacity window * Billions of bound-bound line features
* Bound-free opacity * Bound-free opacity

Bare atoms have no bound-bound and bound-free opacity
> Oxygen opacity is strongly affected by small ionization changes

Seaton MNRAS 1994; Badnell MNRAS 2005; Mendoza 2007
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affected by approximations for plasma density effects
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Important physics: Important physics:

* Opacity window ) Llnc.e—br.oadenlng , , * Billions of bound-bound line features
* lonization potential depression

* Bound-free opacity + Occupation probability * Bound-free opacity

Bare atoms have no bound-bound and bound-free opacity
> Oxygen opacity is strongly affected by small ionization changes

Seaton MNRAS 1994; Badnell MNRAS 2005; Mendoza 2007



Oxygen and silicon transmission spectra were successfully @ Mgt
Laboratories
measured
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Accurate opacity is only obtained for T ~ 0.15-0.85




Preliminary plasma conditions inferred from Si lines were T, ~ 160 @ Sanda
eV and n_ ~ 8x10% cm™
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n,: Si He O line broadening, Te: He-like/Li-like Si line ratios, ratios of Li-like satellites

Plasma condition needs to be re-analyzed by using the refined line shapes and by accounting
for model uncertainties.

J.C. Pain & F. Gilleron HEDP 2015



Laboratories

Oxygen opacity inferred with roughly +/-20% uncertainty in 11- @ Sanda
15.5 A range; Recent experiments will check the reproducibility
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Two additional experiments were performed in October 2020, analysis underway




Preliminary oxygen opacity measurements may provide useful model @ Sandia
tests, even at initial Te &ne that are below the solar values
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Future experiments will examine reproducibility, quantify uncertainties, and extend
measurements to higher Te and ne
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Future experiments will examine reproducibility, quantify uncertainties, and extend
measurements to higher Te and ne




Preliminary oxygen opacity measurements show significant @ Sandia
disagreement in line shapes and bound-free features
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Future experiments will examine reproducibility, quantify uncertainties, and extend
measurements to higher Te and ne




Last two years: We made significant progresses by re-scrutinizing Fe
results, measuring first O opacity, and recruiting young scientists
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* First oxygen x-ray opacity measurement
* T,=160 eV, n,=8e21 e/cc (anchorl)
e 3 shots with different O amount

. * Prepared for anchor2 but not performed)




Last two years: We made significant progresses by re-scrutinizing Fe
results, measuring first O opacity, and recruiting young scientists

(Successful recruiting: Dan Mayes (postdoc), Malia Kao (grad. student)




‘ Student: Malia Kao successfully measured room-temperature E

Fe transmission within a few percent Fe @ 1924 eV
0.550 A Data
Manson 0545 1
source
t & S 0.540
é 0.535 - I
2 0.530 ~
o i
|_
normal %2257
‘ D o _Rntat_ion angle (0) |
* Also measured at 1012 eV and 1188 eV
* Biggest source of opacity uncertainty
= Sample thickness (i.e., areal density)
 Works with target-characterization labs at SNL and GA for accurate opacity ‘
 Recently joined the center of our academic collaborator WCAPP*

* Wootton Center for Astrophysical Plasma Properties




‘ Postdoc: Dan Mayes has working knowledge of spectroscopy
and will work on oxygen opacity research

Dan Mayes:

e Member of WCAPP* since 2018

e Defended in Dec 2020
University of Nevada, Reno
Advisor: Roberto Mancini

* Joined opacity team in Jan 2021

Working knowledge in:
o X-ray spectroscopy
o SNL Z experiments
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He will work on oxygen opacity
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Exciting stellar-opacity research is on the horizon

Transform opacity science on Z using novel time-resolved spectroscopy
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Exciting stellar-opacity research is on the horizon

Transform opacity science on Z using novel time-resolved spectroscopy

With preheat suppression
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LAST TWO years: Vwe made signiticant progresses by re-scrutinizing
Fe results, measuring first O opacity, and recruiting young
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Revisiting Fe results:

Experiments:

[in prep.]
* Time-resolved measurements
* Plasma diagnostics [in prep.]
* Fe absorption measurements
Analyses:
e QOpacity [in prep.]
* Background [1]

* More experiments for Fe at anchor2, 3 .

7 out of 9 allocated shots not performed yet

Theory:
Line broadening [2,3]
e Two-photon opacity [4]
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. T,and n, [in prep.]
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First O opacity

* First oxygen x-ray opacity measurement
* T,=160¢eV, n=8e21 e/cc (anchorl)
e 3 shots with different O amount

* Prepared for anchor2 but not performed
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kSuccessful recrulting: Dan Mayes (postdoc), Malia Kao (grad. student) )

Despite of the significant progresses, more work needed to resolve the solar problem ‘

[1] Dunham et al RSI (2021)

[2,3] Gomez et al PRL (2020), PRL (2021)?

[4] More et al HEDP (2020)



