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Elements of the solution of complex optimization applications
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Examples of optimization modeling environments
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Prescient

EGRET

ExaGOPOEK
COEK



Impact of optimization modeling environments
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1. Simplify expression of complex applications
◦ Intuitive algebraic expressions
◦ Compact mathematical notation
◦ Domain-specific problem representations

2. Automate grungy parts of the computational workflow
◦ Automatic differentiation
◦ Application of model transformations

3. Facilitate transformations between problem representations
◦ Transformations to simplify the problem formulation
◦ Transformations to tailor problem to solver requirements
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 How do we effectively use 
 general-purpose modeling environments
 on emerging computational platforms?



Some perspectives on future modeling environments
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1. Performance optimization

2. Application-centric vs Solver-centric

3. SME- vs Data-driven models



Performance Optimization
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 Can we use the modeling environment to tailor calculations in the optimization 
workflow?

 Idea 1: Use code generation or automatic differentiation to tailor sparse, unstructured 
derivative calculations to target hardware

Explicit Code Code Generation Automatic Differentiation

Derivatives are coded 
by hand.

Pro:
• Can directly tailor 

calculations to HW
Con:
• Hand coding can 

be error-prone

Code is generated 
automatically for 
derivatives.

Pro:
• Can tailor code 

generation to HW
Con:
• Complex SW code 

management

Derivatives computed 
numerically with AD

Pro:
• Flexible model for 

applications
Con:
• Complex mapping 

of AD to HW



Performance Optimization
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 Can we use the modeling environment to tailor calculations in the optimization 
workflow?

 Idea 2: Rethink workflow to exploit model structure

AMPL Model NL File Solver

JuMP Model Solver C-API Solver

Pyomo Model JSON File

Static problem 
representation

NMPCCOEK Model

Code generation for embedded 
applications (e.g. control)

Solver



Performance Optimization
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 Can we use the modeling environment to tailor calculations in the optimization 
workflow?

 Idea 3: Exploit model structure to parallelize optimization workflow

Coarse-Grain 
Decomposition

Fine-Grain Mapping of 
Dense Kernels

Sparse, Irregular 
Computations?

ARIAA: Mapping execution 
graphs onto data flow 

architectures

Dense matrix-matrix 
multiplication on 

tensor cores

Parapint: Parallel-in-
time decomposition



Performance Optimization
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 Can we use the modeling environment to tailor calculations in the optimization 
workflow?

 Idea 4: Exploit model structure to automatically interface with distributed 
optimization solvers

Unstructured Coarse-
Grain Decomposition

Can we automatically partition 
model generation across 
processors?

How do we coordinate parallel model 
generation and setup of parallel solver?

How do we robustly parallelize 
model transformations?



Application-centric vs Solver-centric
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 How can we leverage modeling environments to both express problem structure and 
inform the optimization workflow?

 Challenge: Where do we construct the model and apply model transformations in our 
optimization workflows?

Application interaction is 
naturally supported by the 
CPU, but we want to exploit 
solvers running on GPUs.

Do we represent models on 
CPUs or GPUs or both?

If “both”, then how do we 
manage multiple 
representations?



Application-centric vs Solver-centric
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 How can we leverage modeling environments to both express problem structure and 
inform the optimization workflow?

 Idea 1: Model expansion on GPUs

• Continuous domains
• Ordinary differential equations
• Partial differential equations
• Systems of differential algebraic 

equations
• Higher order differential equations 

and mixed partial derivatives

Pyomo DAE:
1. Used to express model dynamics within Pyomo
2. Includes model transformations to discretize the 

model (e.g. Collocation)

Key Idea:
• Use transformation to expand model directly on GPU
• Can leverage HW-specific features to tailor model 

calculations



Application-centric vs Solver-centric
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 How can we leverage modeling environments to both express problem structure and 
inform the optimization workflow?

 Idea 2: Facilitate user- and solver- specific representations 

E.g. the PAO library 
supports multiple 
problem 
representations

Linear Bilevel 
Solver

Linear 
Multilevel 
Problem

Pyomo 
Multilevel 

Model

Pyomo models are easy to express and debug

It is easy to write solvers for models 
with matrix/vector data

Key Idea:
• Explicitly support 

CPU- and GPU-
specific model 
representations



Application-centric vs Solver-centric
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 How can we leverage modeling environments to both express problem structure and 
inform the optimization workflow?

 Idea 3: Use modeling environments that facilitate the application of model 
transformations on CPUs, GPUs and between them
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VS

Pyomo AMPL, GAMS, …

Blocks can be 
transformed in a 
modular manner

E.g. locally transform 
complementarity 
conditions to big-M 
representation



SME- vs Data-driven models
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 Can we develop effective strategies to integrate both SME and data-driven modeling 
strategies?

 Challenge: Evolve our modeling capabilities to support a continuum of application 
needs

Note: There have been few 
demonstrations of capabilities 

“in the middle”

SME-driven Models Data-driven Models



SME- vs Data-driven models
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 Can we develop effective strategies to integrate both SME and data-driven modeling 
strategies?

 Idea 1: Augment SME models with embedded data-driven models

E.g. SNL Redly project: use 
neural network to replace 
contingency constraints

We need optimization 
modeling environments 

that can effectively 
represent large ML models



SME- vs Data-driven models
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 Can we develop effective strategies to integrate both SME and data-driven modeling 
strategies?

 Idea 2: Data-driven methods tailored for specific application domains

E.g. Partition of unity networks Partition of unity networks mimic the 
structure of traditional finite elements 

Data-driven exterior calculus discovers 
bilinear form that conserves 
mass/momentum/energy without knowing 
underlying physics

“Partition of unity networks: deep hp-
approximation.”  
Lee, et al.  2021

A key challenge is optimization 
methods that can handle general 
nonlinear constraints



The End18

  


