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Elements of the solution of complex optimization applications
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Examples of optimization modeling environments

julia
<\ MATLAB

1 O PyTorch
TensdrFIow EGRET
Prescient

POEK
COEK GRAVITY IDAES ExaGO




Impact of optimization modeling environments

1. Simplify expression of complex applications
o Intuitive algebraic expressions
- Compact mathematical notation
o Domain-specific problem representations

2. Automate grungy parts of the computational workflow
o Automatic differentiation
o Application of model transformations

3. Facilitate transformations between problem representations
o Transformations to simplify the problem formulation

o Transformations to tailor problem to solver requirements
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How do we effectively use
general-purpose modeling environments
on emerging computational platforms?



Some perspectives on future modeling environments

1. Performance optimization

2. Application-centric vs Solver-centric

3. SME- vs Data-driven models
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Performance Optimization

Can we use the modeling environment to tailor calculations in the optimization

workflow?

Idea 1: Use code generation or automatic differentiation to tailor sparse, unstructured
derivative calculations to target hardware

/ Explicit Code \

Derivatives are coded
by hand.

Pro:

« Can directly tailor
calculations to HW

Con:

* Hand coding can

/ Code Generation \

Code is generated
automatically for
derivatives.

Pro:

* Can tailor code
generation to HW

Con:

be error-prone

 Complex SW code

\ management J

mtomatic Differentiaticm

Derivatives computed
numerically with AD

Pro:

* Flexible model for
applications

Con:

« Complex mapping
of AD to HW

" /




Performance Optimization

Can we use the modeling environment to tailor calculations in the optimization
workflow?

Idea 2: Rethink workflow to exploit model structure

AMPL Model NL File Solver

Static problem

representation
JUMP Model Solver C-API Solver

JSON File COEK Model

Pyomo Model

!

Code generation for embedded
applications (e.g. control)
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Performance Optimization

Can we use the modeling environment to tailor calculations in the optimization
workflow?

Idea 3: Exploit model structure to parallelize optimization workflow

Coarse-Grain Fine-Grain Mapping of Sparse, Irregular
Decomposition Dense Kernels Computations?
yﬁ i 0 O
@ 12 O O

] EJ- - O O

] aes |
Parapint: Parallel-in- Dense matrix-matrix ARIAA: Mapping execution
time decomposition multiplication on graphs onto data flow

tensor cores architectures



Performance Optimization
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Can we use the modeling environment to tailor calculations in the optimization
workflow?

Idea 4: Exploit model structure to automatically interface with distributed
optimization solvers

Unstructured Coarse-
Grain Decomposition

Can we automatically partition
/ model generation across
@ i processors?
@ T How do we robustly parallelize
| model transformations?

L
: a \ How do we coordinate parallel model

generation and setup of parallel solver?




11

Application-centric vs Solver-centric

How can we leverage modeling environments to both express problem structure and
inform the optimization workflow?

Challenge: Where do we construct the model and apply model transformations in our
optimization workflows?

Application interaction is

naturally supported by the I >
CPU, but we want to exploit

solvers running on GPUs.

Do we represent models on
CPUs or GPUs or both? >

If “both”, then how do we
manage multiple
representations?
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Application-centric vs Solver-centric

How can we leverage modeling environments to both express problem structure and

inform the optimization workflow?

Idea 1: Model expansion on GPUs

« Continuous domains

* Ordinary differential equations

» Partial differential equations

« Systems of differential algebraic
equations

» Higher order differential equations
and mixed partial derivatives

&= f(z,y,u)
Pyomo DAE:

1. Used to express model dynamics within Pyomo
2. Includes model transformations to discretize the
model (e.g. Collocation)

Key ldea:

* Use transformation to expand model directly on GPU

« (Can leverage HW-specific features to tailor model
calculations
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Application-centric vs Solver-centric

How can we leverage modeling environments to both express problem structure and

inform the optimization workflow?

Idea 2: Facilitate user- and solver- specific representations

E.g. the PAO library
supports multiple
problem
representations A

It is easy to write solvers for models
with matrix/vector data

Pyomo Linear

Linear Bilevel

Multilevel Multilevel
Solver

Model Problem

|

Pyomo models are easy to express and debug

Key ldea:

Explicitly support
CPU- and GPU-
specific model
representations



14

Application-centric vs Solver-centric

How can we leverage modeling environments to both express problem structure and
inform the optimization workflow?

Idea 3: Use modeling environments that facilitate the application of model
transformations on CPUs, GPUs and between them

Variable: x

Blocks can be
transformed in a Objective: o
modular manner _
Variable: y VS
E.g. locally transform G i

complementarity
conditions to big-M ¢ Variable: z
representation

Constraint: c

Pyomo AMPL, GAMS, ...




SME- vs Data-driven models
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Can we develop effective strategies to integrate both SME and data-driven modeling
strategies?

Challenge: Evolve our modeling capabilities to support a continuum of application
needs

SME-driven Models Data-driven Models

ﬁ

‘ 1 GAMS %%JUMP JUIla O PyTorch
ANIPL

TensorFlow

Note: There have been few

Q.
)y PYOMO demonstrations of capabilities

“in the middle”
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SME- vs Data-driven models

Can we develop effective strategies to integrate both SME and data-driven modeling

strategies?

Idea 1: Augment SME models with embedded data-driven models

: Critical Load

E.g. SNL Redly project: use Boundary

neural network to replace

contingency constraints Initial O_,."I'r‘;cure

Point_ _..@" Point
' Secure
Point Boundary
Y s Points
E— Train NN on t'@gmml 1
“Nomirial security boundary “Bperation—
Dperalion =ACOPF =
=(ACORR e We need optimization
+ modeling environments
NN(X) <0 that can effectively

represent large ML models
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SME- vs Data-driven models
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Can we develop effective strategies to integrate both SME and data-driven modeling
strategies?

Idea 2: Data-driven methods tailored for specific application domains

E.g. Partition of unity networks Partition of unity networks mimic the
structure of traditional finite elements

Data-driven exterior calculus discovers
bilinear form that conserves
mass/momentum/energy without knowing
underlying physics

- o
Ty

Partition of Unity

A key challenge is optimization
methods that can handle general

“Partition of unity networks: deep hp- . .
nonlinear constraints

approximation.”
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