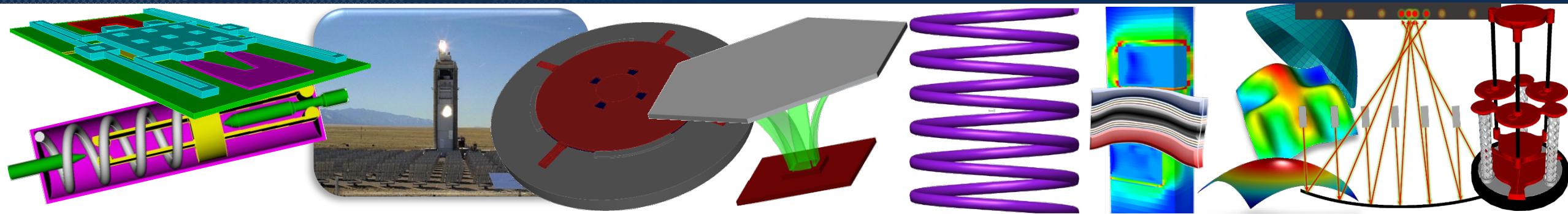


*Exceptional service in the national interest*



# A Case Study of Applied Mathematics at Sandia National Laboratories: Design of Electromagnetic Reflectors with Integrated Shape Control

**Dr. Jordan E. Massad**

Sandia National Laboratories  
Albuquerque, NM

SAMSI/NCSU (Telepresence)  
July 13, 2021



Workshop on  Graduate Students

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2021-XXXX PE

# Sandia National Laboratories

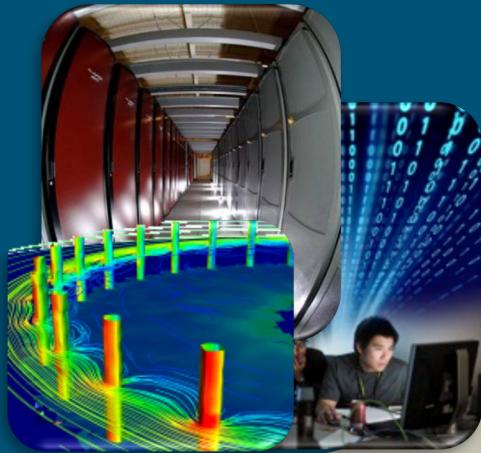


- A multi-faceted national security laboratory.
- **Core Purpose:** help our nation secure a peaceful and free world through technology.
- Provide objective, multidisciplinary technical assessments for complex problems.
- Focus on solutions with large science and technology content.
- Create prototypes for production and operation by industry.



U.S. DEPARTMENT OF  
**ENERGY**

# Research Disciplines Drive Capabilities



**High Performance Computing**



**Science & Technology Products**

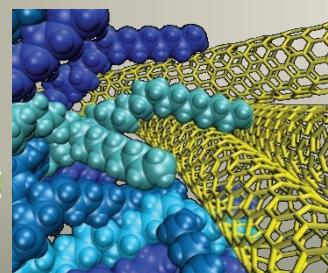


**Renewable Systems & Energy Infrastructure**

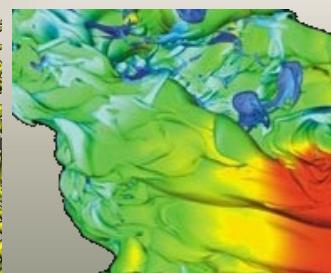
## Computer Sciences



## Materials



## Engineering Sciences



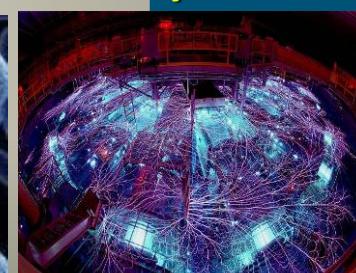
## Nanodevices & Microsystems



## Bioscience

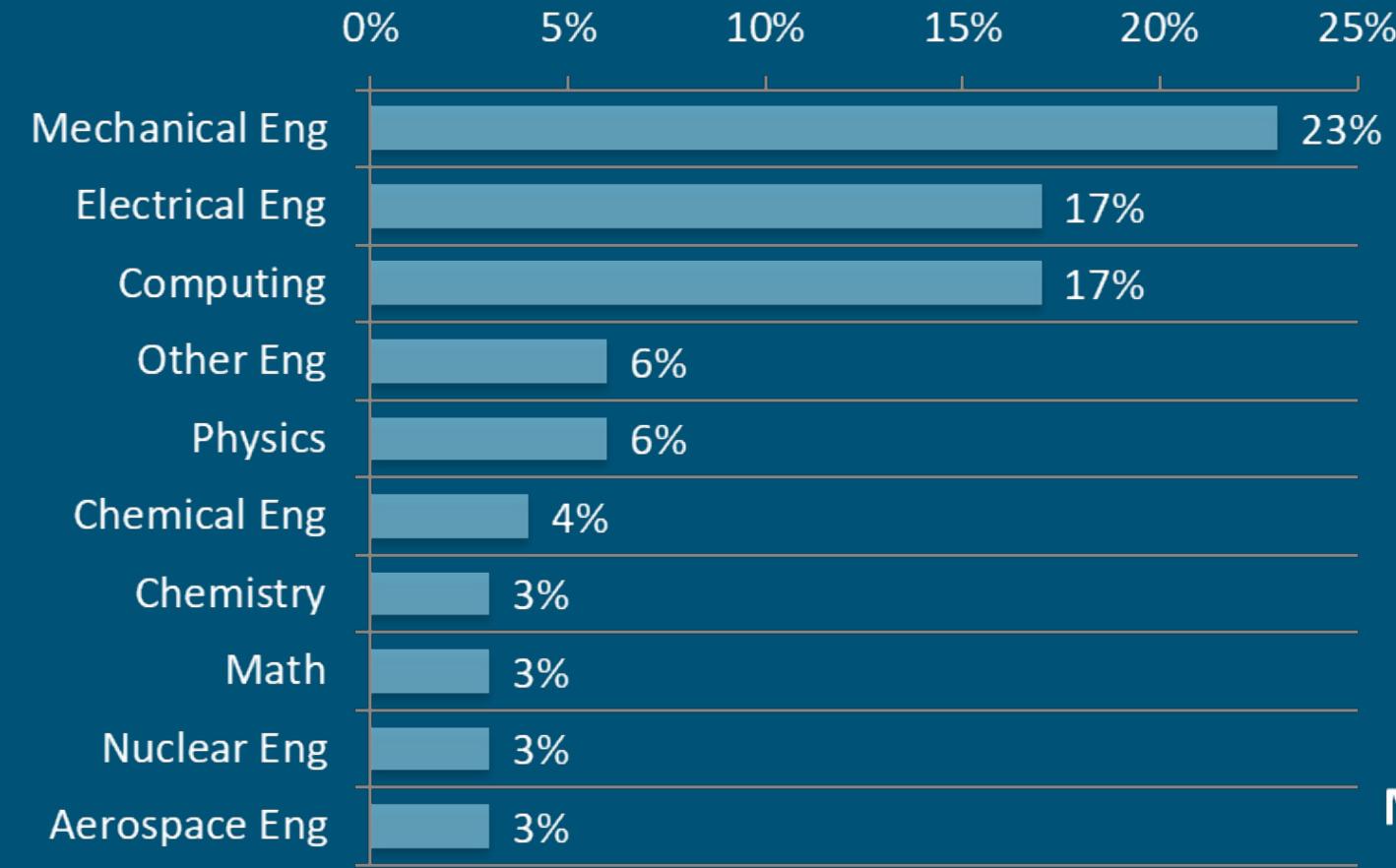
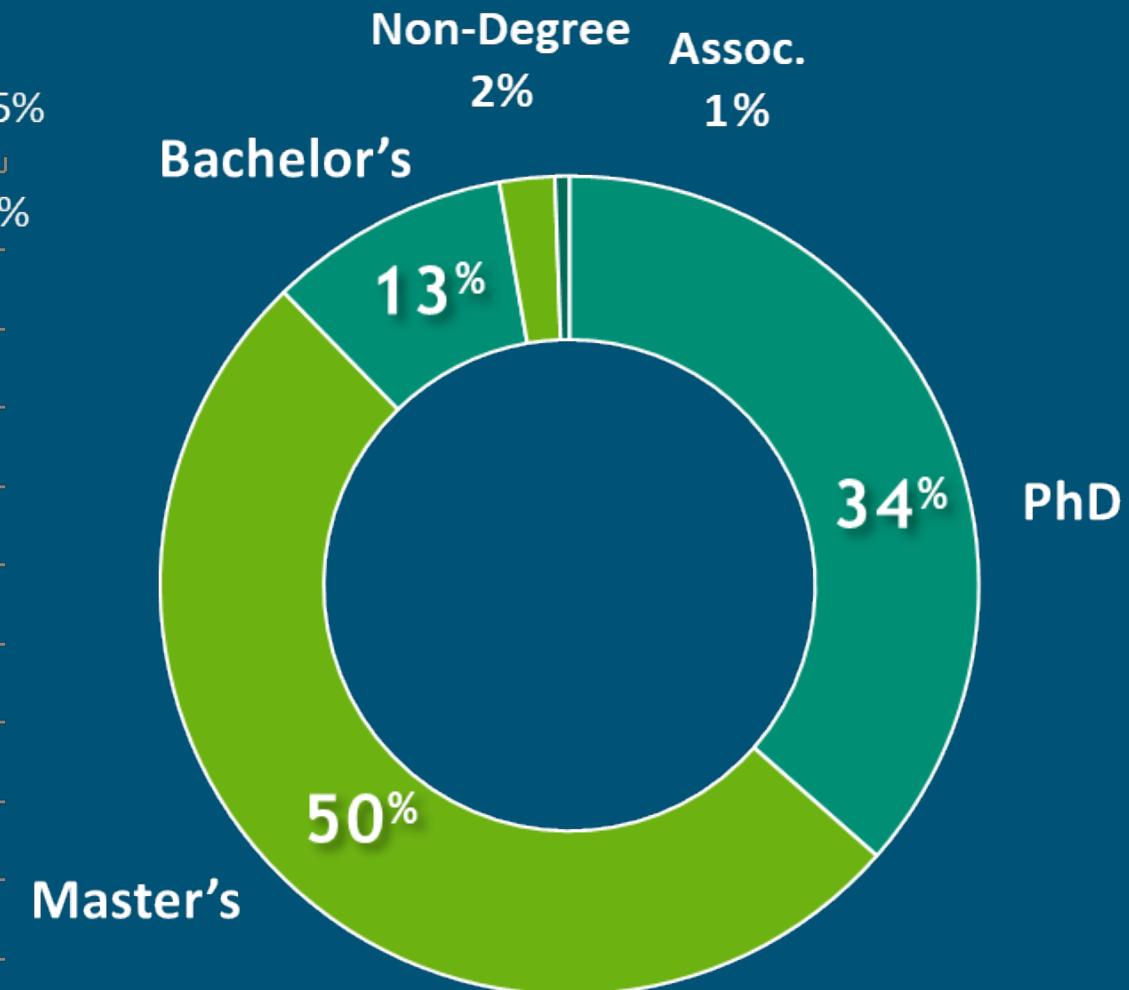


## High Energy Density Science



## Research Disciplines

# R&D by Discipline & Degree



Data as of July 2020



**Mathematicians and Statisticians work  
in almost every area across SNL in 80+ organizations.**

## Center for Computing Research

Discrete Mathematics, Optimization, &  
Uncertainty Quantification  
Scalable System Algorithms, Software,  
Analysis, & Visualization  
Multiscale/Cognitive Science, Data-driven &  
Neural Computing

## Mission Engineering & Information Systems Analysis

Sensor, Data, Imaging Analysis  
Data Science, Cyber Security,  
Cryptography, Analytics  
Digital & Quantum Information  
Sciences & Systems

## Engineering Sciences

Diagnostic, Shock, Structural, Climatic, Fluid & Reactive Processes, Fire S&T  
Computational Solid/Structural/Thermal/Fluid Mechanics & Dynamics  
Verification & Validation, Uncertainty Quantification, Credibility Processes

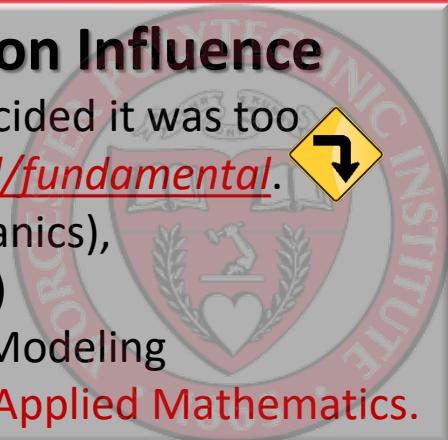
- Statisticians work mostly in areas of Risk/Reliability Analysis, Quality Engineering, Quantification of Margins and Uncertainty (QMU).

# My Route to SNL Engineering Sciences



## Undergraduate Education Influence

- Goal: nuclear engineering, but decided it was too empirical, insufficiently theoretical/fundamental. 
- Degrees: Physics (quantum mechanics), Mathematics (Steklov eigenvalues)
- COMAP Mathematical Contest in Modeling (MRI image analysis): exposed to Applied Mathematics.

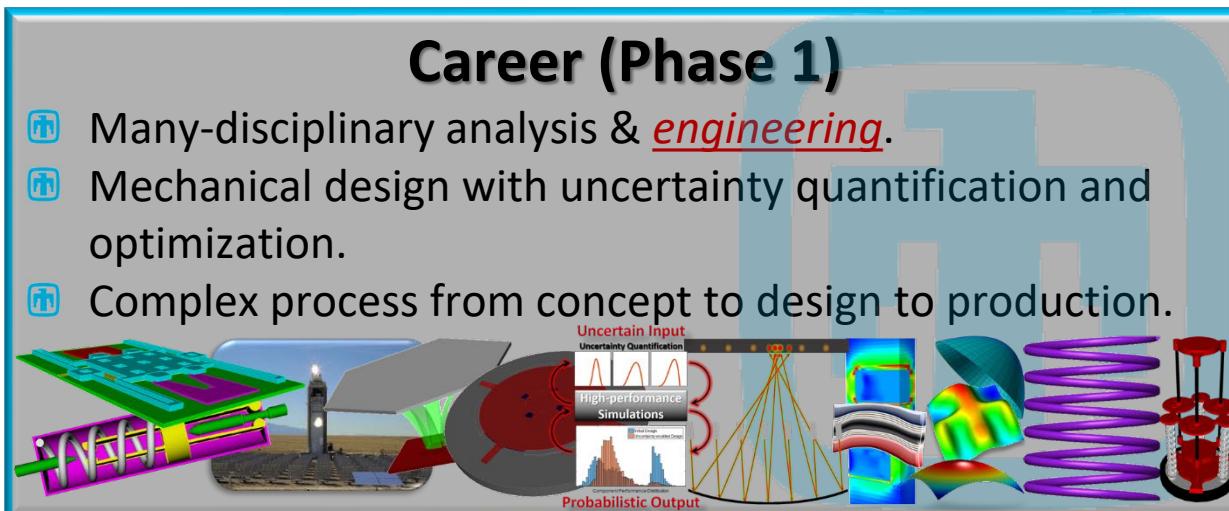


Theoretical particle physics (SUNY Stony Brook)



## Career (Phase 1)

- Many-disciplinary analysis & engineering.
- Mechanical design with uncertainty quantification and optimization.
- Complex process from concept to design to production.



## Graduate Education Influence

- Industrial Mathematical Modeling Workshop (exposed to smart materials, quick thinking).
- Degree: Computational/Industrial Applied Math
- Dissertation: Shape Memory Alloy (SMA) modeling.
- Graduate Internships: The Boeing Company (sparse optimization), SNL (SMAs). 

# Electromagnetic Reflectors



- Surfaces that reflect electromagnetic radiation (often radio and visible light).
- Typically in antennas, receivers, and telescopes: satellite TV receivers, communications systems, solar concentrators, radio observatories, reflecting telescopes...
- Reflected signal pattern is directly related to *reflector shape*.
- Paraboloidal reflectors are common: shape allows sharp focus.
- Some applications demand highly **precise shapes**, especially when looking far away.
- Many reflectors are **rigid**, particularly to satisfy small shape tolerances.





# Shape Matters: An Infamous Example

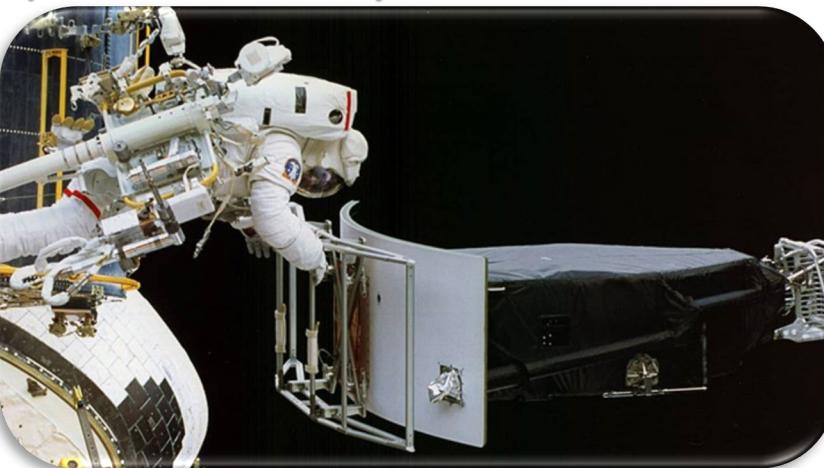


## The Hubble Space Telescope



**Culprit: 0.0022 mm shape error.**

**Solution: correct for shape error in orbit...3 years later!**



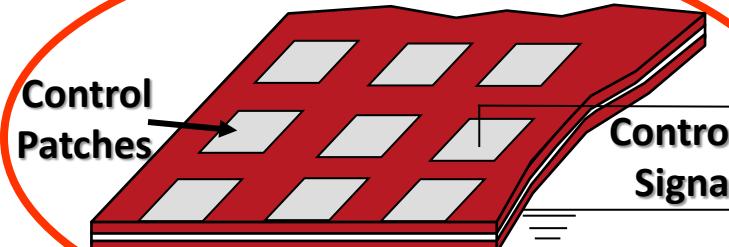
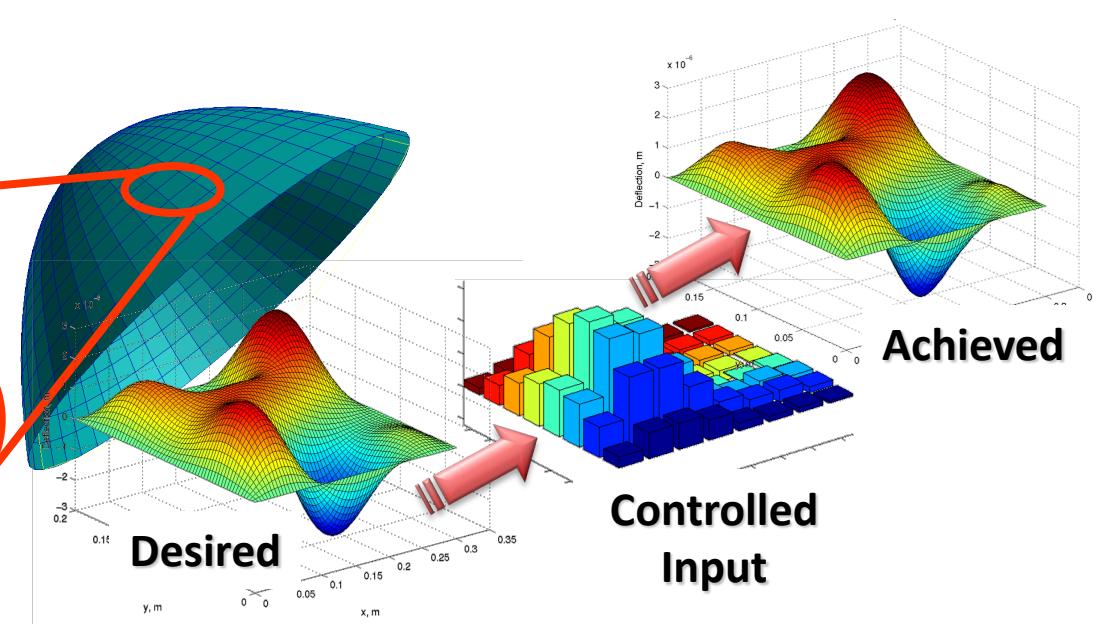
# Shape-controlled Reflectors?



- Reflector shape control technology is available.
- For typical rigid reflectors, options and amount of control are limited, and controlling mechanism can be bulky.
- Shape errors also can be mitigated using additional hardware.

***More control, larger deflections, smaller footprint, less overhead?***

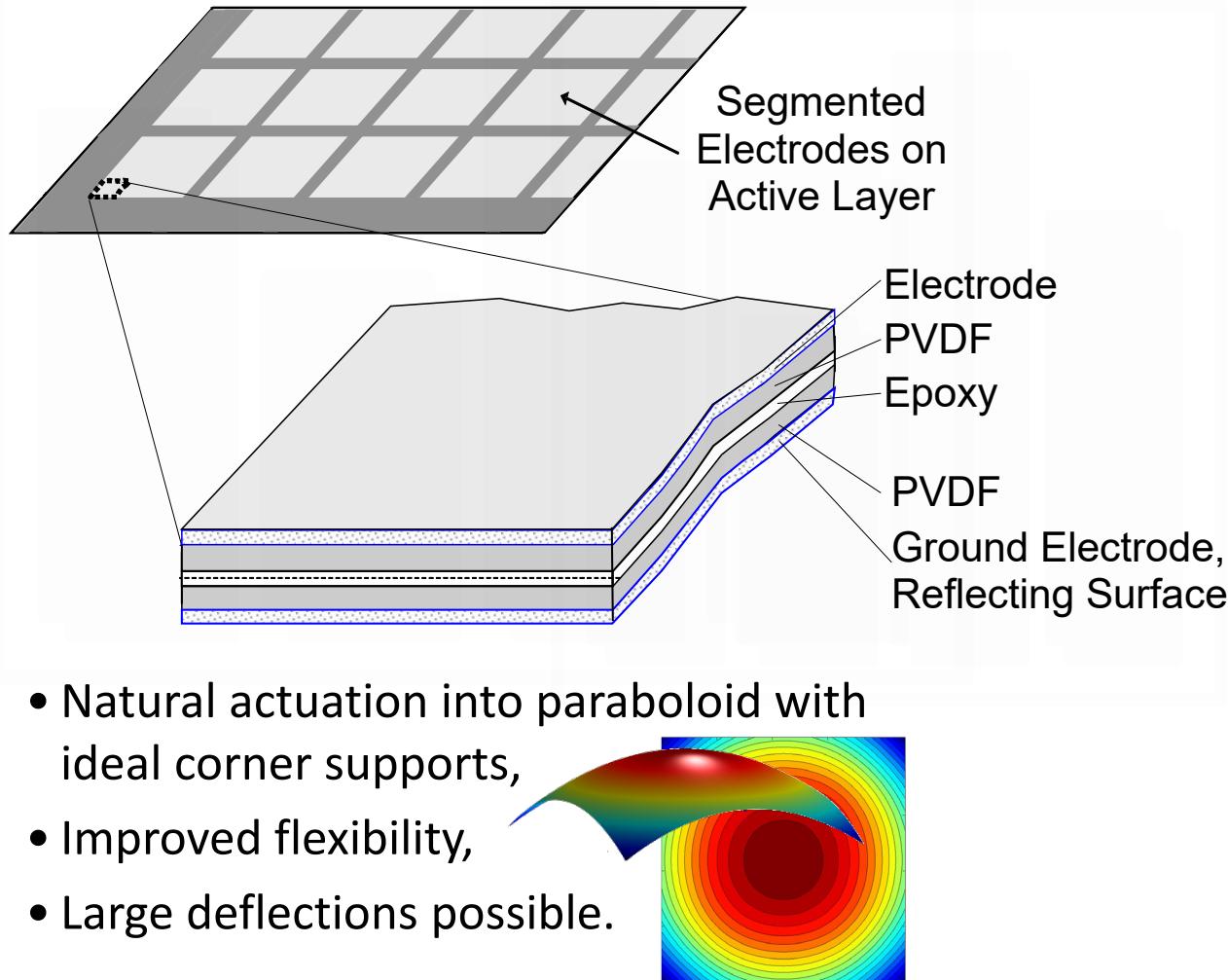
**Electromagnetic Reflector  
with Integrated Shape Control**



# Sandia Smart Laminate Concept

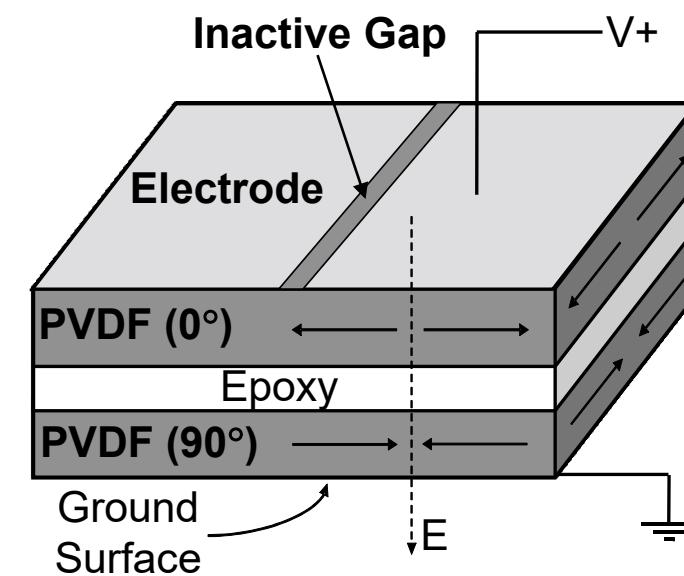


## Thin, Square, Active Membrane



## How it Deforms: Bimorph Action

- PVDF layers have opposing poling directions.
- Positive field induces simultaneous expansion (top) and contraction (bottom).



# Initial Linear Model



- Based on Kirchhoff-Love plate theory and Ritz Method:
  - Describes bending-dominated deflection;
  - Yields linear mapping between input voltage to output deflection.
- Corner supports: sliding corners (constrained out-of-plane only).
- Formulation facilitates shape control, quick to execute.
- Observations:** simulates *uniformly circular contours* and *linear* rise in peak deflection with increasing uniform actuation voltage.

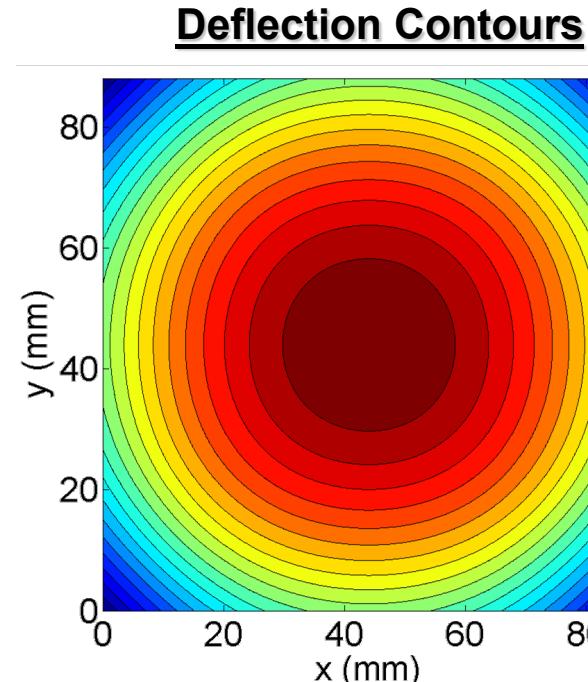
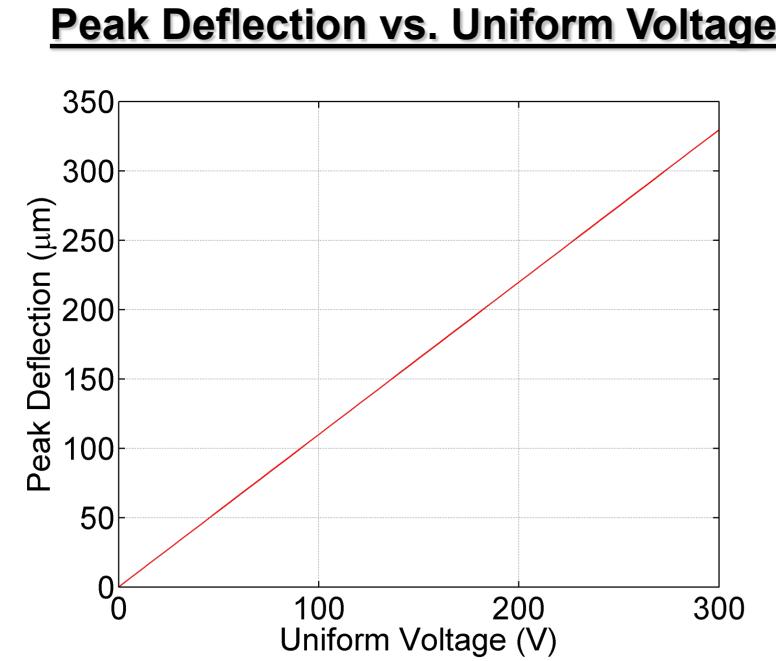
$$\mathbf{R}V = \mathbf{H}\boldsymbol{\mu}$$

Electromechanical Actuation

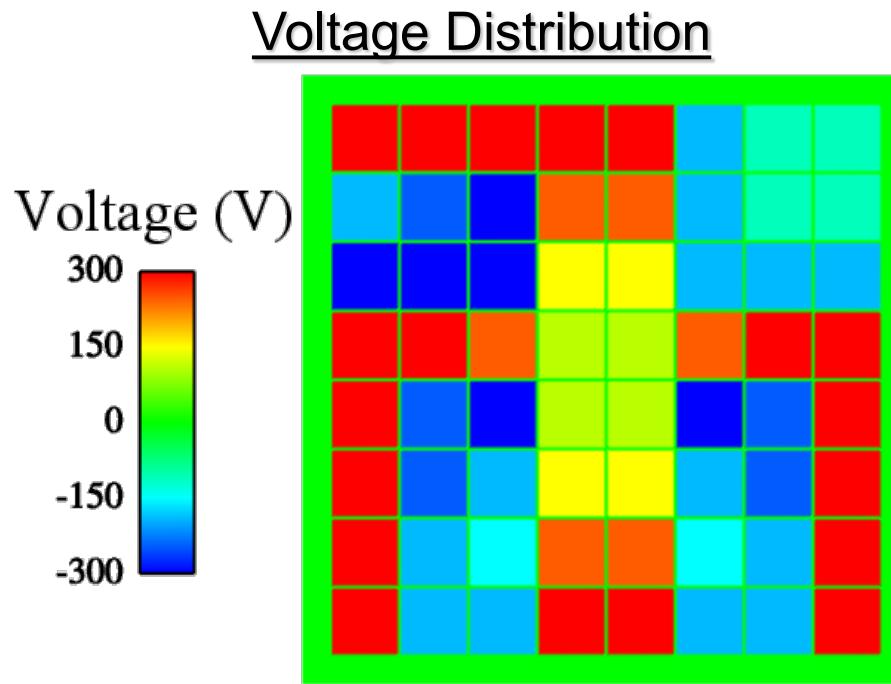
Mechanical Response

Voltage Array

Deformation

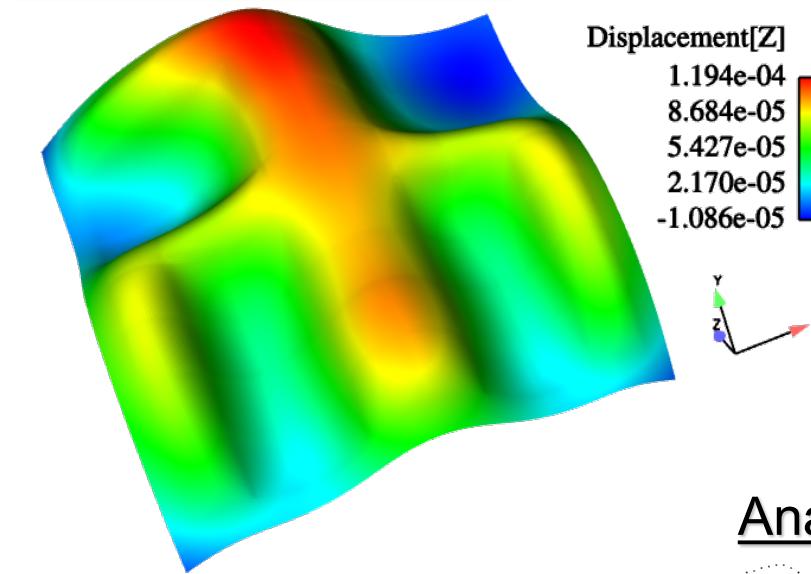


# A Model-Model Comparison

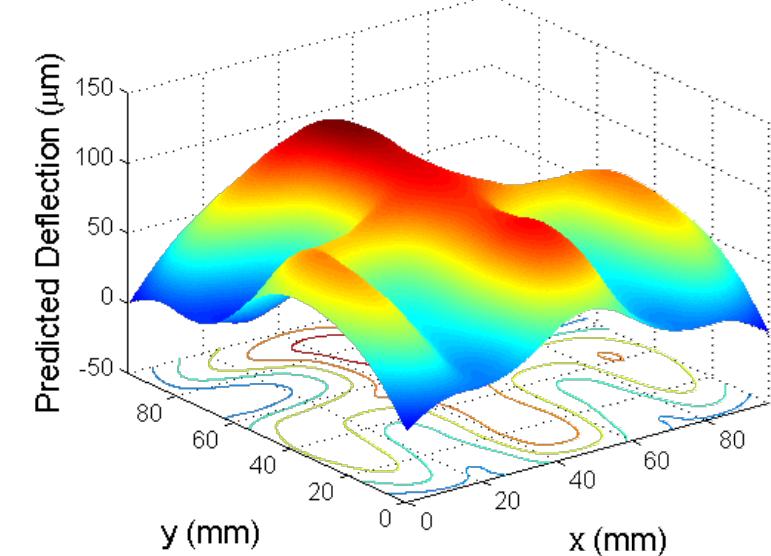


- FEM: layered-shells, 150k quad elements, corner-supported boundary conditions.
- Total relative difference between analytical and FEM is 2.8%.

Finite Element Model



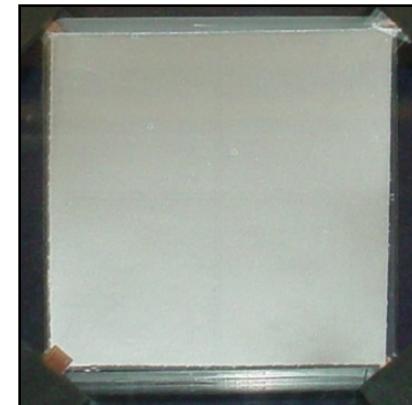
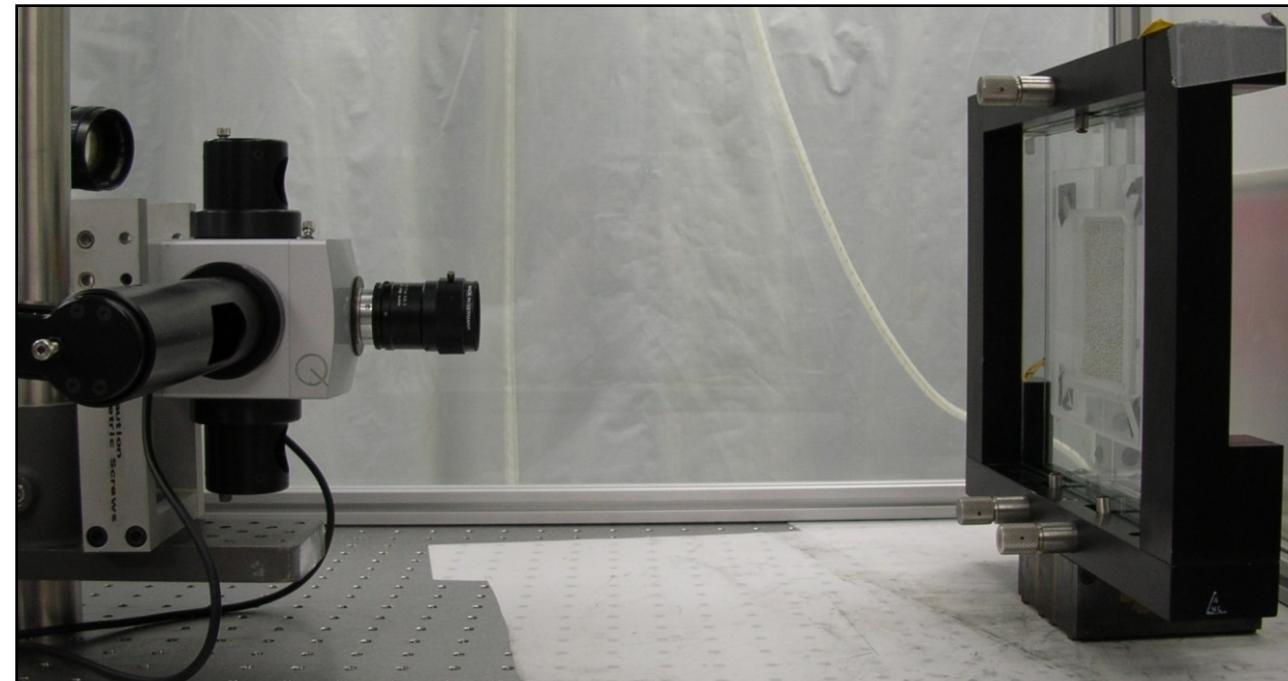
Analytical Model



# Smart Laminate Experiments



- Fabricated corner-supported laminate with single electrode (test case).
- Corner-support boundary condition approximated with corner tabs.

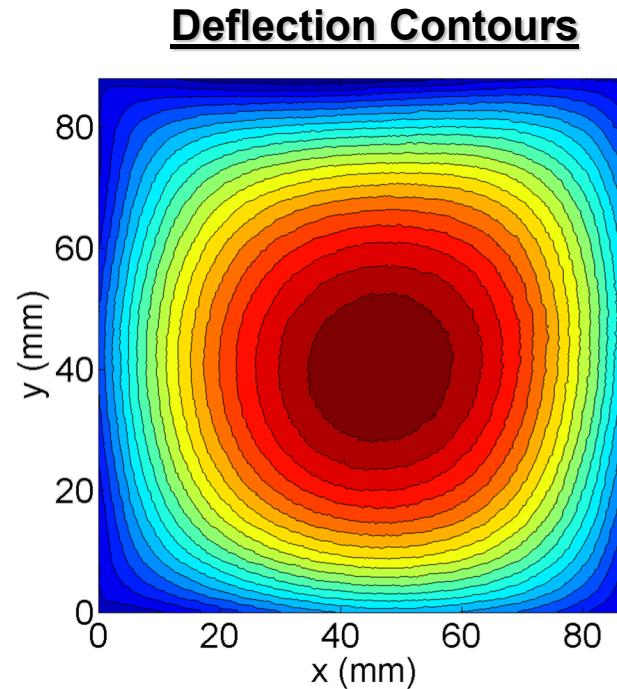
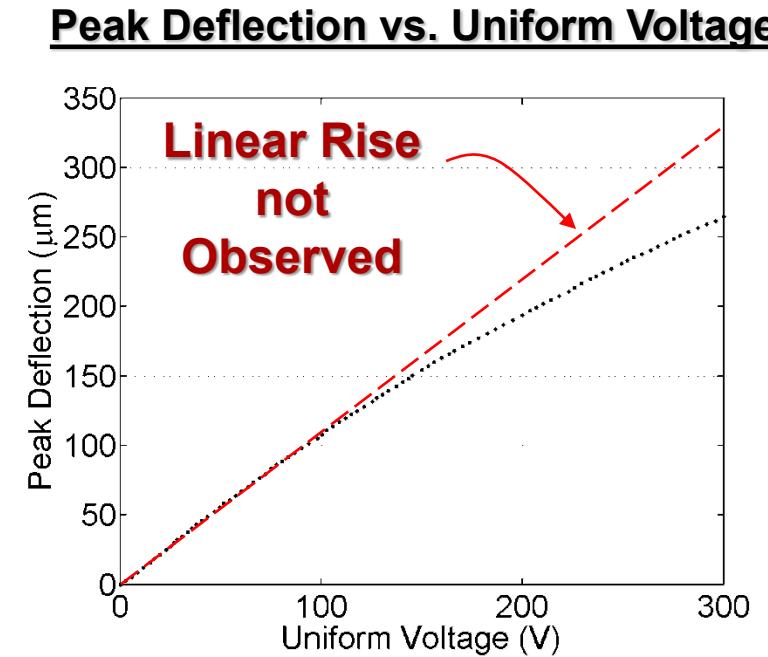


- **Electronic Speckle Pattern Interferometry (ESPI)**: full-field displacement measurements with out-of-plane measurement resolution  $\leq 45$  nm.
- Optical fringe measurement is sensitive to vibrations (HVAC, etc.).
  - fixture designed to suppress vibrations;
  - **tightened corner supports to facilitate repeatable measurements.**

# Experiment Results



- Observations:
  - squared contours* become circular only away from boundary;
  - nonlinear* rise in peak deflection with increasing uniform actuation voltage.

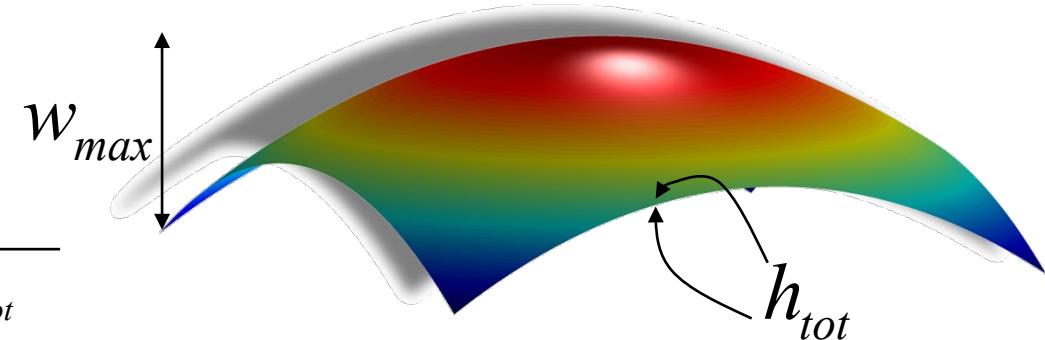


# Why the difference?



- Size of membrane deflections is quantified by the ratio

$$\frac{\text{Peak Deflection } w_{max}}{\text{Total Membrane Thickness } h_{tot}}$$



## Small Deflections

$$\frac{w_{max}}{h_{tot}} \leq 0.2$$

- Negligible stretching of middle surface.
- Bending is dominant.
- Kirchhoff linear theory adequate.

## Large Deflections

$$\frac{w_{max}}{h_{tot}} \geq 0.3$$

- Significant stretching of middle surface.
- Membrane deformation  $\geq$  bending.
- Nonlinear geometry changes and significant **in-plane** deformation.

- Desired and measured deflections  $\geq 250 \mu\text{m}$ .
- Typical membrane thicknesses  $100 - 250 \mu\text{m}$ .



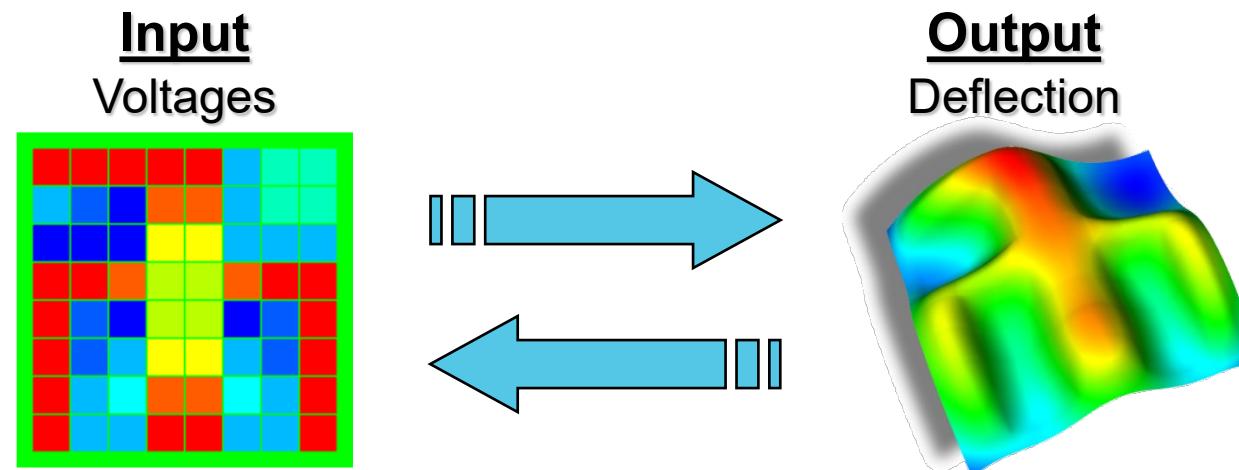
$$\frac{w_{max}}{h_{tot}} \geq 1.0$$

***Large deflection theory of membranes must be used to adequately model laminate deflections.***

# Nonlinear (Large) Deflection Model



- Develop nonlinear model using framework of the initial linear, sliding-corner model.
- Predict large membrane deflections.
- Treat fixed corners.
- Preserve current model formulation as mapping:



***Critical: formulate model to be suitable for deflection control.***

# Energy-based (Ritz) Framework



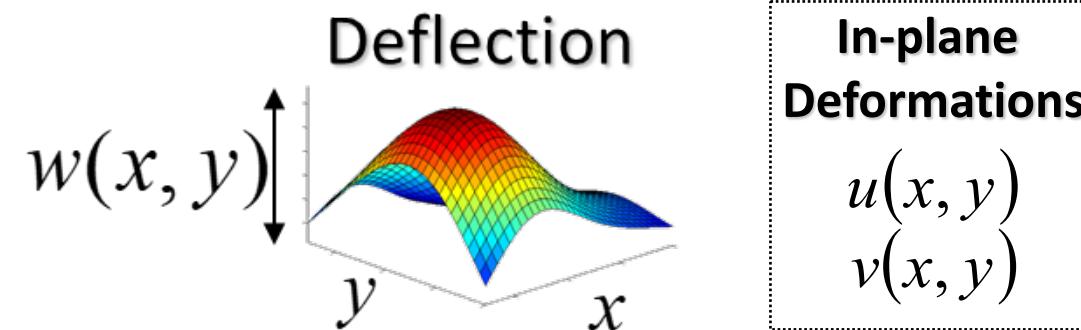
- ① Construct membrane deformation energy in terms of deformations and input voltage.
- ② Express deformations in terms of known functions with undetermined constants.
- ③ Find constants that minimize energy.

# Step 1: Deformation Energy



$$\begin{array}{c} \text{Total Strain} \\ \text{Energy} \end{array} = \begin{array}{c} \text{Deflection} \\ \text{Energy} \end{array} + \begin{array}{c} \text{Actuation} \\ \text{Energy} \end{array}$$

$$U = U_{\varepsilon}(u, v, w) + U_{act}(u, v, w; V)$$



**Goal: find energy-minimizing deformation given voltage array  $V$ .**

# Deflection Energy



$$U_{\varepsilon} = \frac{1}{2} \iint_0^a \iint_{-h_g}^b \int_{-h/2}^{h_{el}+h/2} \boldsymbol{\varepsilon}(x, y, z)^T \mathbf{T}(z) dz dy dx$$

**Plane Stress**  
 $\mathbf{T}(z) = \mathbf{S}(z) \boldsymbol{\varepsilon}(x, y, z)$   
*layer-dependent*

## von Karman Strain Relations

### Linear Model

#### Bending Strain

$$\boldsymbol{\varepsilon}_b(z) = -z \boldsymbol{\kappa}$$

#### Membrane Curvature

$$\boldsymbol{\kappa} = \begin{bmatrix} w_{xx} & w_{yy} & 2w_{xy} \end{bmatrix}^T$$

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_b + \boldsymbol{\varepsilon}_m + \boldsymbol{\varepsilon}_{nl}$$

#### Membrane Strain

$$\boldsymbol{\varepsilon}_m = \begin{bmatrix} u_x & v_y & u_y + v_x \end{bmatrix}^T$$

#### Nonlinear Strain

$$\boldsymbol{\varepsilon}_{nl} = \frac{1}{2} \begin{bmatrix} w_x^2 & w_y^2 & 2w_x w_y \end{bmatrix}^T$$

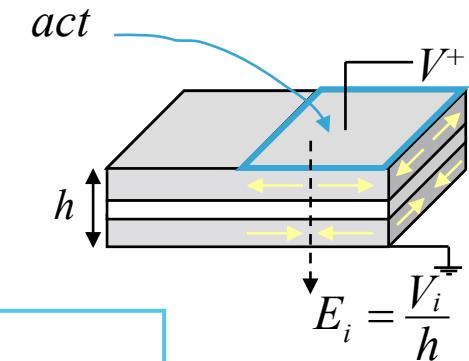
$$U_{\varepsilon} = U_b + U_m + U_{lc} + U_{nlc} + U_{nl}$$

Bending, Membrane, Linear-coupled, Nonlinear-coupled, and Nonlinear Energy Components.

# Actuation Energy



$$U_{act} = \sum_{i=1}^{i_{max}} \iint_{act_i} \boldsymbol{\kappa}^\top \mathbf{M}_{act_i} dA$$



Membrane Curvature

$$\boldsymbol{\kappa} = -[w_{xx} \quad w_{yy} \quad 2w_{xy}]^\top$$

Moment

$$\mathbf{M}_{act_i} = \int_{act_i} S(z) \boldsymbol{\epsilon}_{act_i}(z) z dz$$

Actuation Strain

$$\boldsymbol{\epsilon}_{act_i}(z) = \begin{cases} [d_{31} \quad d_{32} \quad 0]^\top E_i & \frac{h_{ep}}{2} \leq z \leq \frac{h}{2} \\ 0 & -\frac{h_{ep}}{2} < z < \frac{h_{ep}}{2} \\ [-d_{32} \quad -d_{31} \quad 0]^\top E_i & -\frac{h}{2} \leq z \leq -\frac{h_{ep}}{2} \end{cases}$$

- Integrate energy expression thru laminate thickness:

$$U_{act} = \frac{D_{act}}{h} \sum_{i=1}^{i_{max}} V_i \iint_{act_i} (w_{xx} + w_{yy}) dA$$

Voltages

$$V_i$$

Actuation Stiffness Constant

$$D_{act}$$

# Step 2: Energy Expansion



- Assume expansions for **tri-axial** deformations:

|                                                 |                                                                                                                                                                                           |                               |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| $u(x, y) = \sum_{j=1}^{\infty} \mu_j(x, y)$     | $\mu_j(x, y) = a_{u_j} \sin\left(n_j \pi \frac{x}{a}\right) \cos\left(m_j \pi \frac{y}{b}\right)$                                                                                         | Vanishing strain at edges.    |
| $v(x, y) = \sum_{j=1}^{\infty} \psi_j(x, y)$    | $\psi_j(x, y) = a_{v_j} \cos\left(m_j \pi \frac{x}{a}\right) \sin\left(n_j \pi \frac{y}{b}\right)$                                                                                        |                               |
| $w(x, y) = \sum_{j=1}^{\infty} \varphi_j(x, y)$ | $\varphi_j(x, y) = a_{w_j} \cos\left(m_j \pi \frac{x}{a}\right) \sin\left(n_j \pi \frac{y}{b}\right) + b_{w_j} \cos\left(m_j \pi \frac{y}{b}\right) \sin\left(n_j \pi \frac{x}{a}\right)$ | Zero displacement at corners. |

- Truncate sums, simplify energy in terms of expansions:

$$U(a_u, a_v, c_w, V) = U_\varepsilon(a_u, a_v, c_w) + (\mathbf{R}V)^T c_w$$

Voltage Array  
 $V$

Actuation Block Matrix  
 $\mathbf{R}$

In-plane Expansion  
Coefficient Vectors  
 $a_u, a_v$

Out-of-plane Expansion  
Coefficient Vector  
 $c_w = [a_w \ b_w]$

# Step 3: Energy Minimization



Find energy-minimizing deformation.



Find energy-minimizing expansion coefficients.

- Minimum conditions:

$$\nabla_{a_u} U = 0$$

$$\nabla_{a_v} U = 0$$

$$\nabla_{c_w} U = 0$$



- Solve nonlinear system for expansion coefficients:

$$G_{\varepsilon}(a_u, a_v, c_w) + \mathbf{R}V = 0$$

Gradient Function

$$G_{\varepsilon}$$

*couples expansion coefficients nonlinearly*

- Resulting Map:

Input:  $V$



Output:  $u(x,y), v(x,y), w(x,y)$

- Inverse map requires knowledge of **in-plane deformation**.
- Typically out-of-plane information is known (e.g., ESPI, error surface), **in-plane is *unknown***.

# De-couple In-plane Strain



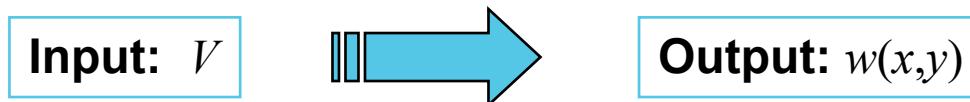
- Minimum conditions allow in-plane coefficients ( $a_u, a_v$ ) to be cast explicitly in terms of out-of-plane coefficients.

$$\begin{array}{l} \nabla_{a_u} U = 0 \\ \nabla_{a_v} U = 0 \end{array} \quad \Rightarrow \quad \begin{array}{l} a_u = F_u(c_w) \\ a_v = F_v(c_w) \end{array}$$

- Recast nonlinear system:

$$\mathbf{H}c_w + G_{nl}(c_w) + \mathbf{R}V = 0$$

- Resulting Map:



- Inverse map requires only *out-of-plane* deformation.
- Deflection control now feasible.

Decoupled Energy Hessian  
 $\mathbf{H}$

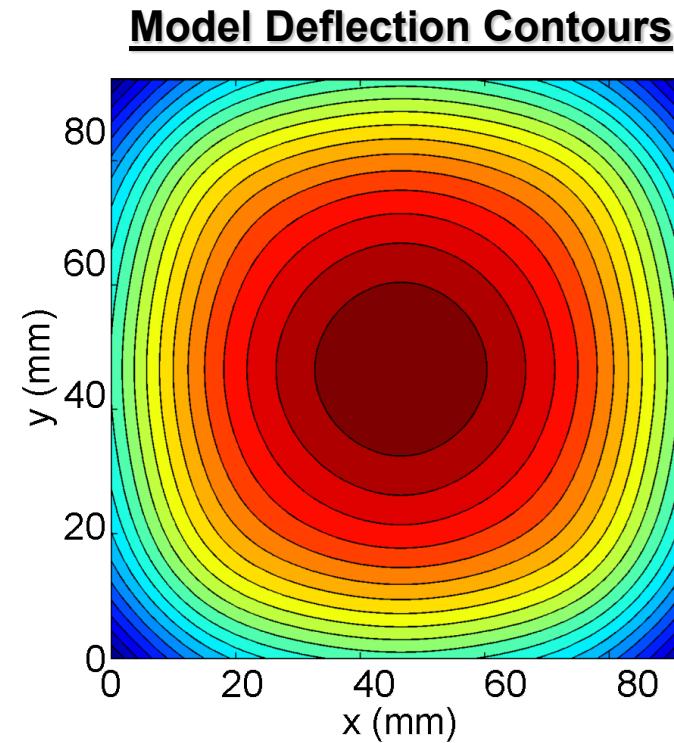
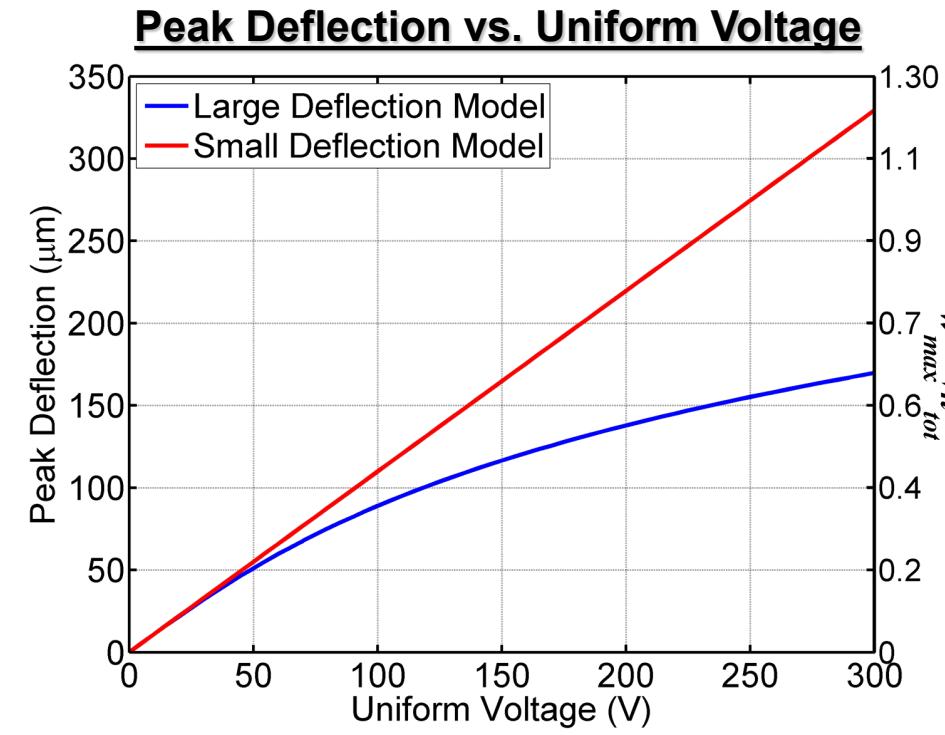
Nonlinear Gradient Function  
 $G_{nl}$

*nonlinear component of decoupled gradient*

# Nonlinear Model Results



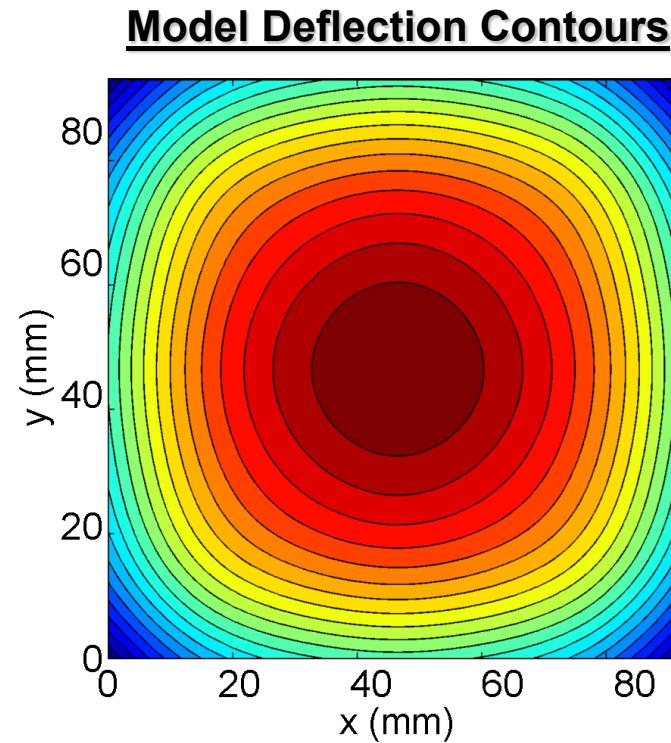
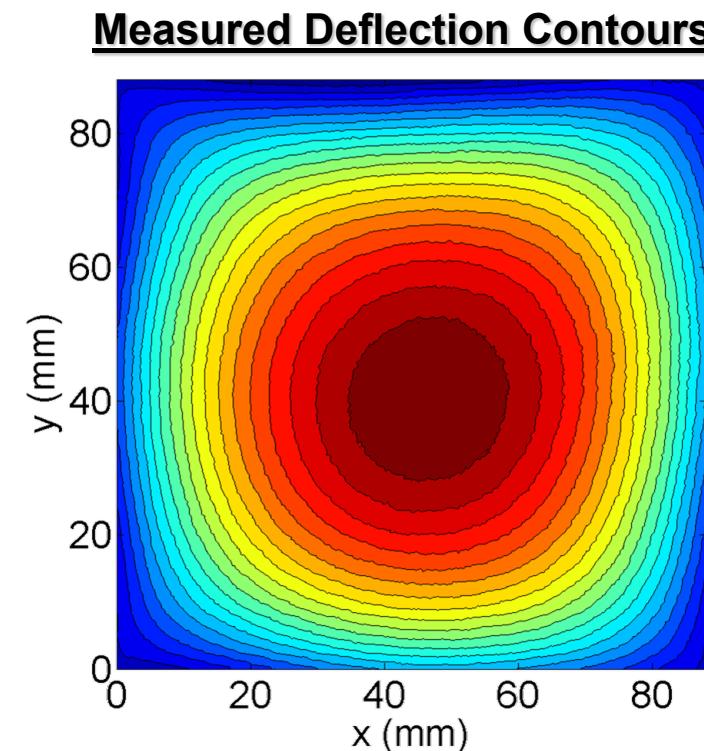
- Deflection contours show squaring effects.
- Nonlinear rise in peak deflection predicted.
- Source: nonlinear geometric changes; membrane forces due to large deflections and pinned corners.



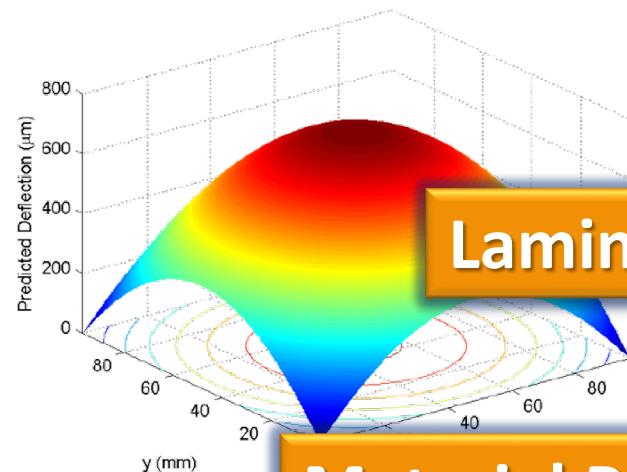
# Nonlinear Model Results



- Deflection contours show squaring effects.
- Nonlinear rise in peak deflection predicted.
- Source: nonlinear geometric changes; membrane forces due to large deflections and pinned corners.



# So What Determines Reflector Shape?



Laminate Dimensions

Material Properties

Layer Thicknesses

Electrode Pattern

*...what if there is  
variation & uncertainty?*

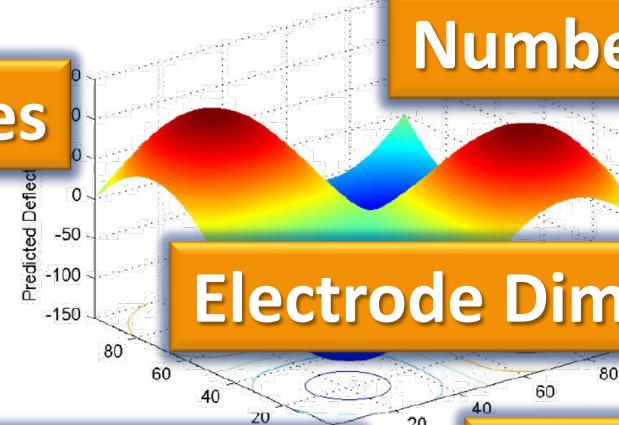
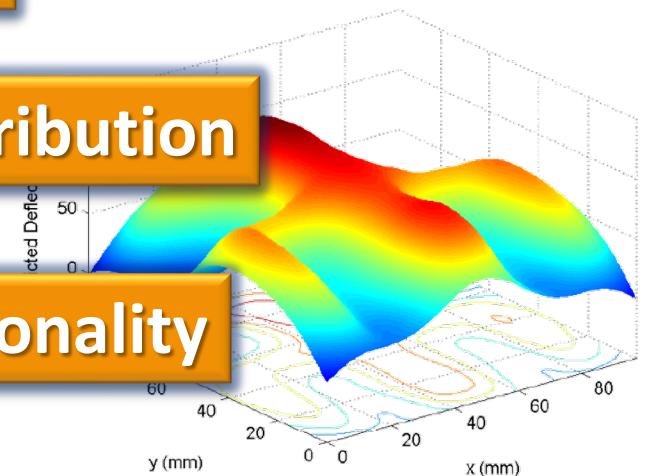
Boundary Conditions

Number of Electrodes

Electrode Dimensions

Voltage Distribution

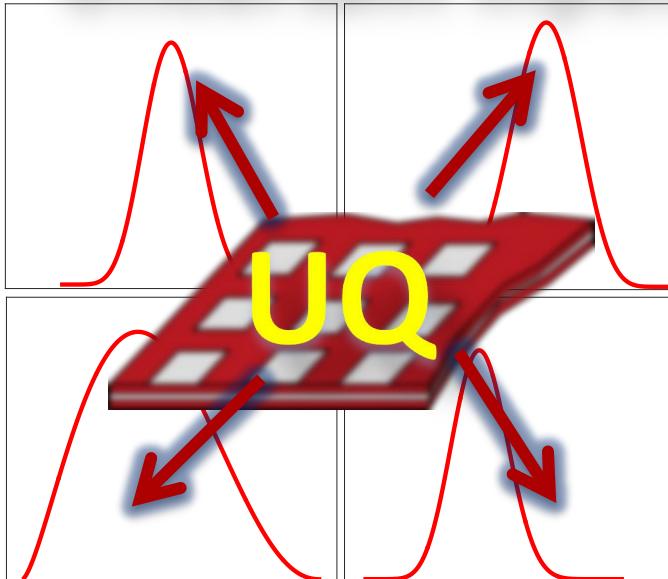
Electrode Functionality



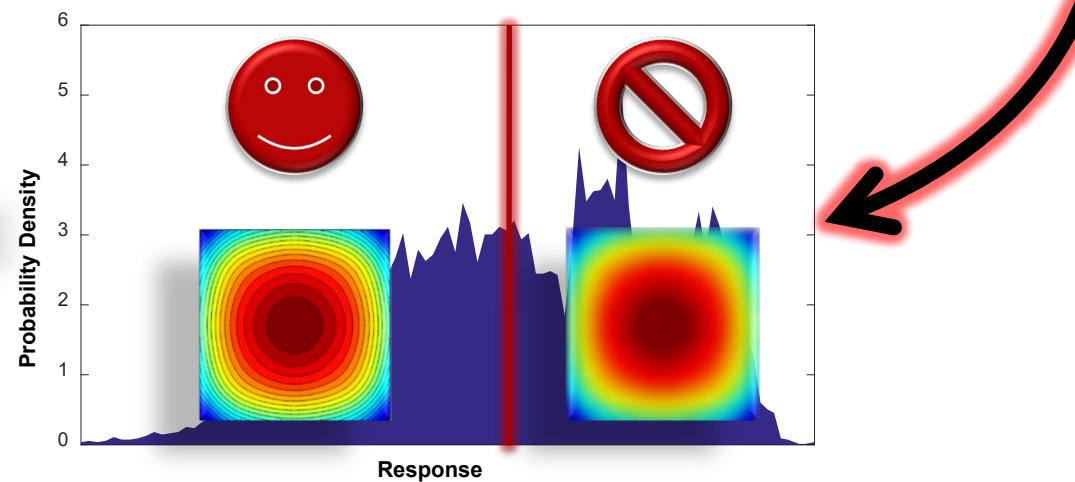
# Impact of Uncertainty



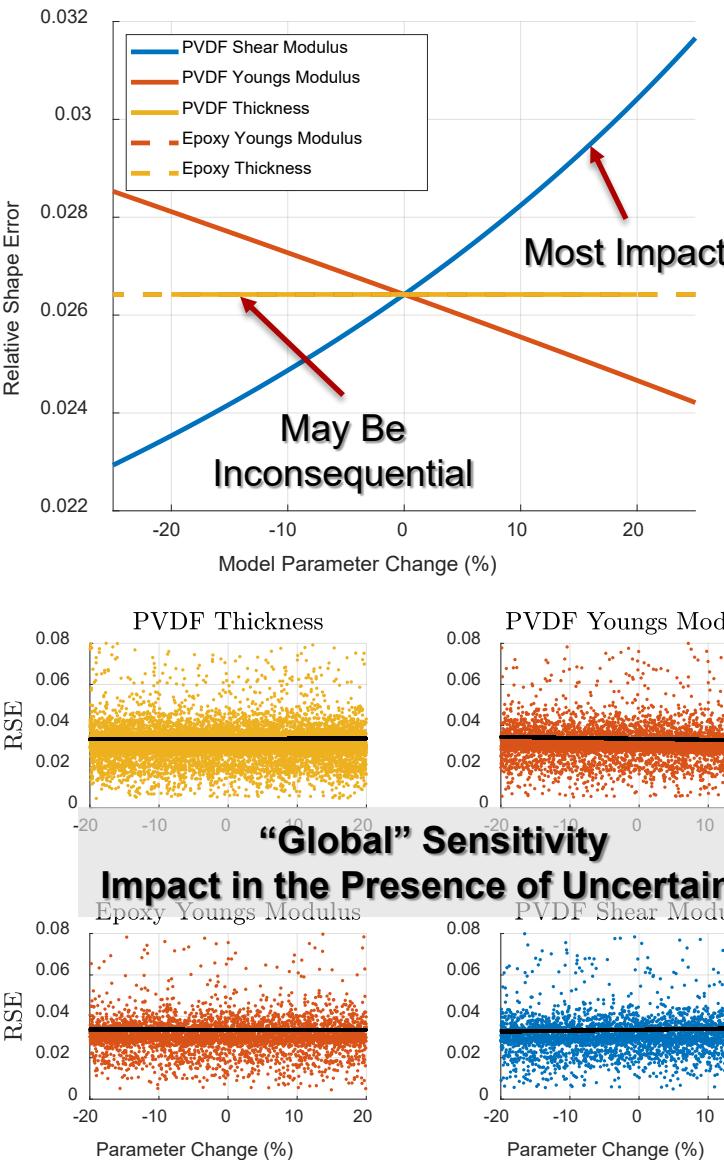
## Uncertain Input



## Probabilistic Output



# What Matters Most?



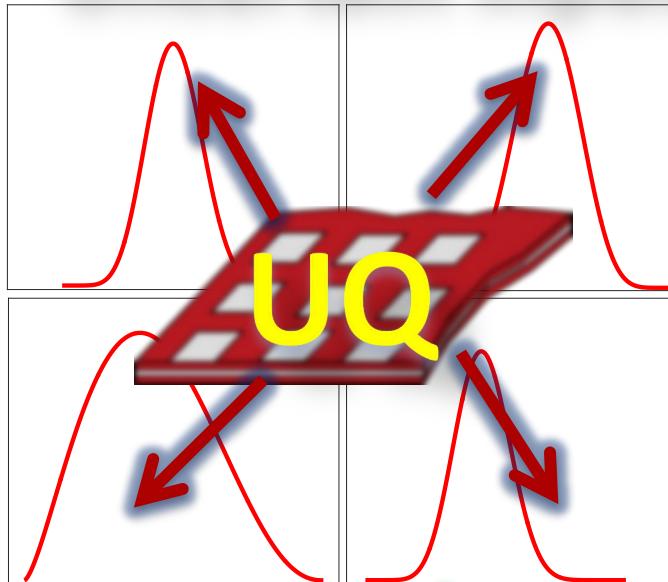
- Define “what”: quantify metric(s), like a **relative shape error**.
- Probe model and gain understanding of simulated correlations.
- Investigate metric sensitivities w.r.t. model input.
- Consider deterministic and statistical (e.g., Latin Hypercube) sensitivities, afforded by computational efficiency.
- **Sensitivity analysis** and **practicality** help select tuning parameters.

| Parameter  | Sensitivity rank (OAT) | LHS sensitivity rank (Latin Hypercube) | Significance rank | PRCC    | PRCC rank |
|------------|------------------------|----------------------------------------|-------------------|---------|-----------|
| $h_p$      | 9                      | 11                                     | 7                 | 0.0121  | 11        |
| $h_e$      | 10                     | 13                                     | 7                 | 0.0110  | 12        |
| $a$        | 2                      | 1                                      | 5                 | 0.3866  | 2         |
| $b$        | 2                      | 1                                      | 5                 | -0.4387 | 1         |
| $Y_{11}$   | 5                      | 10                                     | 3                 | -0.0307 | 6         |
| $Y_{22}$   | 4                      | 5                                      | 2                 | 0.2411  | 4         |
| $Y_e$      | 11                     | 12                                     | 7                 | 0.0063  | 13        |
| $G_{12}$   | 3                      | 6                                      | 1                 | -0.2712 | 3         |
| $\nu_{12}$ | 7                      | 2                                      | 7                 | 0.0277  | 7         |
| $\nu_e$    | 8                      | 7                                      | 7                 | -0.0153 | 10        |
| $D_{31}$   | 13                     | 8                                      | 7                 | -0.0168 | 9         |
| $D_{32}$   | 12                     | 9                                      | 7                 | 0.0234  | 8         |
| $B_{or}$   | 1                      | 3                                      | 4                 | 0.1042  | 5         |
| $Sep$      | 6                      | 4                                      | 6                 | 0.0017  | 14        |

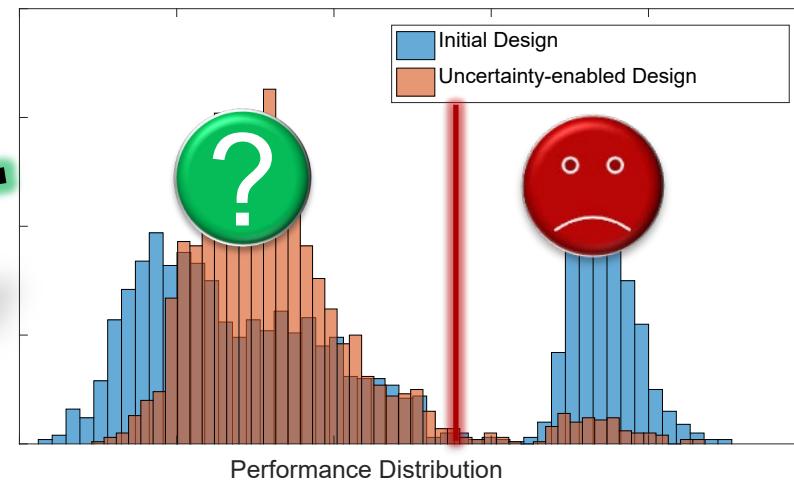
# Uncertainty-enabled Design



## Uncertain Input



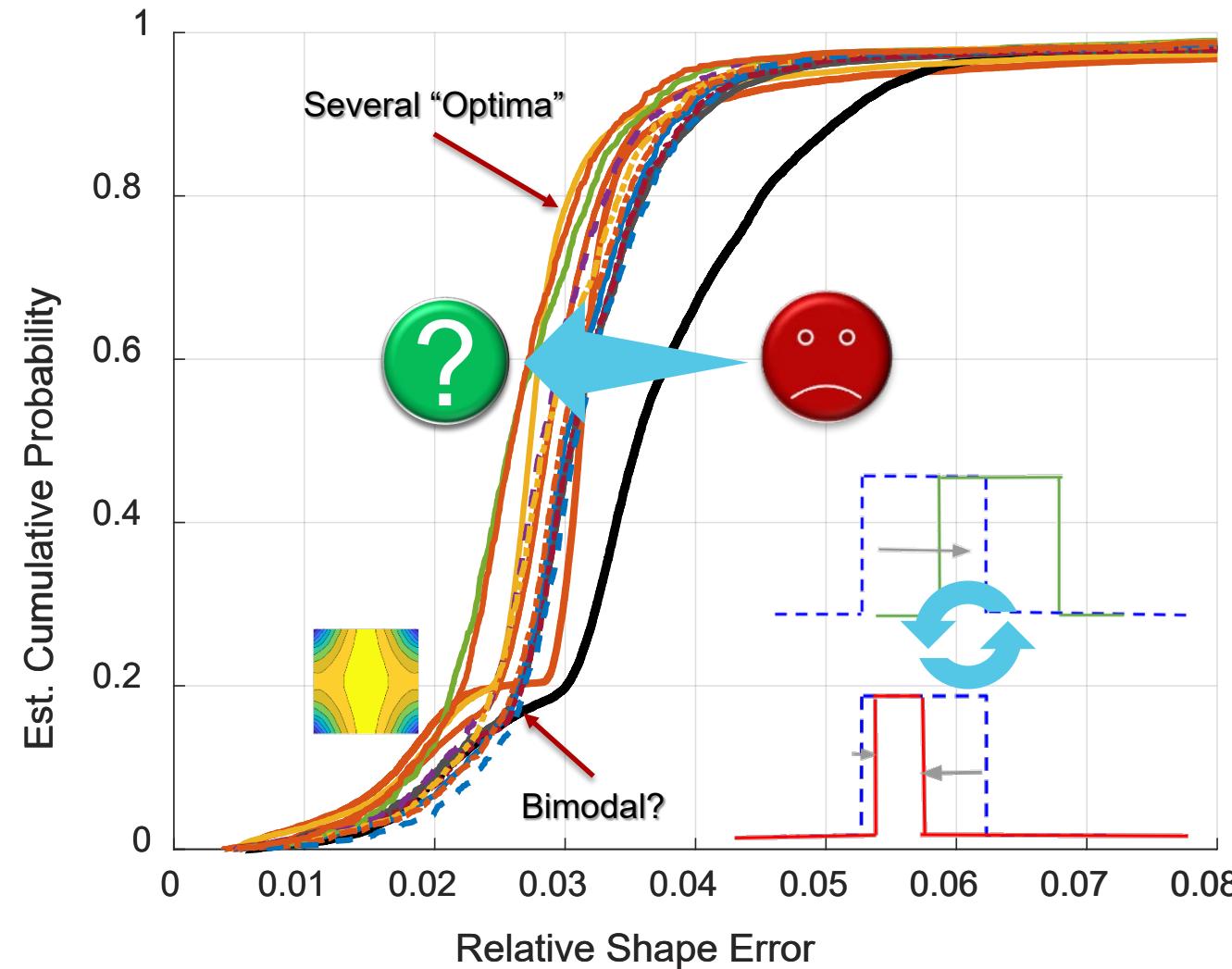
Optimize Under  
Uncertainty



High  
Performance  
Simulations

Probabilistic  
Output

# Optimization Under Uncertainty



- Assumed uniform distributions of **chosen design parameters** based on guidance and known design tolerances.
- Estimate **distribution** of shape error via uncertainty propagation (tolerance stackup).
- Adjust **distribution** of chosen design parameters.
- Iterate to find improved **distribution**; Simplex, Constrained Differential Evolution, etc.
- Consider practicality of optimized scenarios.

# Smart Laminate Recommendations



- Getting just a solution is often insufficient: **what do we do with the results?**
- Our 2017 Industrial Math and Statistics Modeling (IMSM) Workshop for Graduate Students team provided **recommendations** to SNL based on their sensitivity and uncertainty analyses.
- **Design Change:** to make the shape error less sensitive to uncertainties:
  - minimize inactive border;
  - use stiffer active material.
- **Tolerance Change:** characterize and reduce the uncertainty of PVDF shear modulus (its uncertainty is a large contributor to shape error variation).
- **Resource Allocation:** impact of variations in bonding layer properties are relatively insignificant; likely they need less expense/attention/precision.
- **Refinement:** build/conduct experiments for continued validation and UQ.

# Case Study Remarks



- Integrated shape control of electromagnetic reflectors offers significant advantages.
- To expedite design and experimentation of a smart laminate, model-based support was involved early.
- A useful small-deformation, bending-dominated (linear) model was shown to be insufficient when compared to non-idealized laboratory experiments.
- Better agreement achieved when accounting for large and in-plane deformation.
- Computationally-efficient implementation facilitates sensitivity and uncertainty analyses.
- “Simulated experiments” reveal potential improvement to overall fabrication and performance.

# Real-world Problem Solving



- As an applied mathematician and engineering scientist at SNL, my goal is to provide science-based solutions and capabilities.
- Often approaches are constrained by response time.
- Sometimes novel methods are developed/used, other times, the problem demands creative use of existing methods.  
Just get it done!
- Defining and quantifying “solved” or “optimal” typically is non-trivial; problem ID is crucial.
- **Uncertainty-enabled** designs/solutions attempt to maximize the *probability* of performance with uncertain conditions/properties.