

Earthquake induced damage estimation in structural systems using parametric physics-based Reduced-Order Models (ROMs)

Vlachas Konstantinos*, Dr. Tatsis Konstantinos*, Carianne Martinez#, Prof. Dr. Eleni Chatzi*

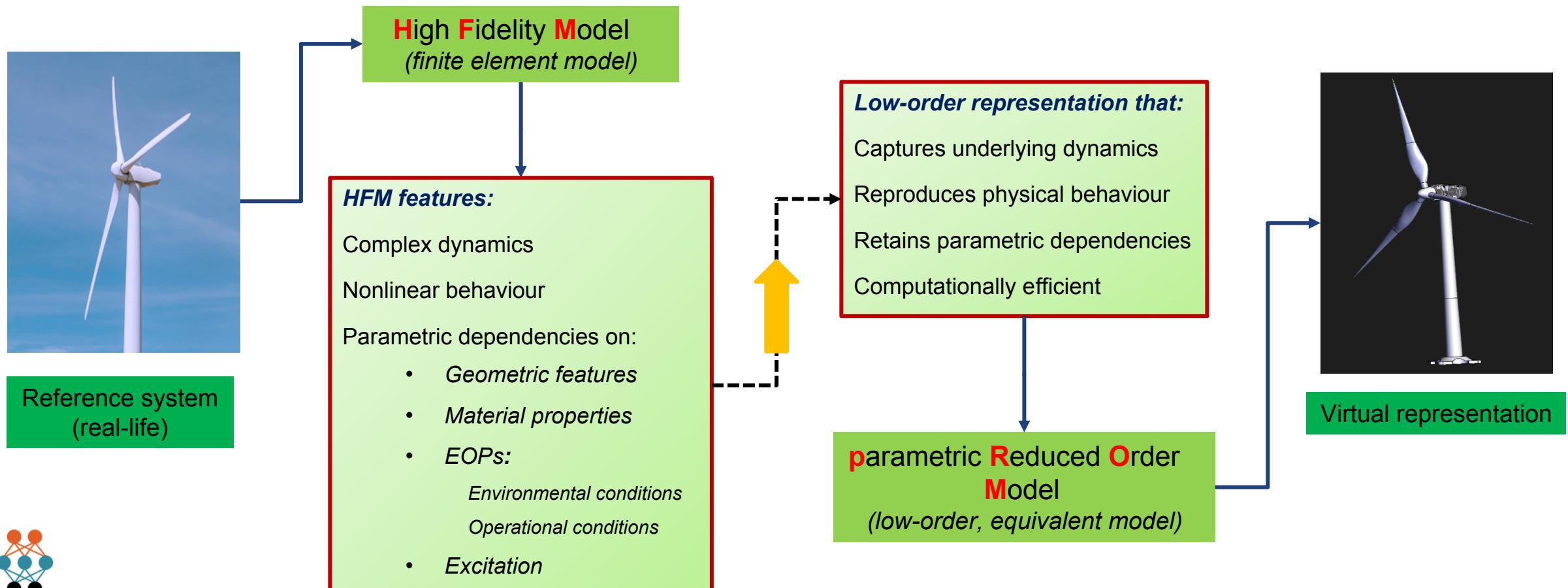
*Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Francini-Platz-5, 8093 Zurich, Switzerland, chatzi@ibk.baug.ethz.ch

#Applied Machine Intelligence, Sandia National Laboratories, Albuquerque, New Mexico

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

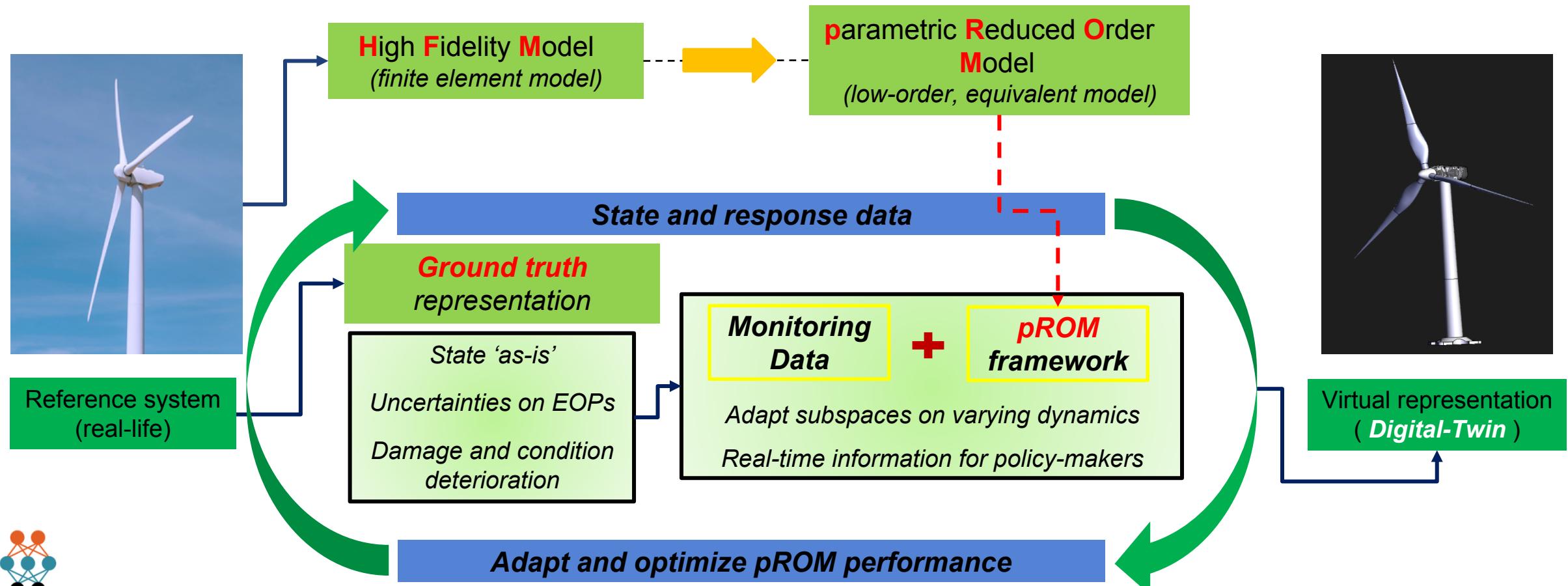
Problem Statement

Robust digital virtualization of nonlinear dynamical systems



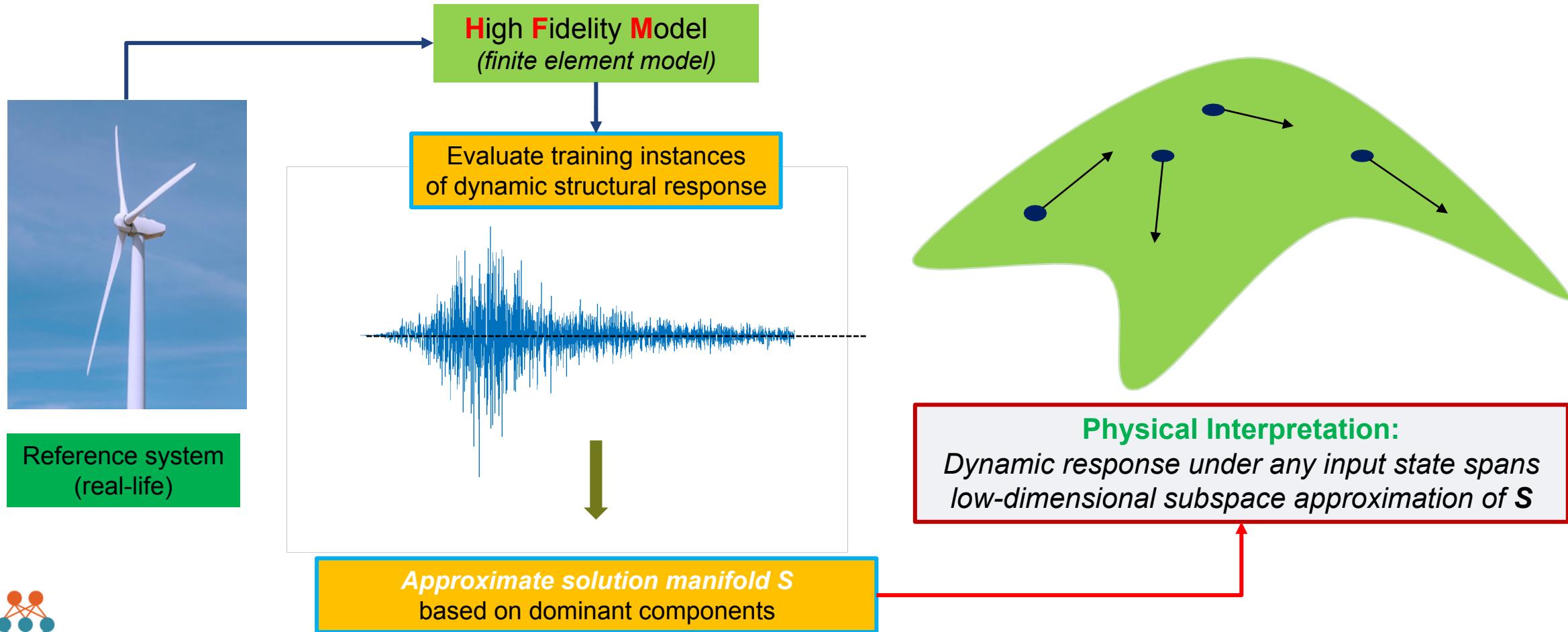
Problem Statement

Condition deterioration or damage during operation



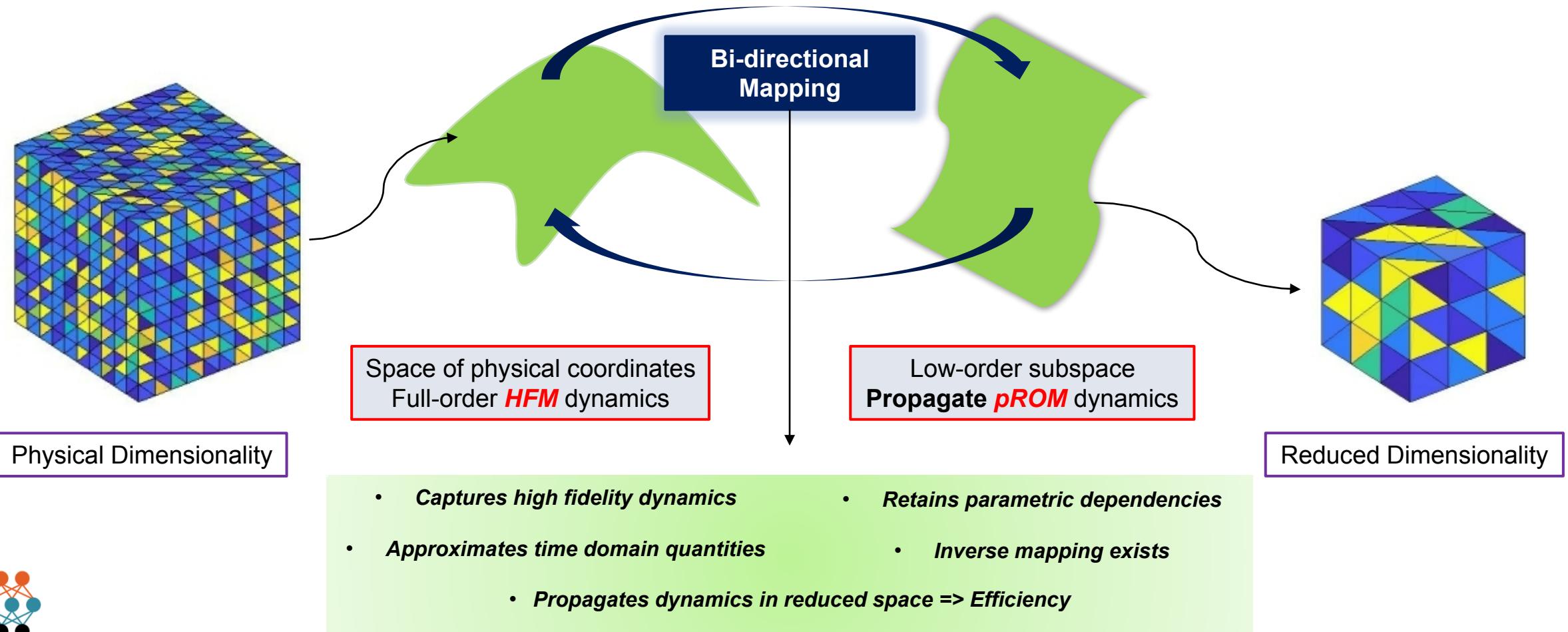
Approach conceptualization

Parametric ROM (pROM) as forward simulator



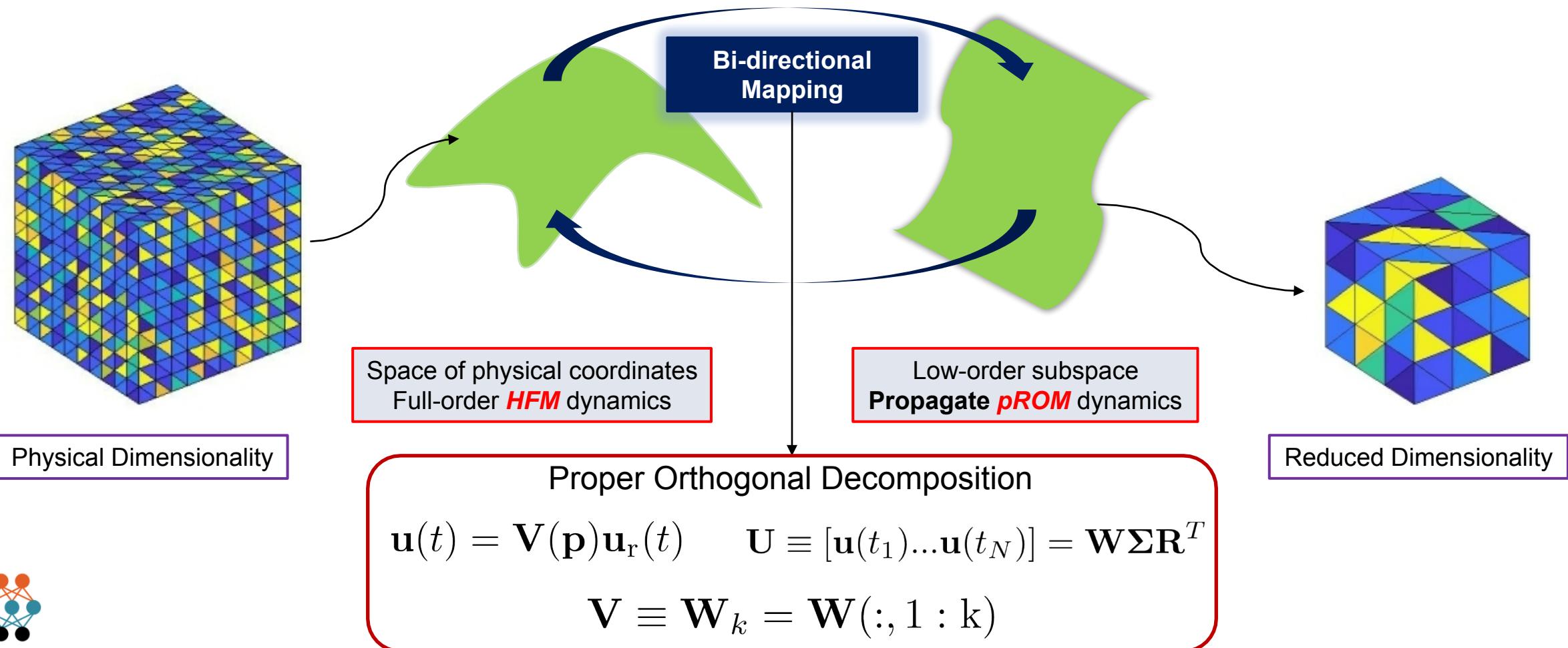
Approach conceptualization

Projection-based pROM as forward simulator



Approach conceptualization

Projection-based pROM as forward simulator



Approach conceptualization

Adaptive pROM for robust Structural Health Monitoring

(Initial) parametric ROM framework

- *Projection-based approach relying on POD subspaces*
- *Propagates dynamics forward in time in reduced coordinates*
- *Utilizes local ROMs through clustering to retain dependencies throughout domain of operation*

Earthquake induced damage / System deterioration

The pROM is no longer able to perform estimation tasks accurately
Subspaces on training set do not sufficiently capture occurring phenomena

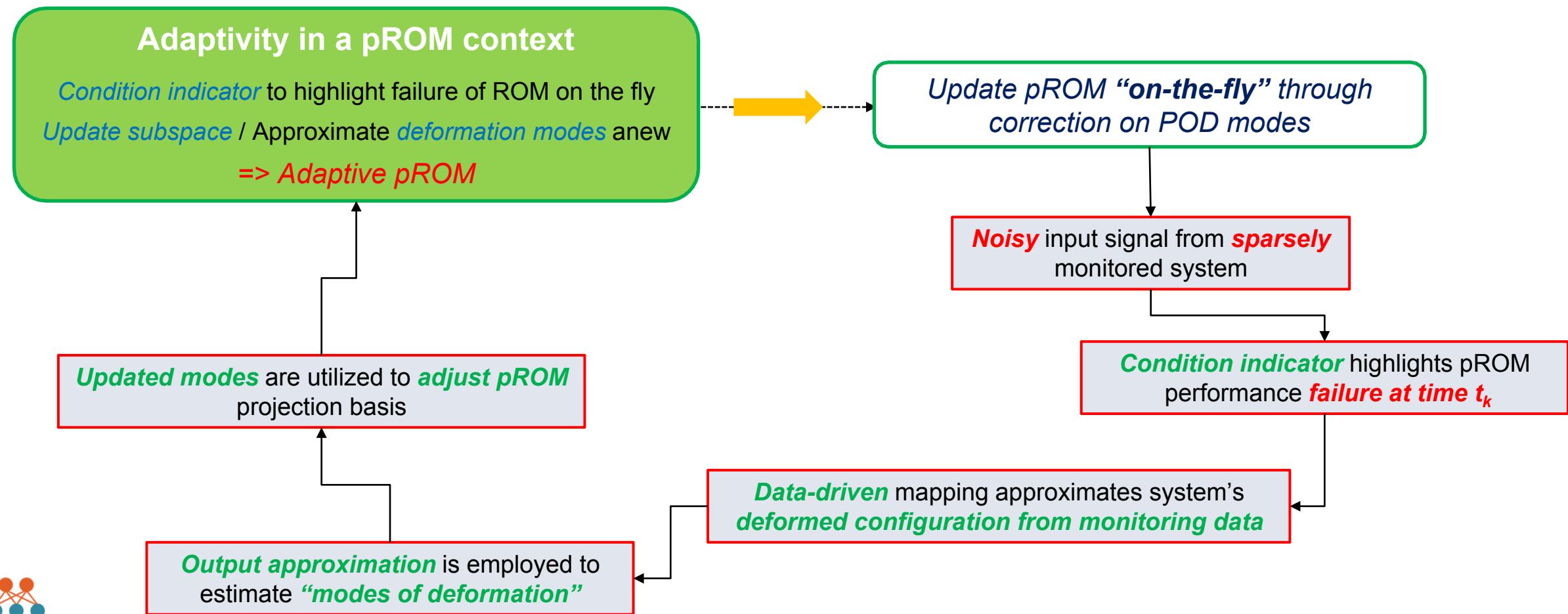
=> *Performance bottleneck*

Adaptivity in a pROM context

Condition indicator to highlight failure of ROM on the fly
Update subspace / Approximate *deformation modes* anew
=> *Adaptive pROM*

Approach conceptualization

Adaptivity through data assimilation



Approach conceptualization

Adaptive pROM framework based on data assimilation

Offline / Training Strategy:

- ✓ Derive initial pROM as **forward simulator** :

Examples:

- **Initial linear state** and **nonlinearities** during operation **to represent damage**
- **Initial nonlinear state** and **deterioration effects** during operation

- ✓ Assemble **Damage Indicator** :

- **Deterministic nature** based on response comparison metrics
- Relies on **limited nodal measurements** (3% nodal output measured)
- Includes input noise / exploit **noise statistics to define activation threshold**

- ✓ **Gaussian Process Regression (GPR)** trained on **residual response**:

- GPR **trained on pool of snapshots**, without compromising efficiency

Examples:

- GPR trained on certain parametric states representing damage

Online / During Operation:

- **Monitor residual response** between pROM and monitoring data
- **If indicator signals** “ROM Performance Deteriorates”:
 - ✓ Employ GPR estimation to **reconstruct full residual state**
 - ✓ **Enrichment mode** = **pROM approximation + GPR residual**
 - ✓ **Enrich pROM** by using corrected modes in Basis

Implementation details

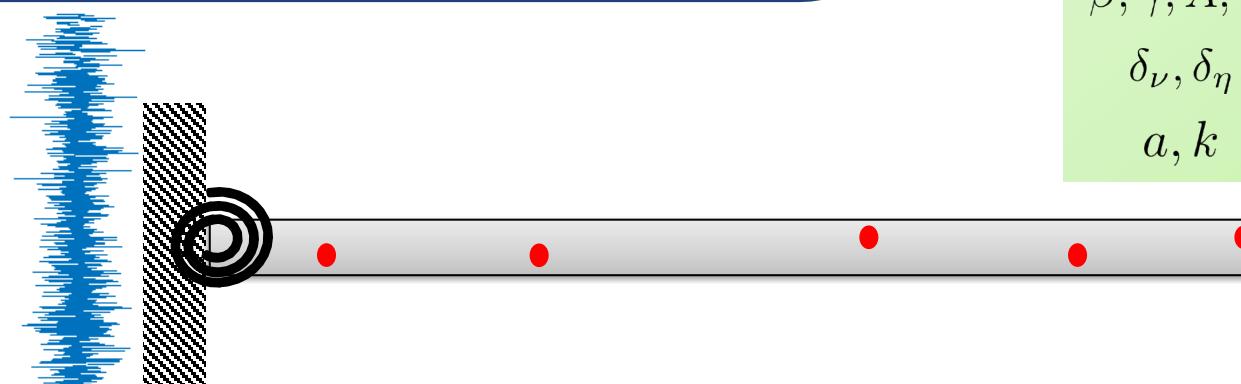
Configurations and scenarios

Cantilever Beam Case Study

- Stochastic **ground motion excitation**
- Parametrized Boundary => **Nonlinear rotational spring**
- **Limited number** of nodes monitored

Damage Scenario:

- ✓ Derive **ROM based on “design”** case study
- ✓ Induce **damage** by **activating parametric boundary**
- ✓ Use **indicator to detect** failure
- ✓ Employ **GPR-based scheme** to assemble deformed modes
- ✓ **Refine** POD-Basis



Hysteretic spring model

➤ **Total restoring force:**

$$\mathbf{R} = \mathbf{R}_{\text{linear}} + \mathbf{R}_{\text{hysteretic}} = \alpha k \mathbf{u} + (1 - \alpha) k \mathbf{z}$$

➤ **Bouc-Wen equation with degradation/deterioration effects:**

$$\dot{\mathbf{z}} = \frac{A \dot{\mathbf{u}} - \nu(t) (\beta |\dot{\mathbf{u}}| \mathbf{z} |\mathbf{z}|^{w-1} - \gamma \dot{\mathbf{u}} |\mathbf{z}|^w)}{\eta(t)}$$

$$\nu(t) = 1.0 + \delta_\nu \epsilon(t), \quad \eta(t) = 1.0 + \delta_\eta \epsilon(t), \quad \epsilon(t) = \int_0^t \mathbf{z} \dot{\mathbf{u}} \delta t$$

Characteristics of the Bouc-Wen links:

β, γ, A, w : Control smoothness and shape of hysteresis

δ_ν, δ_η : **Degradation/Deterioration** effects

a, k : **Linear/Hysteretic** contribution weighting

Implementation details

Configurations and scenarios

Cantilever Beam Case Study

- Stochastic **ground motion excitation**
- Parametrized Boundary => **Nonlinear rotational spring**
- **Limited number** of nodes monitored

Damage Scenario:

- ✓ Derive **ROM based on “design”** case study
- ✓ Induce **damage** by **activating parametric boundary**
- ✓ Use **indicator to detect** failure
- ✓ Employ **GPR-based scheme** to assemble deformed modes
- ✓ **Refine** POD-Basis

Scenario B:

- **Initial** “design” case study is **nonlinear**
- **Damage** is represented through **degradation / deterioration** effects during **operation**

Hysteretic Bouc-Wen spring model

➤ **Total restoring force:**

$$\mathbf{R} = \mathbf{R}_{\text{linear}} + \mathbf{R}_{\text{hysteretic}} = \alpha k \mathbf{u} + (1 - \alpha) k \mathbf{z}$$

➤ **Bouc-Wen equation with degradation/deterioration effects:**

$$\dot{\mathbf{z}} = \frac{A \ddot{\mathbf{u}} - \nu(t)(\beta |\dot{\mathbf{u}}| \mathbf{z} |\mathbf{z}|^{w-1} - \gamma \dot{\mathbf{u}} |\mathbf{z}|^w)}{\eta(t)}$$

$$\nu(t) = 1.0 + \delta_\nu \epsilon(t), \quad \eta(t) = 1.0 + \delta_\eta \epsilon(t), \quad \epsilon(t) = \int_0^t \mathbf{z} \dot{\mathbf{u}} \delta t$$

Characteristics of the Bouc-Wen links:

β, γ, A, w : Control smoothness and shape of hysteresis

δ_ν, δ_η : **Degradation/Deterioration** effects

a, k : **Linear/Hysteretic** contribution weighting

Scenario A:

- **Initial** “design” case study is **linear**
- **Nonlinear spring** is activated during **operation**

Implementation details

Configurations and scenarios

Plane Frame Case Study

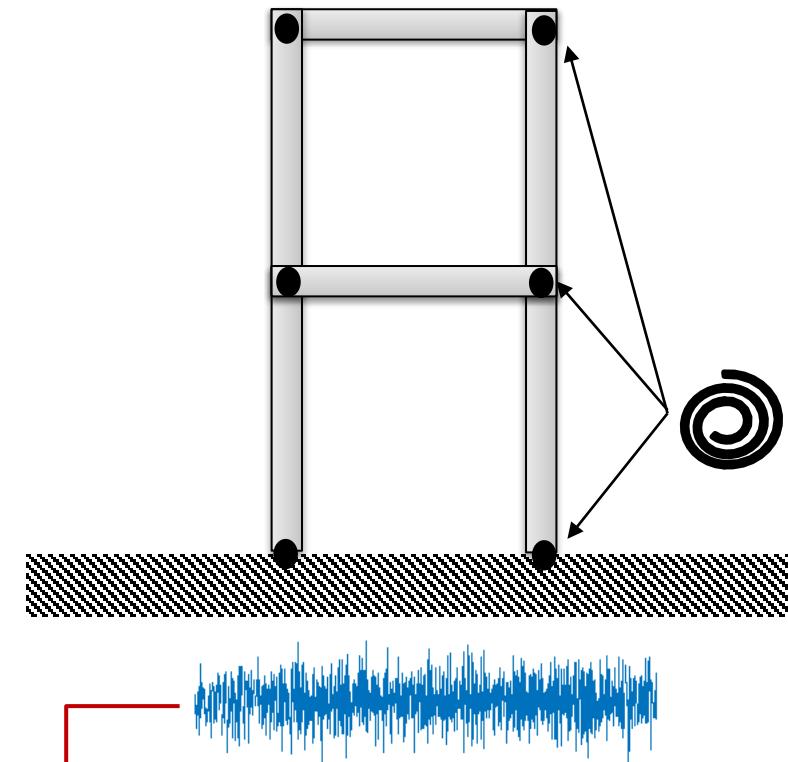
- Stochastic **parametrized** ground motion **excitation (Amplitude)**
- **Nonlinear** parametric rotational **spring on all nodal connections**
- **Limited number** of nodes monitored

Damage Scenario:

- ✓ Derive **ROM** based on “design” case study
- ✓ Induce **damage** by **activating parametric boundary**
- ✓ Use **indicator to detect** failure
- ✓ Employ **GPR-based scheme** to assemble deformed modes
- ✓ **Refine** POD-Basis

Scenario C:

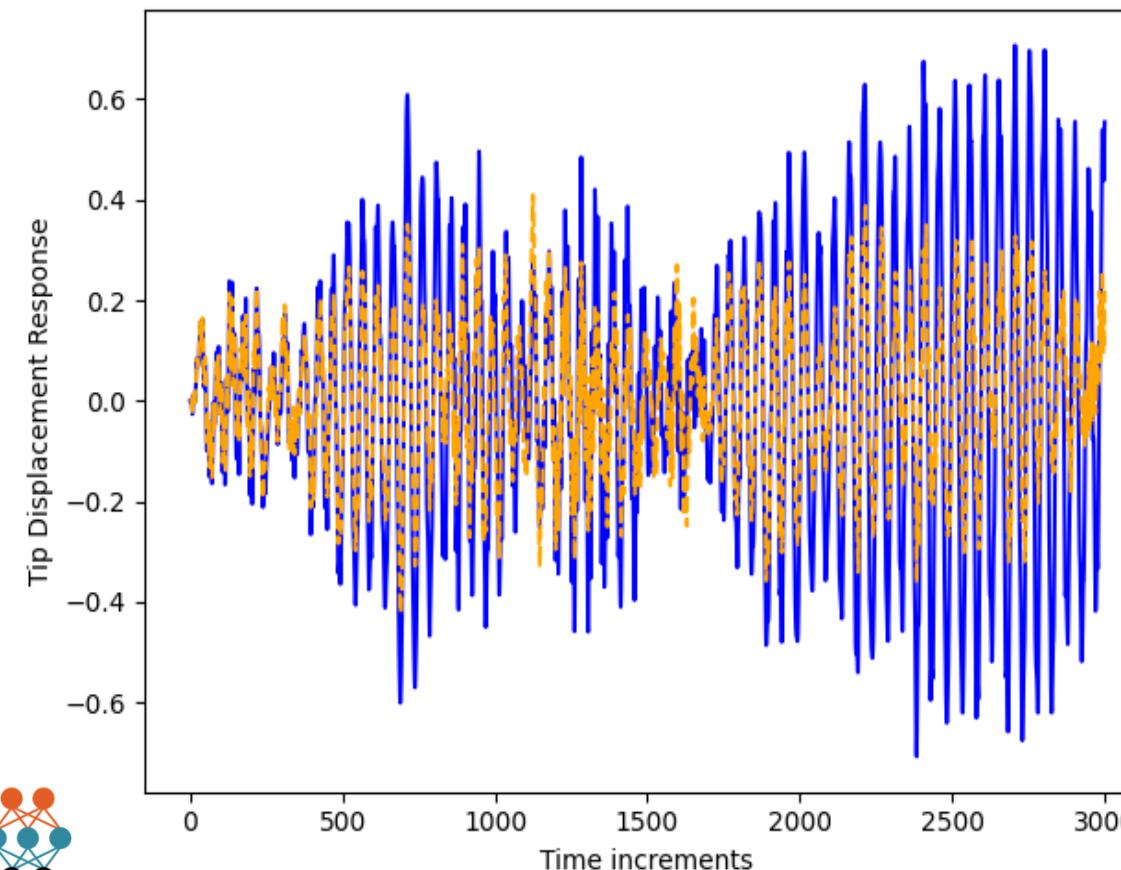
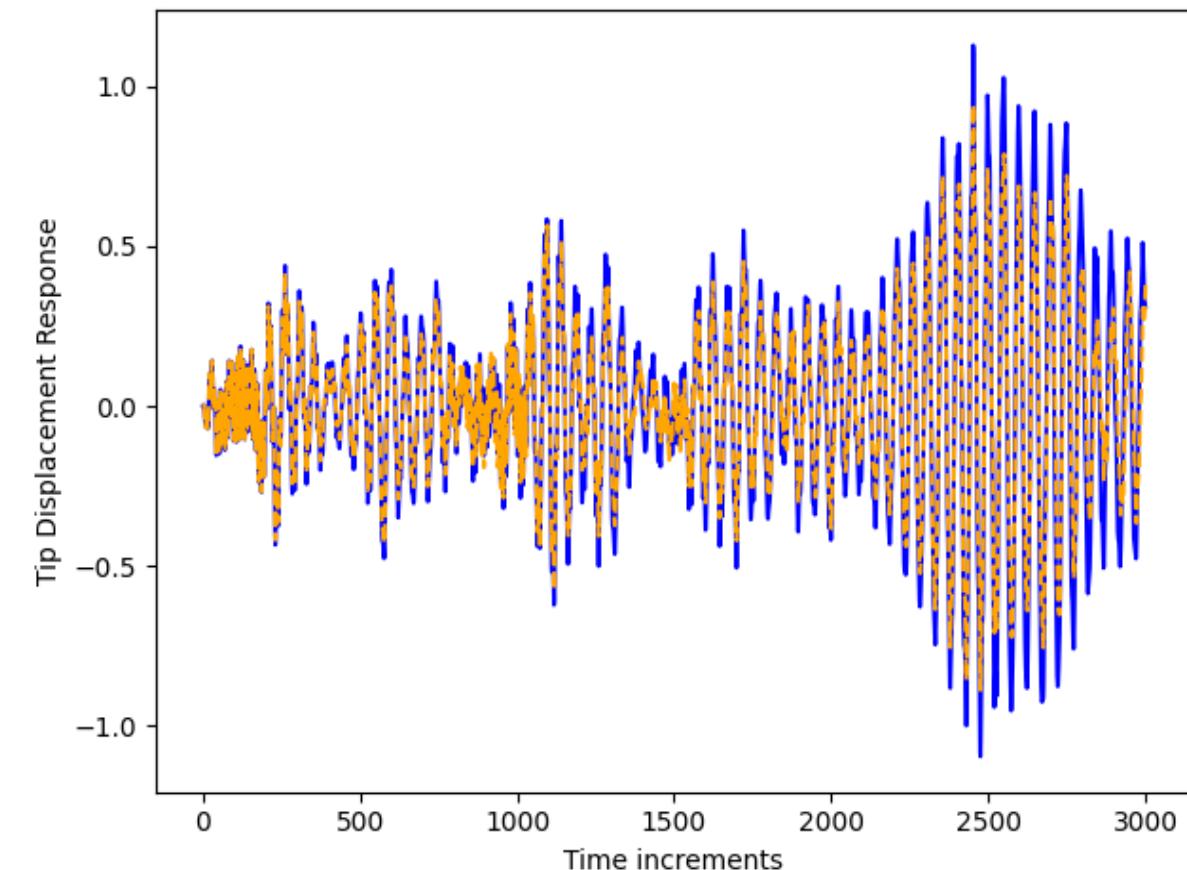
- **Initial** “design” case study is **linear**
- **Nonlinear spring** is activated during **operation**
- Evaluation earthquake not included in training set



Implementation details

Configurations and scenarios

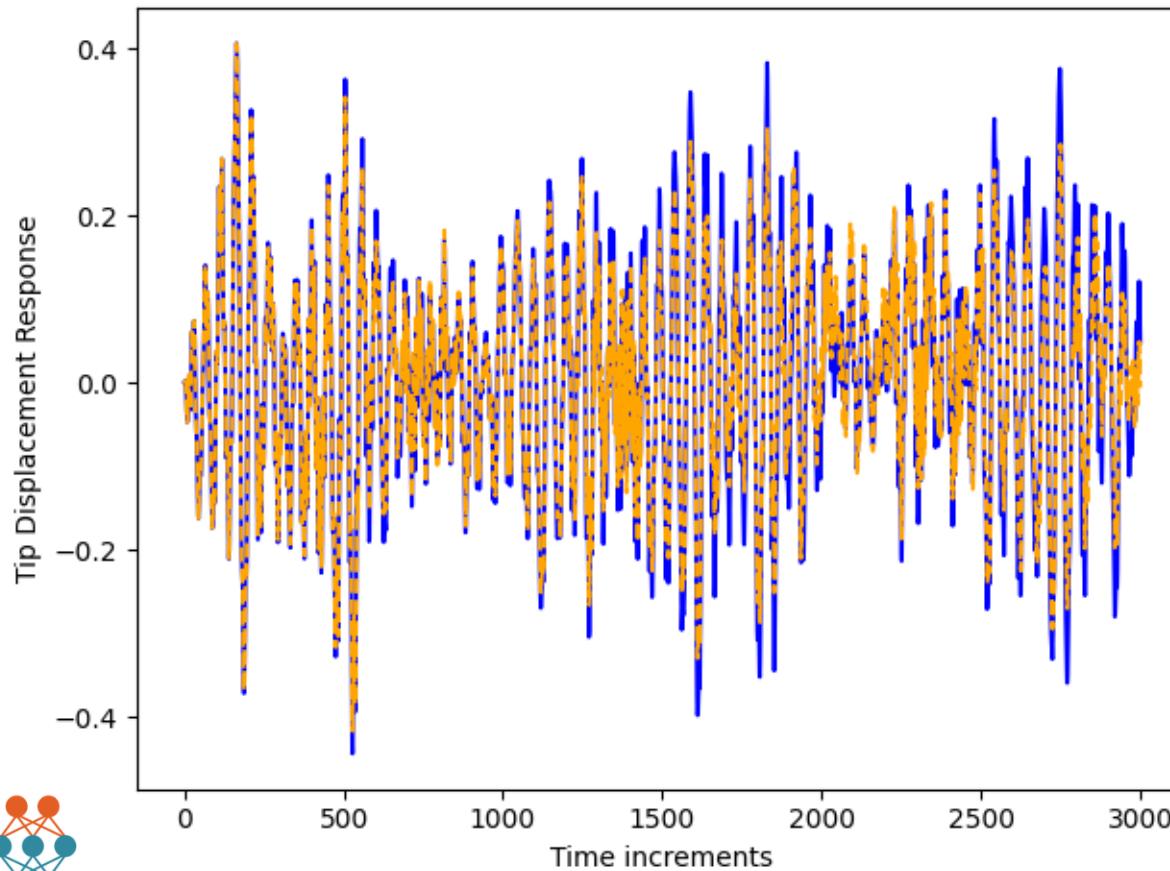
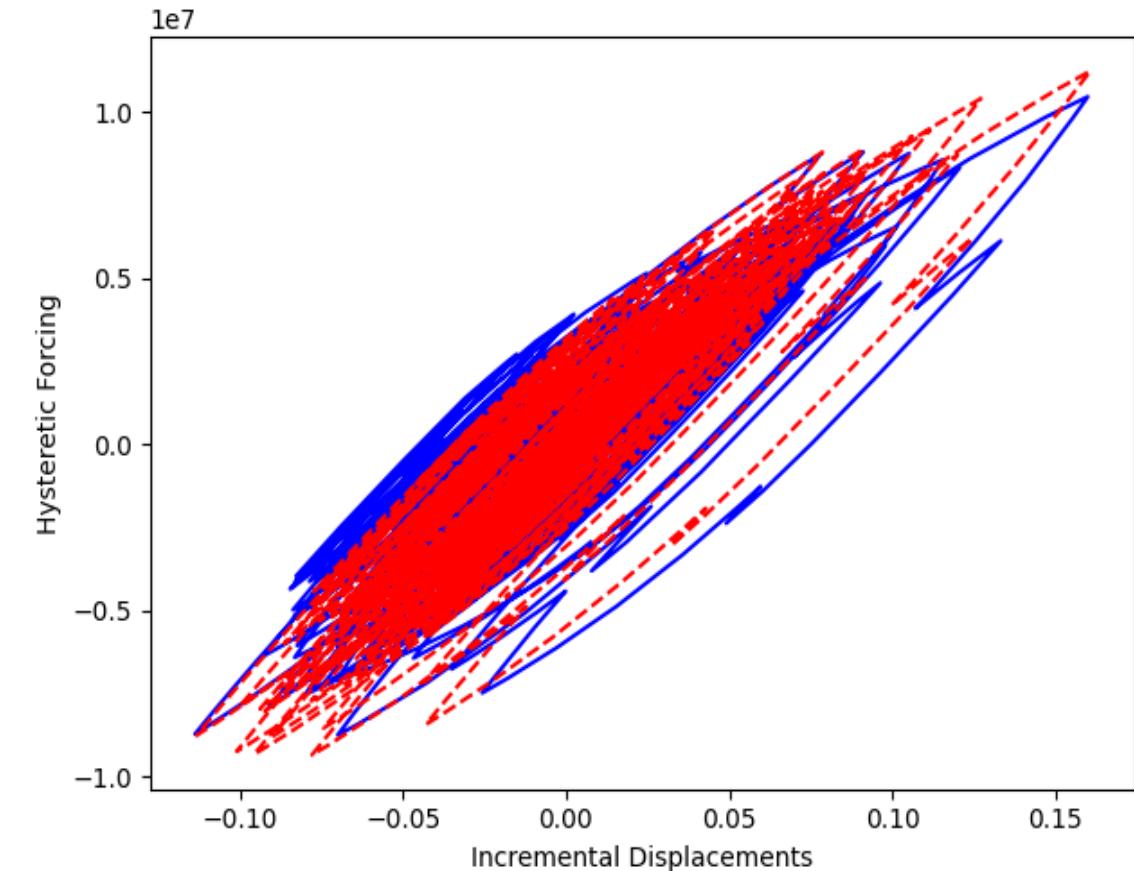
Linear vs Nonlinear response examples for **different Bouc-Wen activation parameters**



Implementation details

Configurations and scenarios

Response examples with **Bouc-Wen degradation phenomena** during operation



Implementation details

Damage indicator and GPR-scheme

Damage Indicator

- Deterministic nature based on response comparison metrics
=> *Mahalanobis distance (MD) measure*
- Relies on limited nodal measurements (5% nodal output measured)
- Includes input noise (3%) / exploit noise statistics to define activation threshold
=> *Alert threshold from Chi-Square* distribution (0.01% significance level)

Gaussian Process Regression (GPR)

- Trained based on *residual responses* between monitoring data and pROM
- GPR *trained on pool of snapshots*, without compromising online efficiency
- **Input:** Response information from monitoring channels
Output: Additive correction on full coordinate space
- Leverage *local* and *physical degree-of-freedom correlations*
- **Software:** *gpytorch* implementation with MultitaskGPModel and RBFKernel()

Measurement Data $\mathbf{d}_k \in \mathbb{R}^{n_d}$

Vector of random values $\mathbf{r}_k \in \mathbb{R}^{n_d}$

St. Dev. of
measurement signals $\sigma_\delta \in \mathbb{R}^{n_d \times n_d}$

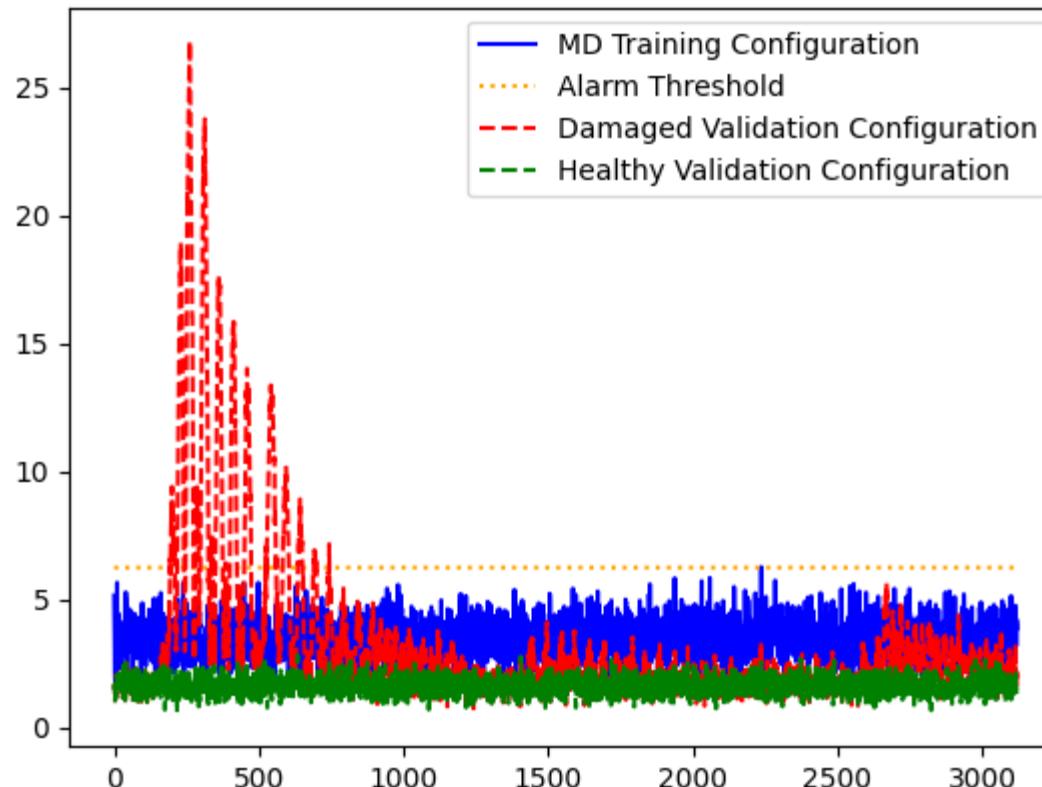
Noise level δ

Noisy measurement data

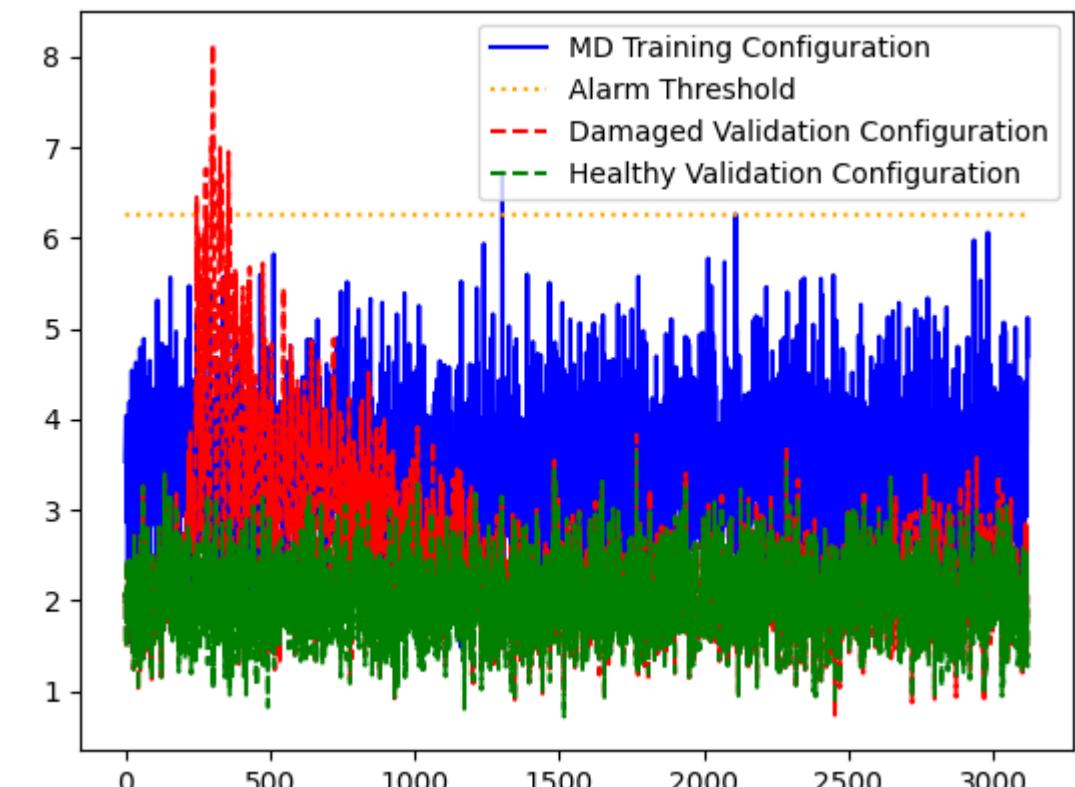
$$\tilde{\mathbf{d}}_k = \mathbf{d}_k + \delta \sigma_d \mathbf{r}_k$$

Implementation details

Damage indicator and GPR-scheme



Linear vs Nonlinear
response example (**Scenario A**)



Bouc-Wen degradation phenomena
during operation (**Scenario B**)

Implementation details

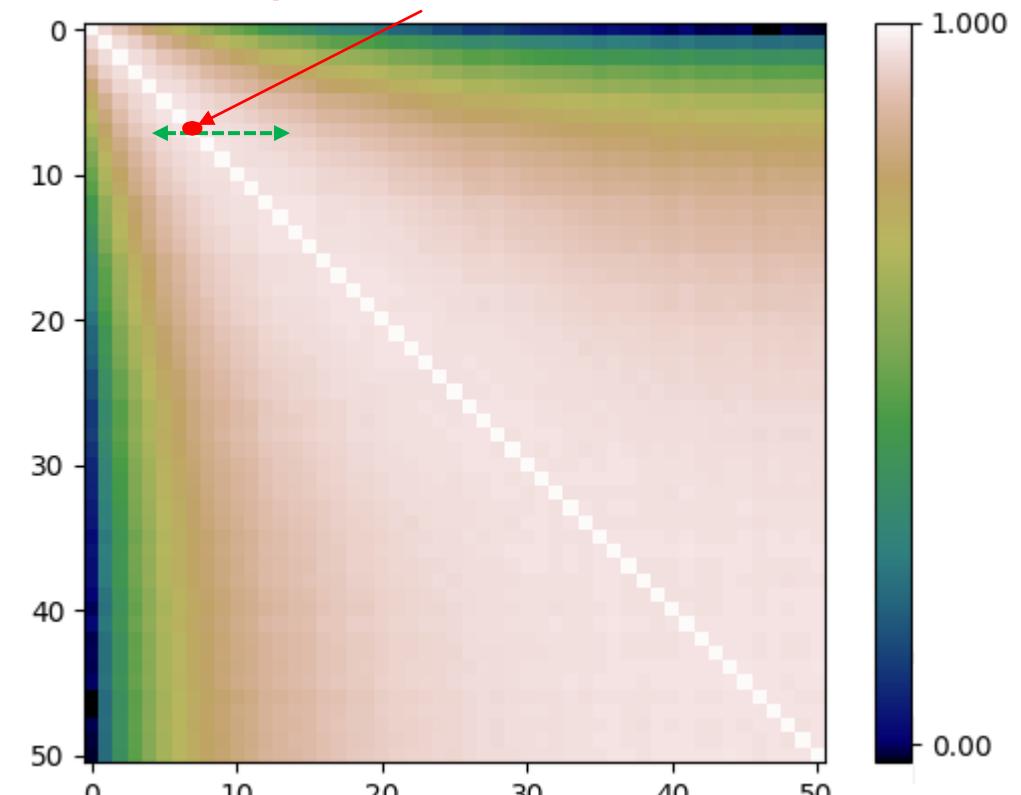
Damage indicator and GPR-scheme

Gaussian Process Regression (GPR)

- Trained based on **residual responses** between monitoring data and pROM
- GPR **trained on pool of snapshots**, without compromising online efficiency
- **Input:** Response information from monitoring channels
- **Output:** Additive correction on full coordinate space
- Leverage **local** and **physical degree-of-freedom correlations**

- ✓ Assemble indirect **correlation** matrices between **response in each physical coordinate** / degree-of-freedom
- ✓ Leverage correlations to **define output window** for each monitored input channel
- ✓ **Overlapping** to ensure quality of approximation

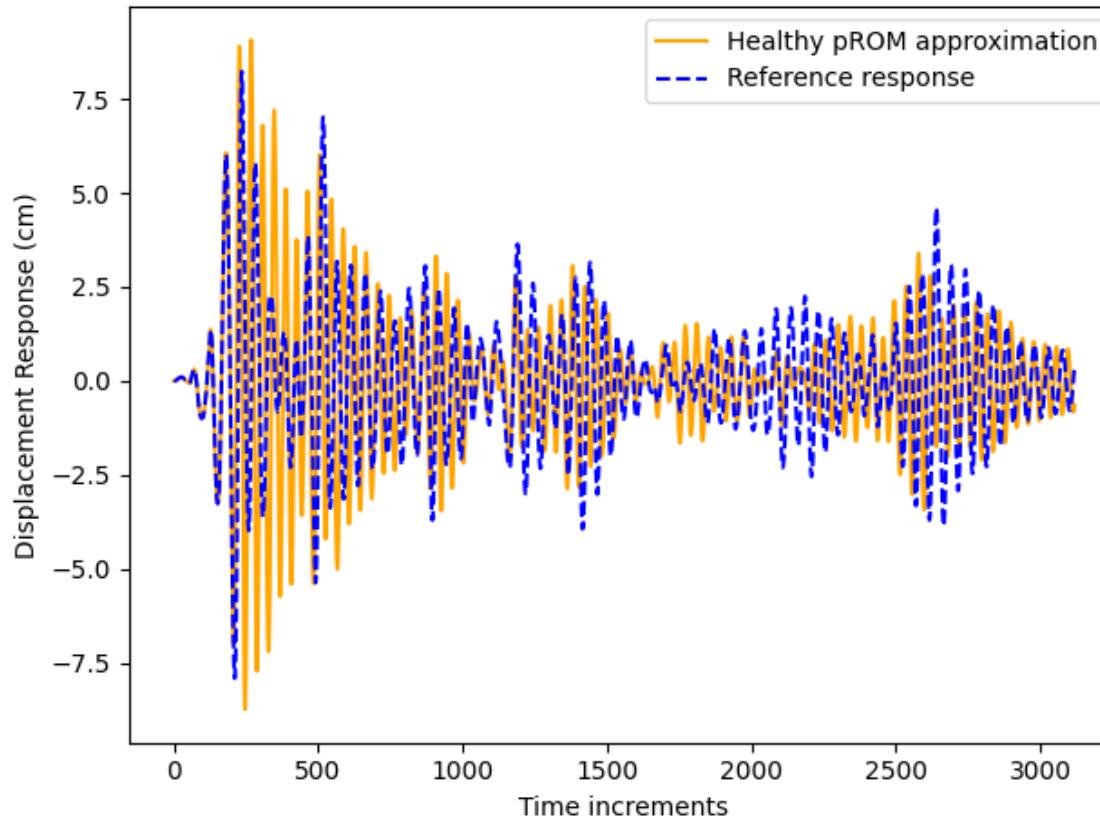
Example monitored channel



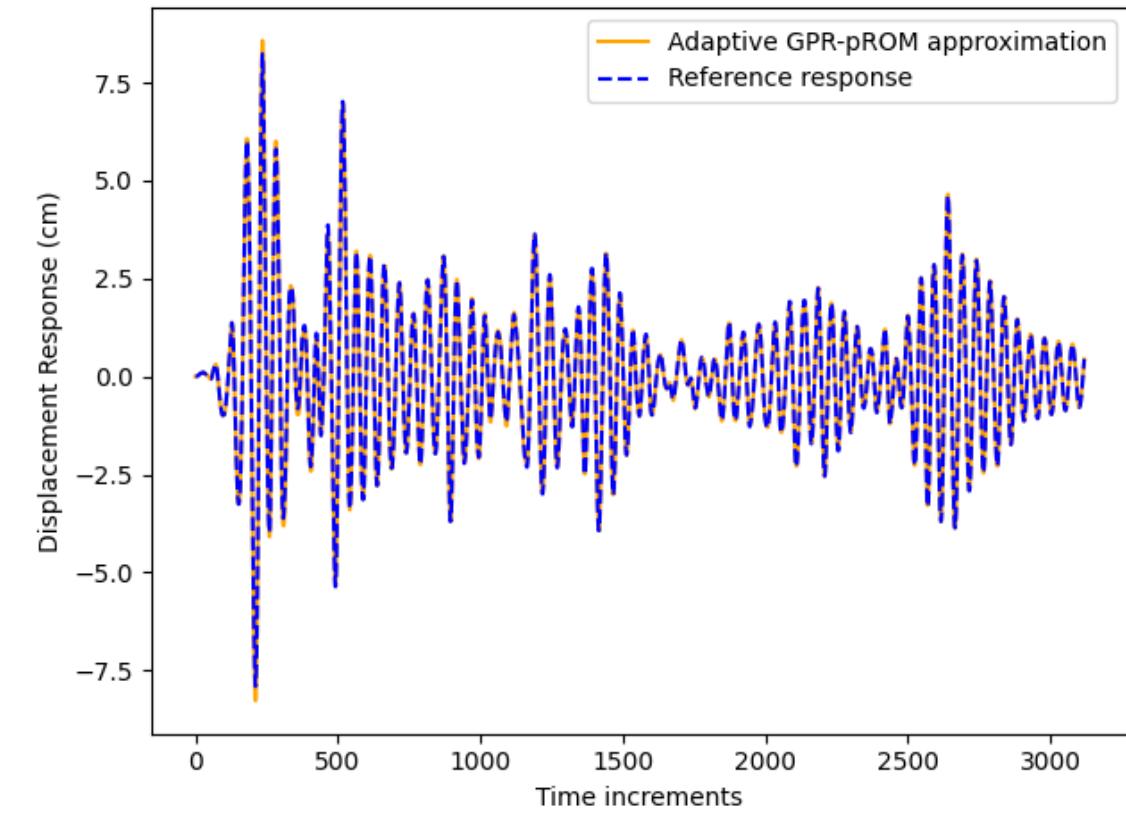
Example correlation pattern

Case studies

Accuracy performance of the framework



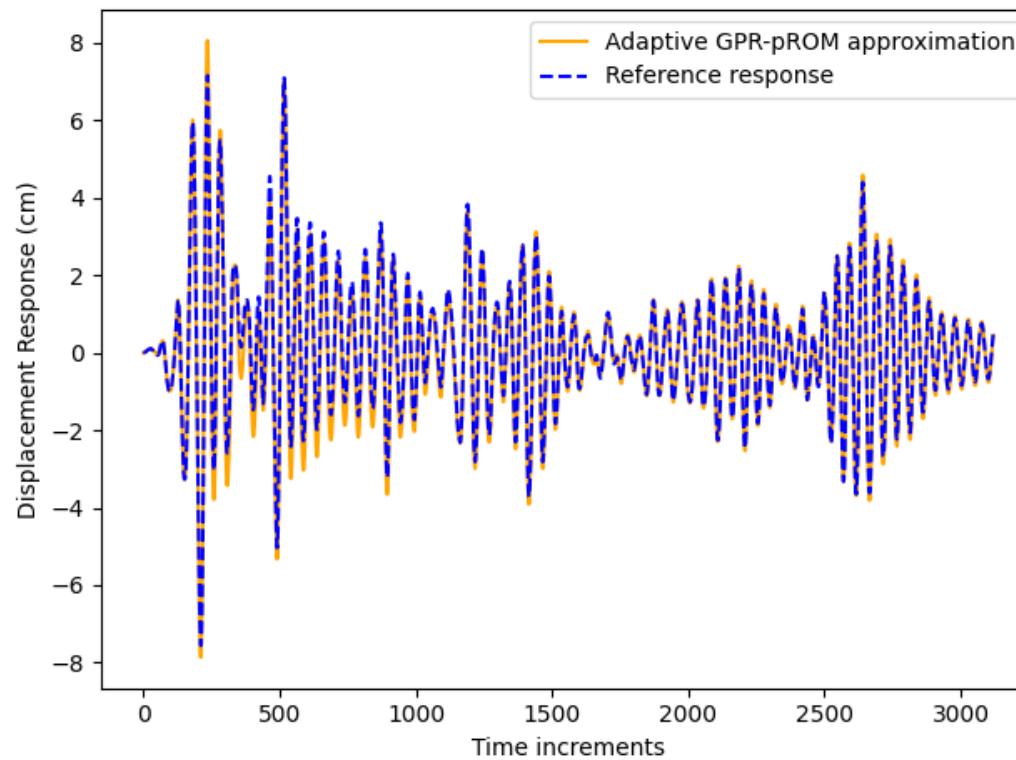
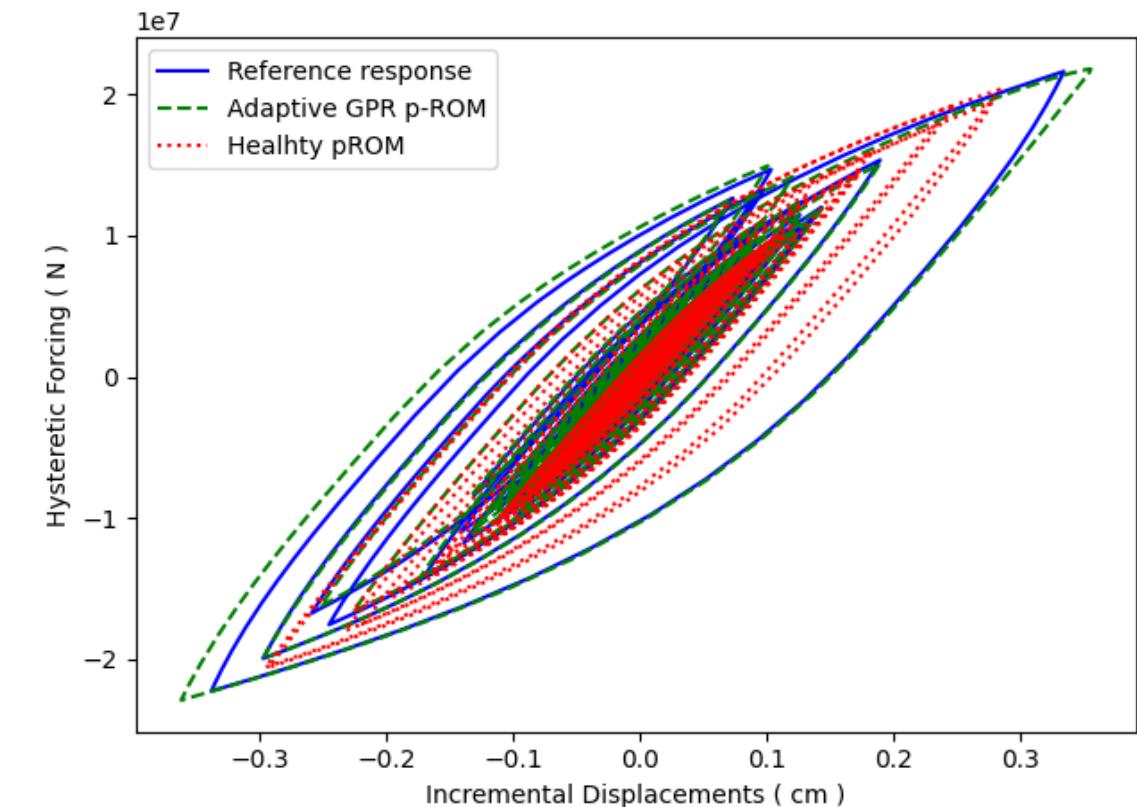
 Healthy pROM uses
initial linear Basis (**Scenario A**)



GPR-pROM adapts
projection Basis (**Scenario A**)

Case studies

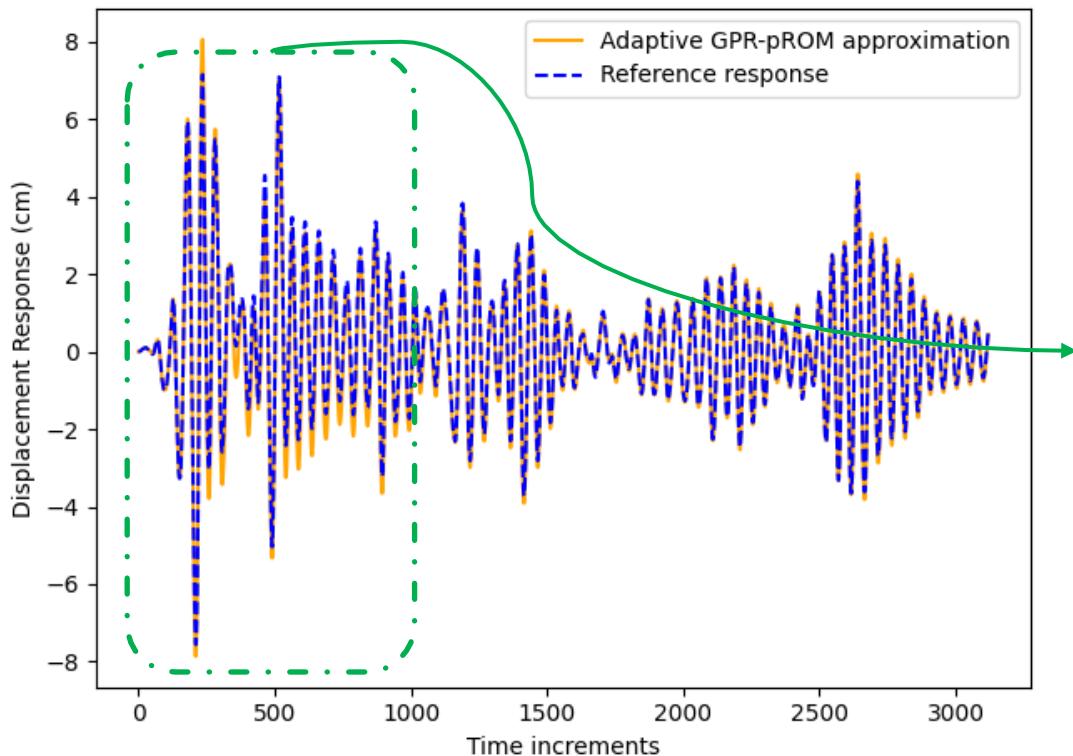
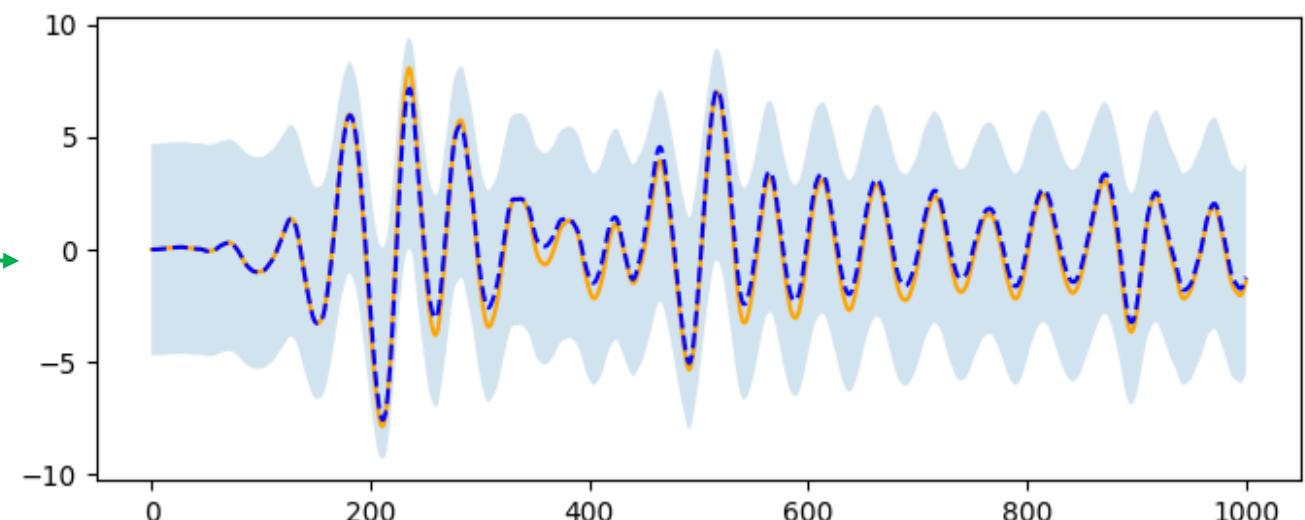
Accuracy performance of the framework



GPR-pROM adapts
projection Basis (**Scenario C**)

Case studies

Accuracy performance of the framework



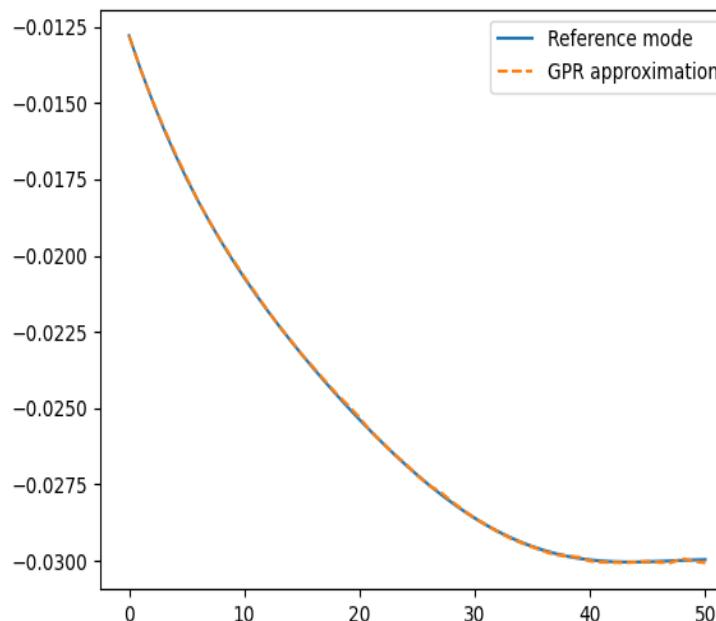
Confidence Bounds of
GPR-pROM prediction (**Scenario C**)

GPR-pROM adapts
projection Basis (**Scenario C**)

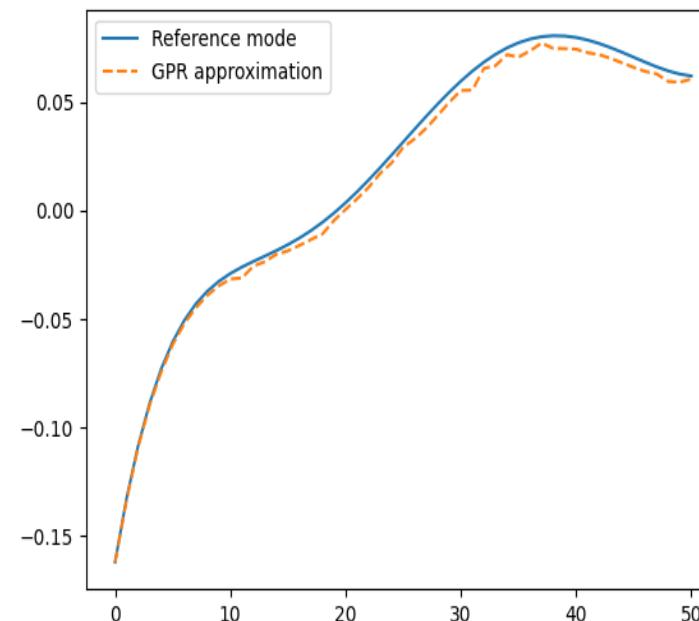
Case studies

Accuracy performance of the framework

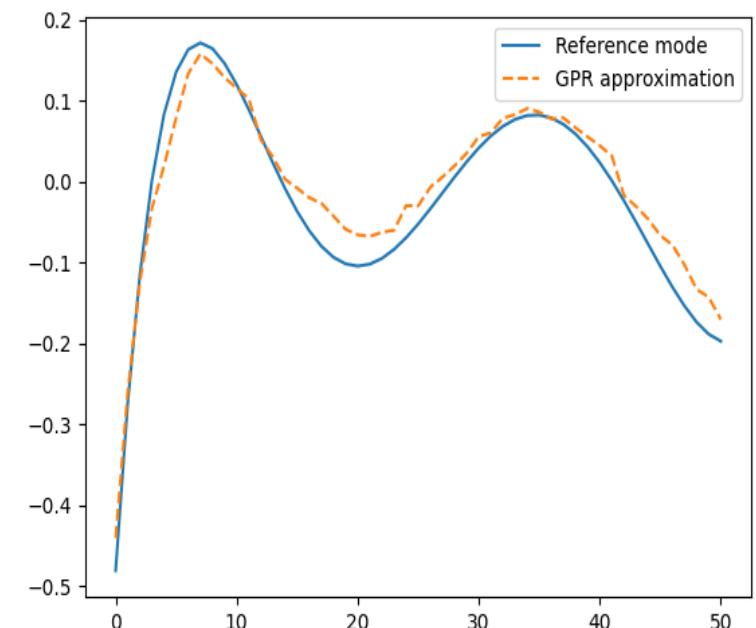
Reduced-order of pROM : 4 modes



GPR approximation
on **first mode (Scenario C)**



GPR approximation
on **fourth mode (Scenario C)**



GPR approximation
on **sixth mode (Scenario C)**

Concluding remarks

Limitations and outlook

The proposed adaptive GPR-pROM framework

- ✓ Extends performance range of traditional projection-based pROMs
- ✓ Captures underlying dynamics and dependencies during damage or condition deterioration scenarios
- ✓ Achieves **on the fly correction** of the pROM **based on sparse measurements**
- ✓ Provides confidence bounds for response estimation
- ✓ May be adapted as an **approximative, online low-cost surrogate** for Structural Health Monitoring applications

- Hyper-Reduction implications for additional efficiency need further investigation
- GPR approximation scheme fails to capture higher order modes
- GPR approximation performance is strongly dependent on noise level
- GPR input-output channels discretization needs to be automated and optimized

Next short-term steps:

- ❖ Generalize implementation – adjust overall scope:
Train pROM on earthquake database => Estimate damage in real-case scenarios
- ❖ Couple with filtering scheme to demonstrate potential on parameter/state/input estimation

Question session

