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Problem Statement
Robust digital virtualization of nonlinear dynamical systems
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High Fidelity Model
(finite element model)

Low-order representation that:

Captures underlying dynamics

HFM features:

Complex dynamics

Nonlinear behaviour

Parametric dependencies on:
* Geometric features

*  Material properties
« EOPs:

Environmental conditions

Operational conditions

»  Excitation

--=| Reproduces physical behaviour
Retains parametric dependencies

Computationally efficient

parametric Reduced Order

Model —
(low-order, equivalent model)
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Problem Statement
Condition deterioration or damage during operation

parametric Reduced Order

- Model
(low-order, equivalent model)

High Fidelity Model
(finite element model)

Ground truth :
representation v
Monitoring -+ pPROM
State ‘as-is’ Data framework
Uncertainties on EOPs _r

Adapt subspaces on varying dynamics

Digital-Twin

Damage apd cpndition Real-time information for policy-makers
deterioration

MMLDT
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Approach conceptualization

Parametric ROM (pROM) as forward simulator

High Fidelity Model
(finite element model)

1

Evaluate training instances
of dynamic structural response

I

ST

Physical Interpretation:
Dynamic response under any input state spans
low-dimensional subspace approximation of S

a

@ based on dominant components
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Approach conceptualization
Projection-based pROM as forward simulator

TR N

Mapping

N
3 & /
«
«
‘<
>
Space of physical coordinates Low-order subspace
Full-order HFM dynamics Propagate pROM dynamics
v
Physical Dimensionality Reduced Dimensionality
*  Captures high fidelity dynamics * Retains parametric dependencies
* Approximates time domain quantities * Inverse mapping exists
@ * Propagates dynamics in reduced space => Efficiency
MMLDT
CSET
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Approach conceptualization
Projection-based pROM as forward simulator

TR N

Mapping

P
:“ \ ’/ \
<
«
‘<
e
| Space of physical coordinates Low-order subspace
Full-order HFM dynamics Propagate pROM dynamics
Physical Dimensionality - — Reduced Dimensionality
4 Proper Orthogonal Decomposition )

u(t) =V(p)u,(t) U=ut)..ulty)=WIR'
@ _ V=W;,=W(,1:k) y

MMLDT
CSET
2021

Konstantinos Vlachas | 28.09.2021 | 6



Approach conceptualization
Adaptive pROM for robust Structural Health Monitoring

Projection-based POD subspaces

Propagates
local ROMs clustering to retain dependencies

Adaptivity in a pPROM context

MMLDT
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Approach conceptualization
Adaptivity through data assimilation

@

-

=> Adaptive pROM

Condlition indicator to highlight failure of ROM on the fly

N

Update subspace [ Approximate deformation modes anew

J

A

Updated modes are utilized to adjust pROM
projection basis
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A

Output approximation is employed to
estimate “modes of deformation”

A

______ Update pROM “on-the-fly” through
correction on POD modes

A

Noisy input signal from sparsely
monitored system

I
!

Condition indicator highlights pROM
performance failure at time t,

Data-driven mapping approximates system’s
deformed configuration from monitoring data
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Approach conceptualization
Adaptive pROM framework based on data assimilation

Offline / Training Strategy:

v’ Derive initial pROM as forward simulator :
Examples:
» Initial linear state and nonlinearities during operation to represent damage
» Initial nonlinear state and deterioration effects during operation

v Assemble Damage Indicator :
» Deterministic nature based on response comparison metrics
» Relies on limited nodal measurements ( 3% nodal output measured )

» Includes input noise / exploit noise statistics to define activation threshold

v Gaussian Process Regression (GPR) trained on residual response: (On line / During Operatio n: \
» GPR trained on pool of snapshots, without compromising efficiency
Examples: * Monitor residual response between pROM and monitoring data

* GPR trained on certain parametric states representing damage - If indicator signals “ROM Performance Deteriorates”:

v Employ GPR estimation to reconstruct full residual state

v' Enrichment mode = pROM approximation + GPR residual

@ \ v Enrich pROM by using corrected modes in Basis J

MMLDT
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Implementation details
Configurations and scenarios

/ Cantilever Beam Case Study

» Stochastic ground motion excitation
» Parametrized Boundary => Nonlinear rotational spring
» Limited number of nodes monitored

Damage Scenario:

v' Derive ROM based on “design” case study
v"Induce damage by activating parametric boundary
v' Use indicator to detect failure

v' Employ GPR-based scheme to assemble deformed modes

\

Hysteretic spring model

» Total restoring force:

R = Rlinea'r + Rhysteretz’c = aku + (]- — Od)k,'Z

AN

» Bouc-Wen equation with degradation/deterioration effects:
_ Au—v(t)(Blu]z|z[*

n(t)
n(t) = 1.0+ dye(t),

—yajz[*)

e(t) = /Ot zudt

v(t) = 1.0+ 6,¢(t),

Characteristics of the Bouc-Wen links:
B,v, A, w :Control smoothness and shape of hysteresis
0., 0y, :Degradation/Deterioration effects

a,k :Linear/Hysteretic contribution weighting

\ Refine POD-Basis
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Implementation details
Configurations and scenarios

Cantilever Beam Case Study

/

» Stochastic ground motion excitation
» Parametrized Boundary => Nonlinear rotational spring
» Limited number of nodes monitored

Damage Scenario:

v' Derive ROM based on “design” case study
v"Induce damage by activating parametric boundary
v' Use indicator to detect failure

v' Employ GPR-based scheme to assemble deformed modes

K Refine POD-Basis

\

J

Scenario B:

* Initial “design” case study is nonlinear

deterioration effects during operation

@

MMLDT
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* Damage is represented through degradation /

Hysteretic Bouc-Wen spring model

» Total restoring force:
R = Rlinea'r + Rhysteretic = aku + (]- - Od)k,'Z
» Bouc-Wen equation with degradation/deterioration effects:

A —v(t)(Blalzlz[* ! — yijz[?)

a n(t) t
e(t):/ zudt

n(t) = 1.0+ &,e(t),
8,7, A, w :Control smoothness and shape of hysteresis

0, 0y, ) : Degradation/Deterioration effects

: Linear/Hysteretic contribution weighting

Y

V(t) = 1.0 + Sye(t),

Characteristics of the Bouc-Wen links:

Scenario A:

Initial “design” case study is linear

Nonlinear spring is activated during operation
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Implementation details
Configurations and scenarios

/ Plane Frame Case Study \ .

» Stochastic parametrized ground motion excitation ( Amplitude )

» Nonlinear parametric rotational spring on all nodal connections
» Limited number of nodes monitored

Damage Scenario:

v' Derive ROM based on “design” case study

v"Induce damage by activating parametric boundary
v' Use indicator to detect failure

v' Employ GPR-based scheme to assemble deformed modes

i

— b

Scenario C:
* Initial “design” case study is linear B
@ * Nonlinear spring is activated during operation )
MMLDT * Evaluation earthquake not included in training set
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Implementation details
Configurations and scenarios

Linear vs Nonlinear response examples for different Bouc-Wen activation parameters
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Implementation details
Configurations and scenarios

Response examples with Bouc-Wen degradation phenomena during operation
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Implementation details
Damage indicator and GPR-scheme

Damage Indicator Measurement Data d; € R"4
> Deterministic nature based on response comparison metrics Vector of random values I = Rnd
=> Mahalanobis distance (MD) measure
> Relies on limited nodal ts ( 5% nodal output d) St. Dev. of o5 € R™"axMd
ed nodal measurements nodal output measure .
eles onfimi - ° P measurement signals
> Includes input noise ( 3% ) / exploit noise statistics to define activation threshold ———— Noise level 5
=> Alert threshold from Chi-Square distribution (0.01% significance level)
Gaussian Process Regression (GPR) Noisy measurement data
> Trained based on residual responses between monitoring data and pROM d, =d; + 5Jdr k
» GPR trained on pool of snapshots, without compromising online efficiency
» Input: Response information from monitoring channels
Output:. Additive correction on full coordinate space
» Leverage local and physical degree-of-freedom correlations
@ > Software: gpytorch implementation with MultitaskGPModel and RBFKernel()
MMLDT
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Implementation details
Damage indicator and GPR-scheme

1 —— MD Training Configuration

25 1 l Alarm Threshold
: ——- Damaged Validation Configuration
i ——- Healthy Validation Configuration

20 ~ -
ll
i
i

15 =:
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0 500 1000 1500 2000 2500 3000
Linear vs Nonlinear
response example (Scenario A)
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i —— MD Training Configuration

: Alarm Threshold

! -== Damaged Validation Configuration
——- Healthy Validation Configuration

T T T T T T
0 500 1000 1500 2000 2500 3000

Bouc-Wen degradation phenomena
during operation (Scenario B)
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Implementation details
Damage indicator and GPR-scheme

f \ Example monitored channel
Gaussian Process Regression (GPR) 1.000
» Trained based on residual responses between monitoring data and pROM
» GPR trained on pool of snapshots, without compromising online efficiency
» Input. Response information from monitoring channels
Output: Additive correction on full coordinate space
QLeverage local and physical degree-of-freedom correlations I J
A\ 4
v' Assemble indirect correlation matrices between response in
each physical coordinate | degree-of-freedom
v Leverage correlations to define output window for each o 0.00
monitored input channel 0 10 20 30 20 =0
@ v" Overlapping to ensure quality of approximation Example correlation pattern
MMLDT
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Case studies

Accuracy performance of the framework
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Healthy pROM approximation

——- Reference response

b .
T —
LT ——
1’*%‘?%*;"1*!;%%%‘;’fi'*‘*"-é’;’%’*i'iéi.f;v"f*‘*‘*‘f'v’:-*if-f'%"ﬁff"*f%"ﬁﬁssé‘i‘é:::e'ﬁ‘f‘s

Time increments

Healthy pROM uses
initial linear Basis (Scenario A)
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Case studies
Accuracy performance of the framework
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Case studies

Accuracy performance of the framework
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Case studies
Accuracy performance of the framework
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GPR approximation
on first mode (Scenario C)

Reduced-order of pPROM : 4 modes
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GPR approximation
on sixth mode (Scenario C)
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on fourth mode (Scenario C)
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Concluding remarks
Limitations and outlook

The proposed adaptive GPR-pROM framework

v Extends performance range of traditional projection-based pROMs
v' Captures underlying dynamics and dependencies during damage or condition deterioration scenarios
v' Achieves on the fly correction of the pPROM based on sparse measurements
v" Provides confidence bounds for response estimation
v' May be adapted as an approximative, online low-cost surrogate for Structural Health Monitoring applications
Hyper-Reduction implications for additional efficiency need further investigation
GPR approximation scheme fails to capture higher order modes
GPR approximation performance is strongly dependent on noise level
GPR input-output channels discretization needs to be automated and optimized
(" Next short-term steps: )
*» Generalize implementation — adjust overall scope:
Train pPROM on earthquake database => Estimate damage in real-case scenarios
@ \010 Couple with filtering scheme to demonstrate potential on parameter/state/input estimation y
MMLDT
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