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Layered Chalcogenides: Diversity of )i

compositional and structural arrangements

Laboratories
D _ Example: PbSnSe/TiSe,
Example: Bi,Te; Example: Zr e o van der Waals Heterostructures
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Anisotropic, layered structures contribute to useful and

interesting thermal, electronic, optical properties,
Thermoelectrics, Photothermoelectric Effect,
Topological Insulators, Dirac Semimetals




Interfaces and Dislocations are important

Microstructural Strategies for

°|mpaCt on fu nCtionaI properties: Nanostructured Bulk Thermoelectrics

-Electron and phonon scattering
=» tradeoffs for thermoelectrics

-Dislocations predicted to support novel
quantum mechanical states.

* Processing:

Bulk approaches to thermoelectrics
Hot pressing, Extrusion, nanostructuring,
phase-transformations
Thin film nanostructure growth, epitaxy,
Accomodation of coherency strain
New layer nucleation

Medlin and Snyder, Current Opinion in
Colloid and Interface Science, 2009

Our focus: Atomic resolution electron microscopy
to clarify structure of crystal defects in the layered Sandia
chalcogenides @ National

Laboratories



Outline

 Crystal structure in tetradymite-type compounds
eLayered structure gives flexibility in
accommodating compositional variations
*Close structural relationship to rock-salt
chalcogenides

e Dislocation Structure:

Modes of core spreading
and dissociation.
Bi,Te;, ZrTe;

e Interfaces:

Interfacial line-defects in phase-
transformation and strain accommodation

Defects in van der Waals heterostructure
thin films
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Bismuth Telluride (Bi,Te,): Crystal Structure

*Rhombohedral (R-3m) structure
h‘? “Based on tetradymite (Bi,STe,) prototype
IV ?i B -Isomorphous with Bi,Se,, Sb,Te,
O M f; 3 O IG *Three crystallographically distinct atomic sites
149 | &4 "eoee- ‘Te()-Te(V layers: van der Waals bonding
Te(1) B X9 @ .. 1 , c HAADE-STEM
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Layered structure allows flexibility in
accommodating variations in composition

Insertion of metal bi-layers
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Example:
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show ordering in (Bi,),,(Bi,Te;), series

Medlin & Snyder, JOM 2013



Layered structure allows flexibility in
accommodating variations in composition

Example: (Ag,Sb),Te, transition phase during
Metal rich, 7-Layer M;X, fault nucleation of Sb,Te, precipitates in AgSbTe,
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Tetradymite and Rocksalt structures
are closely related

Rocksalt (MX) Structure Tetradymite (M,X;) Structure

Example:

Fm-3m -

> R-3m Crystallographically Aligned
H @ B & B © B Sb,Te; precipitates in PbTe
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Heinz, Snyder, lkeda, and
Medlin, Acta Mat. 2011
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» Solid-state phase transformations in chalcogenides _
e Structural interpretation of extended defects @ Sandia
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How do these structural considerations
impact Dislocations and Interfaces?

Edge Dislocation Interfacial Disconnection
Screw Dislocation

| B
L
“
“
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%
Reference Frame: ;
Perfect Crystal Y
ste
Burgers
Vectort
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How do these structural considerations
impact Dislocations and Interfaces?

Dislocations in Bismuth Telluride
Burgers vectors lying in basal plane Array of 1/3<2-1-1 0> Dislocations in Bi,Te,

Amelinckx and Delavignette, 1960

Looking down on basal plane

Fig. 1. Dislocation network in Bi;Te,. Note that certain seg-
ments of disloeations and certain node-points have left the foil
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Dislocation Core structure:
Termination at Te()-Te(!) layer

5-layer '-"' A
Bi,Te, { '
“quintet” :

[000 1]

b=1/3<2 -1 -1 0>

I 60° mixed
dislocation

Stoichiometric Core

Is dislocation
compact or
<2-1-10 > projection dissociated?

Sandia
National
Medlin, Yang, Spataru, Hale, Mishin, Nature Communications 2019 Laboratories



Dissociated Dislocations
Balance of strain energy and fault energy
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What happens in bismuth telluride? @ Nt
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Broad core, but not dissociated |nto partlals

Disregistry: Pelerls Nabarro Model
compared with experiment

Experiment:
6 independent
dislocations
2-4 images each
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Non-basal dislocations:
Screw dislocations important to crystal growth

Example: spiral growth steps at
screw dislocation in Bi,Te; thin film

Screw Dislocation

nm

_Growth steps,
1'quintuple layer high

S == bk G 4= R

b =(1/3)[0-111),
=[001]

—

0 0.4 0.8 1.2
pm

M. Ferhat, J.C. Tedenac, J. Nagao,
J. Crystal Growth (2000) @ Sandia

What about edge dislocations

with non-basal Burgers vectors? National

Laboratories




Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Non-basal edge dislocations:
What happens if we pull out a quintuple unit?
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Dislocations in Bi,Te; Nanowires

Wires formed by electrochemical 1= ) )

deposition in nanoporous AAO —— s _ : = = s
templates. e Bt e

Free standing wires annealed 30 = = e

minutes at 300°C in Ar-3%H.,.

= Some loss of Te due to high
vapor pressure

Medlin, Erickson, Limmer, Yelton, Siegal, J. Mat. Sci. 2014 ) Laboratories



Dislocations have dissociated core:
two configurations
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(1I3)[0 1 -1 -1] Dislocation in Bi,Te;:
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7-Layer Bi,;Te, faults: Mechanism to
accommodate Te loss during annealing

BiyTe, fault

Climb dissociation A
Y (3/15) [0 0 0 -1]
A—/K/ifzﬂu

 b: parallel with c-

(i _— _.-""----
I B /_ c :
- - _/_ B axis

[3 (e ct
AG— Bu— —C * 3/5 of the total
B A—:—_ﬂ_‘:_:— c —=/A dislocation content
- p C, along c-axis
(1/15)[05 -5 2] '3 = A _——— B
+b is parallel with A [\ “\_Px B
(0 1 -1 5) planes B e e —A
c a —__::_:‘_::___TB
« 2/5 of the total B= C— 2,
dislocation content G—T:f:LBu - B
. __'_———____ —_‘__‘_‘_‘_‘__'__‘——-—-_._,_‘—
along c-axis B—‘\__i'.‘- — “
A= B C
Horizontal component: (1/3) [01 -1 0] A BA
» analogous to Shockley partial.
* avoids fault in stacking resulting from
additional 2 planes at Bi,;Te, fault Sandia
@ National
Laboratories

Medlin, Erickson, Limmer, Yelton, Siegal, J. Mat. Sci. 2014



ZrTe;: A complex, layered chalcogenide )i

Laboratories

Material of interest as a Dirac Semimetal

Interdiffusion of contact metallization
Corrugated layering structure causes large strains

Orthorhombic, Cmcm

FIBPt <
- 'u"“&‘é 4

Pd. Pd

% Diﬁus‘i‘o'ri Kayei- g
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Si0,

' =l
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* 4 @ @ @ e R A Gl % Mooy
[ ] - ] - ] L] e - ." 1+ Thoy

[ 1 0 O] projection

a=3.9875A, b=14.530A, c=13.724A Ok :--7:::

H. Fjellvag, A. Kjekshus, Solid State D n e - R o3
Communications, 60 (2) (1986) 91-93 e Rt

F. Léonard, W.L. Yu, K.C. Collins, D.L. Medlin, J.D. Sugar, A.A. Talin, W. Pan
ACS Applied Materials and Interfaces 9 (42) (2017) 37041-37047



. o . o o o Sandia
Dislocation Structure in Zirconium Telluride i) Naat

HAADF-STEM

% 20N AT
t’ﬁ-‘fﬂ":‘ﬂﬁ; TR

Medlin, Spataru, Modine, Ophus, In prep for APL Materials

ZrTe; Crystal structure
Orthorhombic, Cmcm
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. . . . . . Sandia
Dislocation Structure in Zirconium Telluride @m‘:&ﬁ!ﬁes
HAADF-STEM

GPA Strain Map
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Climb dissociation
into two "2[0 0 1]
partial dislocations

I Medlin, Spataru, Modine, Ophus, In prep for APL Materials



Shear strain, parallel with (0 1 0) planes )z

laboratories
Experiment Anisotropic E|aSthlty Isotroplc Elast|C|ty
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Anisotropic solution from J.W. Steeds, "Introduction to Anisotropic Elasticity Theory of
Dislocations," Clarendon Press, Oxford, 1973

Solved for 2 dislocations, each with b= 1/2(001).
placed at the experimentally measured core positions.

I ————————
Medlin, Spataru, Modine, Ophus, In prep for APL Materials




Sandia
r“ National
laboratories

Interfaces

27




Atomic Structure of the Bi,Te, Basal Twin: ([,

Energetic preference for termination at Te(® sites

HAADF-STEM Imaging: DFT Calculations:
Twin Boundary Terminated at Te(" layer Three Possible Compositional Terminations
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D.L. Medlin, Q.M. Ramasse, C. D. Spataru, N.C. Yang, J. Appl. Phys. (2010)




Preferential termination at Te!Y) layers: ) i
Impact on boundary morphology

Example: step in Bi,Te; Basal Twin:
25 planes high ( quintets)
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Grain boundary vicinal to (0001):
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Journal of Electronic c c
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Heterophase Rocksalt/Tetradymite interfaces ()&

Rocksalt (MX) Structure Tetradymite (M,X;) Structure

) ) Example:
Fm-3m R-3m Crystallographically Aligned
H e B e B o B Sb,Te; precipitates in PbTe
O O o O o o o S
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Hlo|E ocH o B Heinz, Snyder, lkeda, and

o o Jo .DA rs.o .D .O Medlin, Acta Mat. 2011

oOogonOo oo O O o 0 oo g o

Line defects help us understand atomic mechanisms for
precipitate growth and strain accommodation




Disconnections in Phase Transformations ) e,
Example: Sb,Te,; precipitate in AgSbTe, thermoelectric

Laboratories
Burgers vector: Resolve b into components
25 SRR RS normal and parallel to interface

b =(a,,-c,./3V3)[111]

mismatch of step heights.

°|b,|=0.3747A
A0 TAT *Analogous to
b, =—>[121] Shockley partial
6 Dislocation
«|by|=2.48A
Y . "
Upper crystal Lower crystal .
circuit circuit Rocksalt e !
\ e Yy A ——a
b=-(C, +PC ) motal pane o 'A% T ¢
-Coordinate Transformation from A" o sacing ,
Tetradymite to Rock-salt. < - ‘ .
b p
-Coherently strained reference A A A Tetradymite

Frame ‘0.79% misfitz (i) (ii) (iii)



Schematic of Transformation Sequence

Y
B Y p
o B A
Ag ; Sb C Double Te layer, OC Y
T B (but wrong B
e stacking) Dislocati h
A \ B Tonystalinto O
y4_| correct stacking C Rocksalt
R(’SE}OA\éel :;aer:;a B T B Tetradymite
o a 1/6[-12-1] o
C BC C
Rocksalt ,A\B A ,A\B
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A Rocksalt/Tetradymite Interface with Large Misfit

Sb,Te; Precipitates in PbTe | Selamial
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Defect spacing accommodates the (111)/(0001) coherency strain.
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Heinz, Ikeda, Snyder, Medlin, Acta Materialia (2011)



Defects in van der Waals Heterostructures

Collaboration with David Johnson. University of Oregon

Example: Compositional Defects in  Linking defect structure
(Pb,Sn,_,Se),,;TiSe, Multi-layer thin film to local composition.

-Connection of kinetics and
thermodynamics to
mechanisms underpinning
growth and stability.

* Extending defect analysis
formalisms to systems
with lower dimensional
e IRy e periodicities

CHEIZES -"turbostratic"” disorder in
layered systems;

R S R =
S N e S

i @ Sandia
i AT National
Ti Sn Pb Laboratories



The MER method: flexible approach for tailoring
atomic-sequence of layered chalcogenides

Modulated Elemental Reactants (MER) method:

* Precursor structure designed to mimic the final product
» Deposit a target number of atoms of each element per layer
* Gentle annealing to crystallize, typically 5 - 30 minutes at 250 — 450°C

Amorphous Crystalline
'?': o 0} . In-plane
*Sn “‘3 "y XX ¥ rotational

("turbostratic")

- Se .:: g{d‘.‘“ﬁ‘ N disorder

X SiO,/Si
N substrate
David Johnson et al., University of Oregon (NOT epitaxial)

What types of crystal and layer defects arise?

Sandia
National
Laboratories



System: Multilayers of TiSe, & SnSe:

TiSe,

5598
9= T

4oy | 0.5998 nm

Trigonal: P-3m1

olol® 0% |0 a=0.3548 nm
s 08 a%habdos c=0.5998 nm

P. Erhlich, Angewandte Chemie (1948)

Layer thicknesses
are closely matched

Distortion from
+ 1. rocksalt structure

1

0.5747nm

Orthorhombic: Pnma

a=1.14942 nm
b=0.4151 nm
c=0.4442 nm

M. Sist et al., Acta Cryst. B (2016)

-Bulk: Phase transition to Cmcm ~810 K)
-Monolayers: rectangular unit cell,
2D space group: p2gg

(Hamann et al., Inorganic Chemistry, 2017)

Sandia
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log (intensity) / a.u

D.M. Hammon, D. Bardgett, S.R. Bauers, T.W. Kasel, A.M. Mroz, C.H. Hendon, D.L. Medlin, D.C. Johnson, Chem Materials, 2020

Good control of layer periodicities:

TiSe,/SnSe

X-Ray Diffraction
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Example layered structure: 1 SnSe /8 TiSe,

EDS Spectrum Image HAADF-STEM
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net, prefiltering 3 pix average, postiiter 3 pix average.

What about local defects?
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Defects: Broad Classifications

Interlayer defects

Intralayer defects

Planar faults

Grain
Boundary

Dislocation

Crystalline defects
within the confines of
an individual layer

Interfacial defects

incomplete

layer Misfit dislocations

Interfacial steps &
disconnections

—

offset layers

Morphological defects in
the layer arrangements

Crystalline defects at the
interfaces between
layers

National
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Intralayer defects: GBs and twinning

1 SnSe : 8 TiSe, Twin boundary in TiSe, layer

115€, $II1733803302 1 1 RET
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SnSe O NOTSLSIET T 77
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Ti862 ™ ¢ . . ® . . .
¢ © e & © €& ® ®
Sio L] L] L] L [ L L] L]
2 [-2 1 10]
Sl L @ ® £ \ & L] &
TiSe, has rhombohedral symmetry e e e
180° rotation about [0001] axis gives twin R ¢ K N
@ 3 2 2 S L ] L ] ?
Crystal nucleation during annealing _
Sandia
R. Gannon, D. Hamann, J. Ditto, G. Mitchson, S. Bauers; D. Merrill, D. Medlin; D. Johnson, National

ACS Applied Nano Materials, submitted 2021 Lab es



Termination of a twin within a TiSe,

layer

1 SnSe: 4 TiSe,

TiSe,
SnSe g T ————e e e e eees.
TiSe,
SnSe 3 ‘b‘\ ‘%K‘: *
- ¥ .ru‘r‘ﬁ‘i"ffr‘fffﬁ Wﬁ"f!fﬂmm T ‘
TiSe, ‘- ) %‘L R X T 44 L A L LT Ly errreey k‘i\%“ﬂﬁ\
\\*.\\‘.w; NSNS TS
\\\\\\\\\x\\\\n LSS ST TR iaeon,
SnSe o “*...‘"-"_.__'.::".__'-'. sy
TiSe, [-2 1 10]
L] 1% L] L]
SnSe — S ® . ®
TiSe, o L5 B TR
SnSe B e sy « e e
L] 1%} ] L]

Analogous to "incoherent twin" in FCC materials ¢ e o e

"Double-positioning" boundary

R. Gannon, D. Hamann, J. Ditto, G. Mitchson, S. Bauers; D. Merrill, D. Medlin; D. Johnson,
ACS Applied Nano Materials, submitted 2021
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Intralayer defect: Anti-Phase Boundaries in SnSe

9 SnSe : 2 TiSe,
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Spread in out-of-plane orientation

| Scanning Microbeam

Diffraction

9 SnSe : 2 TiSe,

llographic A

Crystal
Hgalive

ic Angla of Film
to Substrate (degrees)
- -

9 SnSe : 2 TiSe,

Key signature of

interlayer defects
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Interlayer Defects: Joining of two incomplete
layers

"Disconnection” == defect with both step and dislocation content

R. Gannon, D. Hamann, J. Ditto, G. Mitchson, S. Bauers; D. Merrill, D. Medlin; D. Johnson, National

Because the step-heights are similar, the dislocation content is sma@ Sandia
ACS Applied Nano Materials, submitted 2021 Laboratories



Interlayer Defects: Incomplete Layer between Full

20190407_UO_SnSe_TiSe2/9_2/009_image_rotation_series7_dislocation/04.29.52_dfstem_fov73p81nm.jpg

TOE?nm
SnSe SnSe

-
bt AT LT

Much larger Burgers vector

Bending associated with the dislocation strain at incomplete layers
is the likely origin of spread in out-of-plane orientation.

National

R. Gannon, D. Hamann, J. Ditto, G. Mitchson, S. Bauers; D. Merrill, D. Medlin; D. Johnson, Laboratories

ACS Applied Nano Materials, submitted 2021




Interlayer Defects: Offset layers
HAADF-STEM

EDS Spectrum Image

20190407_UO_SnSe_TiSe2/9_2/006_EDSSI_910kx/S| EDS-HAADF 0305.emd

20190407_UO_SnSe_TiSe2/9_2/005_image_rotation_series5/02.48.38_dfstem_fov36p91nm.jpg




Synopsis
Key structural aspects layered chalcogenides are manifested in the
detailed structures of extended defects in these materials.

Weak, van der Waals bonding across double chalcogenide
layers

Ability to accommodate non-stoichiometry through altering
the layer stacking

Close inter-relationship between the rocksalt and tetradymite
structural types.

Atomic resolution microscopy is clarifying the character of dislocations,
interfaces, and interfacial line defects in the chalcogenides

Complex, dissociated core structures observed in Bi,Te; and ZrTe,

Role in phase transformations and accommodating coherency strain

Sandia
National
Laboratories

Insight to defect formation in novel synthesis strategies.
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