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Abstract—We present the application of FAIR principles to
photovoltaic time series data to increase their reusability within
the photovoltaic research community. The main requirements for
a “FAIRified” dataset is to have a clearly defined data format,
and to make accessible all metadata for this dataset to humans
and machines. To achieve FAIRification, we implement a data
model that separates the photovoltaic data and its metadata.
The metadata and their descriptions are registered on a data
repository in a human and machine readable format, using
JSON-LD. Also, secure APIs are developed to access photovoltaic
data. This approach has long term scalability and maintainability.

Index Terms—Photovoltaics, Time Series data, FAIR princi-
ples, Metadata, JSON-1d, RDF/XML, W3C, RDF

I. INTRODUCTION

The accessibility and reusability of digital research objects
[1] generated from scientific research plays a critical role in
the resulting impact of this research for society and the world.
Research objects that are Findable, Accessible, Interoperable,
and Reusable (FAIR) by both humans and machines ensure
transparent, reproducible, and reusable science. The publi-
cation of Wilkinson et al.’s paper [2], [3] introduced a set
of principles that aim to enhance the ability of machines to
find and process data while also improving the reusability of
data in the research enterprise while also supporting efforts to
scientific reproducibility [4], [S5]. The FAIR principles differ
from other studies exploring the reusability of data in that the
FAIR principles place particular emphasis on improving the
reusability and findability of data by and for machines.

We present the application of FAIR principles to photo-
voltaic (PV) time series data of a fleet of 316 commerical PV
power plant systems distributed across the US and studied by
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Karimi et al. [6]. Karimi demonstrates a deep learning model
(a geospatiotemporal graph neural network) which uses the
time series datasets of 316 PV systems (referred to as the raw
PV data) from PV power plants to forecast PV power data
(referred to as forecasted PV data) of all the power plants in
the fleet. To our knowledge, this study is the first to present
the application of FAIR principles to PV time series data.
However, the FAIR principles have been extensively applied
in other fields.

We can observe a movement towards data-driven research in
many scientific fields and consequently the wide adoption of
FAIR principles. For example, [7] applies FAIR principles to
a data repository for plant phenomics called *GnplS’, in order
to enhance its interoperability with other data repositories. [7]
is an instance of big federal data centers implementing FAIR
data principles; FAIRification of Atmospheric Radiation Mea-
surement [8] data. In [9], FAIR principles are applied to the
German Network for Bioinformatics Infrastructure (de.NBI),
which is a large distributed bioinformatics infrastructure. Fur-
ther, [10] discusses the application of FAIR principles to
health research, with [11] presenting the FAIRification of the
Open-Source Registry for Rare Diseases (OSSE). Although, to
our knowledge there is no literature on the application of FAIR
principles to PV data, there are studies exploring the data-
driven approach to PV research [12], [13], [14]. Therefore,
the current study introducing the FAIRification of PV data is
relevant and timely.

II. PV DATA DESCRIPTION

We gather photovoltaic (PV) time series data from a fleet of
316 power plants located in various climate zones distributed
across the US. There are multiple DC to AC electricity
inverters in a single power plant, with each inverter controlling
multiple racks of PV modules. The inverters, which are the
primary devices of data collection, come in different varieties.
The specifications of a particular inverter can be looked up if
its manufacturer and model number are available.

The most common variables, and data, that are collected via
inverters are listed in table I. In addition to the data collected
from the power plants, weather and insolation data pertaining
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Proprietary information

+ Anonymized id
+ sensitive data

Metadata

PV data

+ Global Horizontal Irradiance
+ inverter AC_energy

+ inverter AC_power

+ pseudo month age

+ module temperature

+ Wind speed

+ time stamp local

+ Koppen-Geiger climate

+ Latitude in decimal degrees

+ Longitude in decimal degrees
+ module model anonymized id
+ module supplier anonymized id
+ modules per string

+ number of inverters

+ number modules

+ redcap project name Forecasted data

+ row key 7-digit alpha numeric \ + Global Horizontal Irradiance

Data description

+row_key format
+ column name

+ column description
+ Unit

+ Standard

+ Format

+system age +inverter AC_energy

+ sample number +inverter AC_power
+ time series start date + pseudo month age

+ time series end date + module temperature
+ Wind speed
+ time stamp local
Fig. 1: The data model of the FAIRified PV data and meta-
data.The logical separations and relations between different
entities are shown.

to the locations of all the power plants are collected via the
SolarGIS API. SolarGIS data is based on their analysis of
satellite images and development of a detailed atmospheric
model [15], [16]. Table 2 lists the variables collected via
solarGIS. The inverter data is typically 5 minute interval data,
while the SolarGIS is intrinsically 30 minute interval due to
the satellite’s periodicity over any particular location, and is
interpolated to 15 minute interval for ingestion.

The raw PV data used in this st-GNN deep learning study
are a small segment of the full timeseries datasets of these
systems, and consist of the power time series of the 316 PV
power plants over a two year period. The PV data are stored
in the SDLE Research Center’s Apache Hadoop/Hbase/Spark
cluster [17], [18], which we refer to as CRADLE (Common
Research Analytics and Data Lifecycle Environment)), and is
based on the Cloudera CDH distribution.

HBase, is a NoSQL database based on triples, where each
cell has an associated rowkey and columnkey. These triples
are similar to Resource Description Framework triples, so
that HBase is often used as a RDF database store [19], [20].
This PV data is proprietary, so is not currently accessible, or
findable by the general public PV research community, but the
same FAIRification approaches can be used for open datasets
that are share publically. The current study applies the FAIR
principles to both raw and forecasted PV data.

III. RESULTS
A. FAIR Data Model

The data model of the raw and forecasted PV data after
FAlIRification is shown in Fig. 1. The metadata and the PV
time series data are clearly separated in this resultant data
model. The data model includes detailed descriptions of the
metadata. Additionally, the sensitive data, such as inverter or
module supplier identification information, in the metadata are
anonymized and stored separately in Research Electronic Data
Capture (REDCap), which is a Health Insurance Portability

and Accountability Act (HIPAA) compliant flat-file database
and web application [21]. In the resultant data model the
mapping between the metadata and the PV data is achieved
via a unique alphanumeric row-key string, that serves as
the anonymized PV system identifier. Although the raw and
forecasted PV data are stored separately, they share the same
row-key string.

B. FAIRified Implementation

The data are collected using the data transfer protocols
sFTP, https, and REST APIs. The collected raw data are
then moved to HDFS. After moving the data, Spark data
ingestion jobs are scheduled. In the process of scheduling,
the metadata are separated from the raw data and JSON-LD
objects are generated from the metadata. Finally, these objects
are published to CRADLE for our private cloud researchers
or to the public on our CWRU-SDLE OSF site. Once the data
are ingested to HBase, the data become easily accessible to
the SDLE researchers for analysis, modeling, and prediction.
The models and their results are ingested back into HBase and
become available for future research work. Fig. 3 illustrates
the pipeline developed for the FAIRification of the data.

Fig. 2 shows the infrastructure used to implement the FAIR-
ified raw and forecasted PV data. The data are stored in HBase.
Each entry in HBase is stored as RDF triples; a row key, a
column key, and the input value. The physical representation
of the FAIRified metadata and PV time series data consists of
two data tables in HBase. The PV data are stored in the HBase
table ‘ecradle’ and the metadata are stored in the HBase table
‘meta’. A single row of the ’ecradle’ table stores a single
month’s PV time series data. Further, each row is assigned
a rowkey defined by the 7 character alphanumeric-yearmonth
i.e bq03nu9-201803. The Scrypt algorithm with Salt is used to
create the unique PV system identifier alphanumeric [22]. The
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Fig. 2: The software architecture of the FAIRified PV data
and metadata. The interconnections between the hardware and
software components of the implementation are shown.



Variable UN/CEFACT Code schema.org/DataType Data Source
Inverter AC power KWT schema.org/Number SunFarm
Inverter DC power KWT schema.org/Number SunFarm
Inverter AC energy KWH schema.org/Number SunFarm
Module temperature CEL schema.org/Number SunFarm
Date of measurement DAY schema.org/Date SolarGIS
Time of measurement MIN schema.org/DateTime SolarGIS
Global horizontal irradiance D54 schema.org/Number SolarGIS
Direct normal irradiance D54 schema.org/Number SolarGIS
Diffuse horizontal irradiance D54 schema.org/Number SolarGIS
Sun altitude angle DD schema.org/Number SolarGIS
Sun azimuth angle DD schema.org/Number SolarGIS
Air temperature at 2m CEL schema.org/Number SolarGIS
Atmospheric pressure HPA schema.org/Number SolarGIS
Relative humidity - schema.org/Number SolarGIS
Wind speed at 10m MTS schema.org/Number SolarGIS
Wind direction at 10m DD schema.org/Number SolarGIS
Precipitable water 28 schema.org/Number SolarGIS

TABLE I: Common variables collected via inverters and SolarGIS and there units in UN/CEFACT common code and data
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Fig. 3: The software architecture of the FAIRified PV data,
metadata and modeling pipelines are shown.

“ecradle’ table is a collection of packed cells, with each cell
holding a single month’s worth of data as a comma separated
list. The proprietary, or sensitive, metadata information are
stored separately in REDCap.

The version controlled documentation and metadata descrip-
tions are maintained in a Git source versioning repository,
hosted on Bitbucket. The final versions of the documentation
and descriptions for FAIRified Open datasets are published to
the CWRU-SDLE Open Science Framework (OSF) [23] site
of our SDLE Research Center [24]. OSF is an open source
web application supporting research collaborations.

OSF indexes the uploaded documentation and metadata
descriptions so that they are human and machine searchable.
Although open data are freely available on OSF, for proprietary
data, a researcher may identify the required data from the
descriptions of metadata on OSF and submit a direct request
for access to the SDLE research center. The infrastructure
of the FAIRified PV data are built to support such secure
access to proprietary data through enabling REST API access
to HBase via a Amazon Web Services (AWS) or Google Cloud
Platform API gateway.

C. FAIR Metadata Schema

The semantic models were defined after the data collection
process. Solar plants, inverters, modules, PV data, and weather

{

"@context": "https://www.schema.org",

"@type": "Product",

"brand": "Enphase",

"name": "Enphase IQ 7A",

"category": "Microinverter",

"model": "IQ /A ",

"additionalProperty": [
{
"Qtype": "PropertyValue",
"name": "Inverter Curtailment",
"unitCode": "KWT",
"value": "0.3"
}I
"@type": "PropertyValue",
"name": "Number of modules Connected",
nyalue": "iv

I

"description": "The high-powered smart grid-ready
Enphase IQ 7A MicroTM achieving the highest
system efficiency for systems with 60-cell and

72-cell modules."

Fig. 4: JSON-LD code snippet for the RDF representation of
the inverter *’Enphase 1Q 7A’. Details of the inverter such as its
type, brand, model etc. are included in the RDF representation
S0 as to remove any ambiguity regarding the identity of the
inverter.

data were all identified as model entities. We analyzed the at-
tributes and metadata for each of the identified model entities,
and came up with a linkable semantic model. Fig. 1 depicts
the final semantic model. The implementation of this logical
model was realized with the use of linked data technologies
and the Semantic Web. Fig. 4, 6 and 7 shows the resultant
JSON-LD/XML-RDF schema files.

The machine readable metadata schema of the FAIRified
raw and forecasted PV data is in XML-RDF and JSON-
LD [25] formats. The files are generated according to W3C
RDF 1.1 metadata schema documentation [26]. The preferred



"@Qcontext": "https://www.schema.org",
"@type": "Product",
"brand": "Canadian Solar",
"name": "Canadian Solar CS6K-300MS",
"category": "Solar Panel",
"model": " CS6K-300MS-T4",
"additionalProperty": [
{
"Qtype": "PropertyValue",
"name": "Technology",
"value": "PERC"
b
{
"@type": "PropertyValue",
"name": "Cell",
"value": "Mono-Si"
Iy
{
"@type": "PropertyValue",
"name": "Serial Number",
"value": "11711481451496"
b
{
"@type": "PropertyValue",
"name": "Module Wattage",
"unitCode": "KWT",
"value": "0.3"
}
:|I
"description": "The 300 watt CS6K-300MS solar

panel features efficient PERC solar cells to
significantly improve power performance in
morning, evening and other low light
conditions."

}

Fig. 5: Example JSON-LD code snippet for the RDF repre-
sentation of a solar module.

format is the lighter weight JSON-Id. It is well designed for
use with REST API services, and has also been demonstrated
as serving well for graph type datasets [27], [28].

Fig. 7 show the JSON-LD schema and the RDF/XML
schema for the SDLE SunFarm power plant.

IV. ANALYSIS

The conditions for each FAIR principle is satisfied in this
study as detailed below.

Findability of the dataset is enabled through registering the
metadata on OSF, with a global unique persistent identifier
assigned to the metadata.

The researchers associated with the research likewise have
global unique persistent identifiers through their Open Re-
searcher and Contributor ID (ORCID). Additionally, the rich
metadata of the PV data are descriptive for the benefit of
human readers. Further, machine readability of the metadata
is achieved through the use of W3C RDF 1.1 schema.

The metadata registered on OSF are accessible to re-
searchers via HTTPS protocol, which is open, free, and uni-
versally implemented. The proprietary PV data are accessible
via the same HTTPS protocol using the SDLE AWS API
gateway. Authentication and authorization is also implemented
in SDLE AWS gateway to ensure secure access to proprietary

{

"@context": "https://www.schema.org",

"@type": "Dataset",

"measurementTechnique": "5 min interval time
series",

"variableMeasured": [
{
"Q@type": "PropertyValue",
"name": "Inverter AC power",
"unitCode": "KWT"
%I
"Qtype": "PropertyValue",
"name": "Inverter DC power",
"unitCode": "KWT"
}r
{
"Qtype": "PropertyValue",
"name": "Module temperature",
"unitCode": "C"
I
{
"@type": "PropertyValue",
"name": "Inverter AC energy",
"unitCode": "KWH"
}

1,

"description": "Time Series data collected from

Inverter"
}

Fig. 6: Example JSON-LD code snippet for the RDF repre-
sentation of the data collected via inverters. The data format
is as per the standards in schema.org/Dataset.

data. In addition, registering on OSF also guarantees long term
accessibility to the PV metadata.

In order to enhance interoperability of PV data, metadata
descriptions utilize the PV vocabulary from the Department
of Energy [29]. References to other metadata in the metadata
descriptions are cited and linked via persistent identifiers.

Also, the metadata are registered on OSF with the Open
Database License (ODbL) [30] usage license to ensure the
reusability of PV data. Reusability is further improved by the
inclusion of detailed provenance in metadata.

V. DISCUSSION

This study introduces the application of FAIR principles to
PV time series data. The gathering and management of PV
data is a resource intensive process. However, by applying
FAIR principles, the gathered PV data become reusable across
multiple studies. FAIRification also ensures the preservation of
the gathered PV data.

The PV data subjected to FAIRification in this study is
from [6] which introduces a state-of-the art machine learning
model for PV data forecasting. The FAIRification of raw
and forecasted data from [6] makes it very convenient for
continuous research into the proposed machine learning model
and also comparison with other models of forecasting.

According to FAIR principles, community standard vocab-
ulary, community specific data repository, and community



"@context": {

"name": "http://schema.org/name",
"description": "http://schema.org/description",
"image":

"@id": "http://schema.org/image",

"@type": "Rig"
"geo": "http://schema.org/geo",

"latitude": {
"@id": "http://schema.org/latitude",
"Qtype": "xsd:float"

"longitude": {
"@id": "http://schema.org/longitude",
"Qtype": "xsd:float"
4
"xsd":
I
"name": "SDLE SunFarm",

"description": "The SDLE SunFarm provides extensive
outdoor exposure capabilities, including
fourteen Opel SF-20 dual axis trackers for
samples and modules, with a capacity of more
than 15,000 samples at 1-5x concentration,

along with racking for fixed -mount modules.",
"image": "https://engineering.case.edu/centers/sdle
/node/84",
ugeo": {
"latitude":
"longitude":

}

"http://www.w3.0rg/2001/XMLSchema"

"41.510032",
"-81.616433"

}

(a) JSON-LD schema

<?xml version="1.0" encoding="UTF-8"7?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf~-

syntax-ns#" xmlns:schema="http://schema.org/">
<rdf:Description rdf:nodeID="
Ne3c9a06c9£5c499390be77d346fb6691">
<schema:description>The SDLE SunFarm provides
extensive outdoor exposure capabilities,
including fourteen Opel SF-20 dual axis
trackers for samples and modules, with a
capacity of more than 15,000 samples at 1-5
x concentration, along with racking for
fixed -mount modules.</schema:description>
<schema:name>SDLE SunFarm</schema:name>
<schema:geo rdf:nodeID="
Nd3b118f42524412ea4bbl185cc695b726" />
<schema:image rdf:resource="https://engineering
.case.edu/centers/sdle/node/84" />
</rdf:Description>
<rdf:Description rdf:nodeID="
Nd3b118£f42524412ea4bbl185cc695b726">
<schema:longitude rdf:datatype="http://www.w3.
org/2001/XMLSchemafloat">-81.616433</schema
:longitude>
<schema:latitude rdf:datatype="http://www.w3.
org/2001/XMLSchemafloat">41.510032</schema:
latitude>
</rdf:Description>

</rdf :RDF>

(b) RDF/XML schema

Fig. 7: The JSON-LD and XML RDF schema for SDLE SunFarm power plant. The JSON-LD is 876 characters while the
XML is 1024 characters in length, for the same metadata information.

standards for metadata schema must be employed. This em-
phasizes the need for standardized vocabulary, data repository,
and metadata schema in the PV research community, an effort
we have initiated. The lack of such agreed upon standardiza-
tion is an obstacle to reaping the maximum benefit from the
application of FAIR principles.

VI. CONCLUSION

We present the application of FAIR principles to PV time
series data which enhances the findability, accessibility, in-
teroperability, and reusability of the data within the broader
PV research community. The FAlRification of the PV data
results in a data model in which the metadata and the PV
data are separated and a unique alphanumeric row-key string
is utilized to map them. The FAIRified metadata and PV
data are physically represented by two data tables in HBase.
Additionally, the documentations and metadata descriptions
are registered in OSF which indexes and renders them human
and machine searchable. The infrastructure of the FAIRified
PV data are built to support secure access to proprietary data
so that a researcher may identify the required data from the
descriptions of metadata on OSF and submit a request for
access. Further, the machine readable metadata schema of the

FAIRified PV data adheres to W3C RDF 1.1 metadata schema
documentation.
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