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Abstract—Job scheduling aims to minimize the turnaround
time on the submitted jobs while catering to the resource
constraints of High Performance Computing (HPC) systems. The
challenge with scheduling is that it must honor job requirements
and priorities while actual job run times are unknown. Although
approaches have been proposed that use classification techniques
or machine learning to predict job run times for scheduling pur-
poses, these approaches do not provide a technique for reducing
underprediction, which has a negative impact on scheduling qual-
ity. A common cause of underprediction is that the distribution
of the duration for a job class is multimodal, causing the average
job duration to fall below the expected duration of longer jobs.
In this work, we propose the Top Percent predictor, which uses
a hierarchical classification scheme to provide better accuracy
for job run time predictions than the user-requested time. Our
predictor addresses multimodal job distributions by making a
prediction that is higher than a specified percentage of the
observed job run times. We integrate the Top Percent predictor
into scheduling algorithms and evaluate the performance using
schedule quality metrics found in literature. To accommodate
the user policies of HPC systems, we propose priority metrics
that account for job flow time, job resource requirements, and
job priority. The experiments demonstrate that the Top Percent
predictor outperforms the related approaches when evaluated
using our proposed priority metrics.

Index Terms—High Performance Computing, Running Time
Prediction, Schedule Quality

I. INTRODUCTION

High Performance Computing (HPC) systems deliver com-
puting power to applications through job schedulers that
manage compute nodes. The job scheduler typically accepts a
user-requested time which serves as the upper bound for each
job’s running time. The scheduling performance is evaluated
using a metric referred to as scheduling quality, where better
performance is generally characterized by a lower average
wait time for the scheduled jobs. Backfilling is a common
approach to fill in scheduling gaps with lower priority jobs
based on user-requested time, improving scheduling quality
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though increased node utilization. Since jobs that exceed the
user-requested time are terminated, it is in the user’s best
interest to significantly overpredict the job running time. The
dual-purpose use of user-requested time both as an upper
bound on run time and as a backfill predictor has a negative
impact on resource utilization; constantly overpredicting job
running times negatively impacts schedule quality since this
leads to fewer jobs that can be backfilled. As a result, there is
a demand for prediction techniques that can accurately predict
the running time of a job for more aggressive backfilling
without burdening users for extra information.

Previous approaches have identified that jobs with common
attributes are likely to exhibit similar run times in comparison
to jobs with no common attributes [1]–[4]. Other approaches
use machine learning to predict the job run time [5], [6].
Although these job duration prediction techniques are effective
at approximating the job run time, they do not address underes-
timates [7], a crucial factor given that the performance penalty
of underprediction often produces a schedule quality that is
worse than the simple approach of using the overestimated
user-requested time from the start.

A culprit of frequent underprediction is that the distribution
of the duration for each job class is often multimodal – the
job duration is either very short or long. Since a significant
number of jobs have a short duration, the average job duration
is shifted below the common case duration for the longer
jobs. This complicates the straightforward solution of adding
the standard deviation multiplied by a factor to achieve the
desired confidence level. In this work, we propose a job
duration predictor that uses a hierarchical classification scheme
while overcoming the multimodal job distribution by basing
the prediction on the outliers with the longest duration. Our
predictor handles the possibility of the observed duration of the
jobs changing midway by assigning weights to the observed
results to adapt to the change in job duration.

We evaluate our proposed predictor by running workloads
from the Parallel Workload Archive [8] on a scheduling
simulator [5] and using our predictor to predict the job
duration which is provided to the scheduling algorithm. We
measure the schedule quality of the job schedule produced
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by the scheduling algorithm to assess the effectiveness of our
predictor. Schedule quality metrics that are used in literature
include average bounded slowdown (AVEbsld) [9], [10] and
average flow time (AF) [11]. AVEbsld and AF trend favorably
for a schedule that prioritizes shorter jobs since more short
jobs can be executed per time unit to minimize wait time,
encouraging the development of algorithms solely targeting
shortest job first scheduling. These existing metrics are useful
for perceived system responsiveness for users, but they ignore
constraints such as job resource requirements and job priority
that are important to HPC administrators and ultimately im-
prove overall scheduling quality. To address these concerns, we
propose new schedule quality metrics, referred to as priority
metrics, that account for flow time, resource requirements, and
job priority. We demonstrate that predicting job duration in
the scheduling algorithm using our proposed predictor yields
better schedule quality based on our metrics than the baseline
approach of scheduling jobs using user-requested times.

II. PROPOSED PREDICTOR DESIGN

We propose the Top Percent predictor, a novel prediction
approach which limits underprediction while accounting for
multimodal job distribution. First, each job is classified in a
similar fashion as Smith et al. [1] using data known before the
job starts, including the executable name, the name of the user
that submitted the job, the user-requested run time, and the
number of required processors. This allows grouping of related
jobs, which typically have similar run times. The Top Percent
predictor tracks a threshold that separates the longest run time
outliers (the longest 3% of jobs, for example) from the rest of
the jobs, then predicting along that threshold to ensure with
high confidence that our prediction will not underpredict. This
works well when each job class runs for consistent amounts of
time with few outliers, but the average run time often fluctuates
for each class over time. To accommodate this, we assign
weights to each observed run time, using exponential decay to
ensure more recent run times hold more weight than older run
times. The decay rate can be tuned between responsiveness
to, and stability against, job duration changes. In the presence
of a multimodal distribution, weights allow the shorter run
times to drag down our prediction far below the longer run
times. To limit these effects, weights are also proportional to
job length, with longer jobs having more weight. This design
allows for more aggressive backfilling than traditional user-
requested time while still minimizing underprediction to avoid
the associated performance hit. The behavior of this predictor
is visualized in Fig. 1. In this example, the job group has
a trimodal distribution. The predicted run time (grey line)
maintains a cautious overprediction even in the presence of
many short jobs, yet reduces the predicted run time when long
jobs are no longer being queued.

III. PROPOSED PRIORITY METRICS

The schedule quality metrics in literature, including AVEb-
sld [9], [10] and AF [11], do not account for constraints such
as job resource requirements and job priority. We address this
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Fig. 1. Predictor behavior for an example job group with a multimodal
distribution. Job start time is on the x-axis and run time is on the y-axis.
Boxes are individual jobs and the grey line is the predicted run time. The
histogram on the right shows the frequency of jobs with a particular run time.

issue by proposing priority metrics that are inclusive of flow
time, job resource requirements, and job priority. Our proposed
priority metrics are centered around computing a Weighted
Average Flow (WAF). We select the weights based on the
resource constraints of HPC systems. The area aj of a job,
also referred to as the squashed area [12], is the product of
the running time Tr of a job and the number of resources n.
Since the area of a job impacts the availability of resources,
we select the area as a weight for our proposed WAF. We also
select job priority p as a weight for our proposed WAF.

In HPC systems, it is a common policy to assign a higher
priority to jobs that waited longer. In this case, the behavior
of a job’s priority over time should be considered instead of
treating the job’s priority as a static value. We assume that the
job priority is modeled as a function of time pj(t), referred to
as a priority function. The priority function may also account
for a user priority or a project priority. It is also possible for
the number of resources required by a job to change over time,
where the number of resources is modeled by a function of
time σj(t), referred to as a resource function. The job “area”
can now be considered a volume, where time is the x-axis, the
number of required resources is the y-axis, and the priority is
the z-axis. The job volume is computed by integrating the
product of the resource function and the priority function
between the limits of the job-start-to-run-at-time Rj and the
job completion time Cj , yielding

∫ Cj

Rj
σj(t) · pj(t) dt as a

weight for flow time Fj in the WAF expressed in Equation 1.

WAF =

∑n
j=1

(∫ Cj

Rj
σj(t) · pj(t) dt

)
· Fj∑n

j=1

∫ Cj

Rj
σj(t) · pj(t) dt

(1)

A. Applied WAF

We apply Equation 1 to measure schedule quality when
evaluating the Top Percent predictor. We choose the number of
required nodes to serve as our resource requirements. Since the
number of resources (nodes) required by a job is held constant
in the jobs documented in the workload logs from the Parallel



Workload Archive [8], we set σj(t) = nj in Equation 1.
We assume that pj(t) is a function of time relative to the
submission time Sj of a job, so we set pj(t) = (t − Sj)

α in
Equation 1 yielding a weight of nj ·

∫ Cj

Rj
(t− Sj)

α dt, where
α is an amplification factor. The wait time Twj is Rj - Sj .
We set Rj to Sj + Twj and Cj to Sj + Fj , and perform the
integration to obtain Equation 2, which we refer to as Area *
Priority Weighted Average Flow (APαWAF).

APαWAF =

∑n
j=1 nj ·

(
Fα+1
j − Tw

α+1
j

)
· Fj∑n

j=1 nj ·
(
Fα+1
j − Tw

α+1
j

) (2)

B. Prediction Metrics

The coefficient of determination (R2) is a standard statistic
used to measure how well a prediction model matches the
actual values. This makes R2 a suitable metric to measure
prediction quality independently from scheduling quality. R2

is computed by Equation 3, where yi is an observed run time,
ȳ is the mean of the observed run times which is the baseline,
and fi is the predicted run time. Using this equation, R2 =
1 if prediction is perfect; 0 if prediction is equivalent to a
baseline; and a negative value if the prediction is worse than
the baseline.

R2 = 1 −
∑
i=1(yi − fi)

2∑
i=1(yi − ȳ)2

(3)

IV. EXPERIMENTAL RESULTS

Experiments ran on an expanded version of Predictsim [5],
a parallel job scheduler simulator. This simulator is simplified
to consider the number of nodes as the only limited resource
and to assume a job’s length is fixed, unaffected by external
factors such as I/O. Predictsim simulates the scheduling of
jobs provided by standard workload format (swf) logs. The
Cornell Theory Center SP2 ’96 (CTC-SP2), Swedish Royal
Institute of Technology SP2 ’96 (KTH-SP2), and San Diego
Supercomputer Center SP2 ’98 (SDSC-SP2) workloads were
sourced from the Parallel Workload Archive [8] because
they have been compared in related work [13]. We added a
workload from the NCSA Blue Waters supercomputer (BW),
which was sourced by converting publicly available TORQUE
logs from December 2019 to swf.

We evaluate our proposed Top Percent predictor at 2-4%
(Top02, Top03, Top04). We compare our predictor against
our Complete predictor (Complete), which does job group
classification like Smith et al. [1], then makes a prediction
based on average historic run times associated with the group.
We compare against Tsafrir’s predictor [14] (Tsafrir) that
predicts using the average run times of the last two jobs
and CVH [5] (CVH) that predicts using machine learning
techniques. The user-requested time predictor (Reqtime) uses
the user-requested time, provided at job submit time, to predict
actual run time; this serves as a baseline lower-bound on pre-
diction quality. The clairvoyant predictor (Clairvoyant) takes
advantage of the simulated environment to use the actual run

time as the predicted run time; this is impossible in practice but
establishes an upper bound on maximum predictor improve-
ment. We tested the behavior of several backfill schedulers,
including Conservative backfill (Cons) [13], EASY backfill
(EASY) [13], and Largest Area First backfill (LAF). Results
were relatively close, so only EASY, the most widely used
backfilling approach, is reported.

A. Metrics

Each backfill algorithm was evaluated using conven-
tional scheduling quality metrics: average bounded slowdown
(AVEbsld) [9], [10] and average flow time (AF) [11]. We also
compare using our newly proposed priority metric, Area *
Priority Weighted Average Flow (APαWAF). The α of each
metric is tested at 0 and 1, where 0 only considers flow
time and job packing efficiency while 1 additionally considers
priorities. Finally, we report R2 to measure prediction quality
and evaluate its relationship with scheduling quality.

B. Results

Our full results are listed in Table I. As Reqtime is intended
to be a minimum baseline for improvement, all reported
metrics except R2 are normalized to Reqtime by dividing each
by the Reqtime metric. Any value over 1 is worse than the
baseline of using user-requested run time while under 1 is an
improvement. Clairvoyant is included as a baseline reference
of maximum possible improvement.

Complete offers the best prediction quality (R2) in all cases
and provides competitive and in some cases superior AVEbsld
and AF. Its poor performance using our new metrics is a result
of treating overprediction and underprediction as equally bad,
even though underprediction more harshly affects scheduling
performance, as reflected by our new metrics.

CVH [5] typically offers the best AVEbsld and AF, but
the worst results for our new metrics. This is likely because
CVH’s machine learning approach explicitly targets these
metrics while ignoring the properties we value in APαWAF.
R2 is poor because accurate prediction was not a goal of
the CVH design; it is a good illustration of how prediction
quality, perhaps unintuitively, is not inherently well-correlated
with scheduling quality. Tsafrir [14] behaves similarly to
CVH, targeting the traditional AVEbsld and AF metric, but
Tsafrir always underperforms when compared against the other
predictors.

Our proposed Top Percent predictor offers tolerable AVEb-
sld and AF. It is the only design in our tests that can consis-
tently outperform Reqtime for our APαWAF metrics and con-
sistently offers the best priority-sensitive results. We believe
Reqtime does well because it is the only practical approach
that cannot underpredict; if the job tries to run longer than
Reqtime, then the scheduler terminates the job for exceeding
the length provisioned by the scheduler. This advantage means
that, although our improvements over Reqtime appear minor,
any predictor that can outperform Reqtime by any margin
is a meaningful improvement to the state-of-the-art. None of
the other related works have managed to accomplish this in



BW AVEbsld AF AP 0WAF AP 1WAF R2 KTH-SP2 AVEbsld AF AP 0WAF AP 1WAF R2

Reqtime 1.000 1.000 1.000 1.000 -0.234 Reqtime 1.000 1.000 1.000 1.000 -0.183
Clairvoyant 0.646 0.917 0.940 0.932 1.000 Clairvoyant 0.772 0.967 0.980 0.976 1.000
Complete 0.192 0.706 1.078 1.317 0.106 Complete 0.796 0.960 1.041 1.096 0.641
CVH 0.243 0.612 0.985 1.208 -0.157 CVH 0.745 0.915 1.052 1.399 0.008
Tsafrir 0.277 0.626 1.310 2.113 -0.157 Tsafrir 0.771 0.944 1.016 1.084 0.008
Top02 1.102 1.043 0.998 0.996 -4.791 Top02 0.996 0.996 0.994 0.987 0.601
Top03 2.121 1.260 1.032 1.039 -4.825 Top03 1.001 0.997 0.994 0.987 0.603
Top04 1.755 1.144 1.024 1.032 -4.803 Top04 1.000 0.997 0.994 0.987 0.605

CTC-SP2 AVEbsld AF AP 0WAF AP 1WAF R2 SDSC-SP2 AVEbsld AF AP 0WAF AP 1WAF R2

Reqtime 1.000 1.000 1.000 1.000 -0.380 Reqtime 1.000 1.000 1.000 1.000 -0.232
Clairvoyant 0.761 0.986 0.870 0.828 1.000 Clairvoyant 0.802 0.884 0.875 0.873 1.000
Complete 0.964 1.002 1.590 3.018 0.508 Complete 0.858 0.930 1.026 1.122 0.637
CVH 0.634 0.794 1.149 4.165 -0.219 CVH 0.930 0.960 1.067 2.236 -0.197
Tsafrir 0.789 0.926 1.593 4.728 -0.219 Tsafrir 0.901 0.934 1.036 1.179 -0.197
Top02 1.000 0.989 1.002 1.007 -0.416 Top02 1.024 1.004 0.999 1.008 -0.335
Top03 1.041 1.001 0.998 0.999 -0.385 Top03 1.029 1.002 0.992 0.998 -0.330
Top04 1.041 1.016 1.008 1.005 -0.364 Top04 1.042 1.006 0.990 0.995 -0.325

TABLE I
EASY BACKFILL METRICS. REQTIME AND CLAIRVOYANT ARE BASELINE PREDICTORS. ALL BUT R2 ARE NORMALIZED TO THE REQTIME BASELINE,

WITH LOWER METRICS BEING BETTER. THE BEST NON-BASELINE RESULT FOR EACH METRIC AND TEST IS HIGHLIGHTED IN BOLD.

our testing. We attribute our results to a design that favors
overprediction. It will never predict more time than Reqtime,
but with historic knowledge, it can reduce the predicted time
under Reqtime for more aggressive backfilling with minimum
underprediction and support for multimodal job distributions.

V. RELATED WORK

One of the primary approaches for predicting job run times
is the application of statistical methods on historical data [1],
[4], [13]–[16]. Gibbons [4] predicts job running times from
historical data using a desired confidence level. Smith et al. [1]
predict job running time by categorizing the jobs according to
the historical run time information. Tsafrir et al. [14] propose
a job running time predictor that simply averages the last two
jobs by the same user. Sfiligoi et al. [17] establish a correlation
between users and their job runtimes based on the historical
data from the Compact Muon Solenoid (CMS) experiment
at the Large Hadron Collider. Another effective approach for
predicting job running times is machine learning [5], [7], [18]–
[20]. Gaussier et al. [5] use machine learning to predict job
running times that will produce an improved schedule quality.
Fan et al. [7] make job run time predictions using the Tobit
model which is a censored regression model that censors the
latent variables, enabling an approach that reduces the problem
of underestimation in job run time prediction.

Our proposed Top Percent predictor is most similar to the
approach of Smith et al. [1] in that it classifies jobs according
to the provided job data. The characteristic that distinguishes
our predictor from the related statistical method approaches is
that it alleviates underprediction by making a prediction based
on the jobs that fall in the top percentage threshold for job
duration. The reduction in underprediction avoids the schedule
quality hit incurred due to severe disruption of scheduling
resulting from jobs that do not finish in their allocated time.

The schedule quality metrics commonly used in practice
are centered around job delay [9], [11], [21]. Horn [11] uses

the notion of flow time, ie. the total delay of the jobs, as
the criterion to minimize when assigning jobs to parallel
machines. Feitelson et al. [9] propose bounded slowdown
that is computed by dividing the flow time (wait time + run
time) by the maximum between the run time and a threshold
for the wait time. Schedule quality metrics have also been
proposed that account for job resource requirements [12],
[22]–[24]. Ernemann et al. [12] introduce the squash area as
the product of the number of requested resources and the run
time for a job. The authors compute the Average Weighted
Wait Time (AWWT) as the wait time weighted by the squash
area. Unlike the other schedule quality metrics, our proposed
priority metrics are the first to account for job priority when
computing the weighted average flow time.

VI. CONCLUSION

We proposed Top Percent, a new predictor that adapts to
multimodal job distributions and minimizes underpredictions.
We also proposed APαWAF, a new scheduling quality metric
that, unlike existing works, evaluates flow time alongside
resource utilization and job priorities. Our new predictor
offers some of the best scheduling quality results for our
metric, while remaining competitive with existing metrics, via
more aggressive backfilling with minimum underprediction
and support for multimodal job distributions. Our new metric
addresses important gaps in scheduling quality valued by HPC
administrators. In future work, we plan to improve prediction
quality by considering job inputs and parameters in addition to
what is already provided by swf logs. We also plan to extend
this work to predict factors such as I/O and other unknown
levels of resource utilization for improved scheduling.
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