

assembly networks for computational fluid dynamics

Intern: Lauren Partin, University of Notre Dame, **Virtual at:** South Bend, IN

Mentors: Gianluca Geraci, Ahmad Rushdi, Michael S. Eldred, 1463 Optimization and UQ

Abstract

In order to investigate multifidelity training, we analyze the regression accuracy of convolutional neural networks assembled from encoders (E), decoders (D) and skip connections. These networks benefit from a significant reduction in the number of trainable parameters with respect to an equivalent fully connected network. These architectures are also versatile with respect to the dimensionality of the inputs and outputs. For example, ED, DE or DED architectures are well suited to learn mappings between input and outputs of any dimensionality. We demonstrate the accuracy produced by such architectures when trained on a few high-fidelity and many low-fidelity data generated from the numerical solution of partial differential equations. In addition to the efficient training via multifidelity data, these networks introduce the possibility to produce multifidelity surrogates to be used in approximate control variate schemes for uncertainty quantification. Specifically, we quantify predictive uncertainty using a dropblock regularizer.

Problem Domain

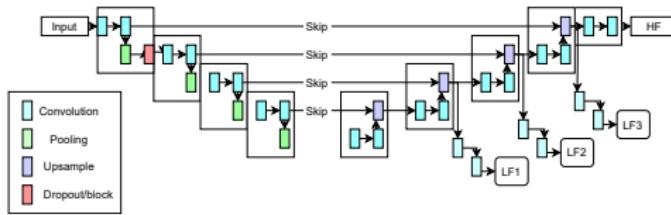
Neural networks for UQ

Technical Approach

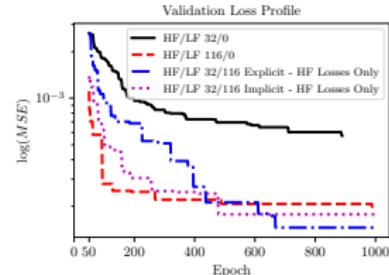
Multifidelity training

Mission Application

Fluid dynamics


Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-

Multifidelity data fusion in convolutional encoder/decoder assembly networks for computational fluid dynamics preliminary results


Intern: Lauren Partin, University of Notre Dame, **Virtual at:** South Bend, IN

Mentors: Gianluca Geraci, Ahmad Rushdi, Michael S. Eldred, 1463 Optimization and UQ

Preliminary experiments show that our multifidelity convolutional network can use and generate multiple low resolution flow predictors to improve the accuracy of the flow at a higher resolution.

Next, we will investigate generalizations using combinations of low or high dimensional inputs/outputs using composable encoder-decoder architectures.

