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Main Points

1) All models make errors, but some are useful.
2) Users respond to different types of errors in different ways.
3) Domain makes a difference, and expertise is the culprit.
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All models make errors, but some
are useful.
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Algorithms can outperform humans on some tasks.
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Sometimes, the consequence of model errors is low.

—

SRETHHOUSE GRTWN  GULTIVEES EX a1 -
T
LA T T T ——

PRODUCT OF MEXrD
PRODLNT DU ME ML

ML NNEBVLLE 04 o M S T o

Images: Smithsfoodanddrug.com



Sometimes, the consequence could be very high.
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Even imperfect ML can help users identify targets.

Mean Overall Accuracy by ML Accuracy Rates
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Users respond to different errors in
different ways.




We measured human performance in finding target “T"
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and compared it to performance with “ML"” support.
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Sometimes the “ML" was wrong. We varied how it was
wrong, and how often.
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For target absent, false alarms decreased human
performance only at the highest model accuracy.

T/L Target Absent Trials
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For ta rget present, misses (two types) significantly
decreased performance across model accuracies .

T/L Target Present Trials
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ML impact differs by domain. Expertise
is likely culprit.




Ewrong model impacts translate to a safeguards use
case? Experiments at the 80% model accuracy level.
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For “target absent”, false alarms had a new negative
performance impact.

Cooling Tower Target Absent Trials
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For “target present”, FA+Miss impact appears mitigated.
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Why the difference?

Ts and Ls are easy to identify. Cooling towers are more difficult.




Experience plays a role.
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Consider the types of errors
acceptable for the application and
the types of humans for which the

algorithms are intended.
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