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Batteries will provide substantial grid-scale energy
storage

Energy Information Administration Annual Energy Outlook 2021 report projects 59 GW of battery energy storage
on the grid by 2050 in the base case, 175 GW if more renewables

U.S. battery storage power capacity (2010-2050)
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3 | Impact and consequence of scale on safety

Consumer Cells Large Format Cells Transportation Utility Batteries
(0.5-5 Ah) (10-200 Ah) Batteries (1-50 kWh) (MWh)

Safety issues and complexity increase with battery size

Safety research is heavily focused on lithium-ion as the
primary application ready technology. However many
emerging technologies identified as promising for grid-scale
storage are less well studied.



4 ‘ Grid ESS are the new frontier of energy storage safety
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ESS incidents typically make the news

Safety is critical to the widescale deployment of energy storage technologies.
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There is a tendency to use
the availability heuristic
when considering risk.

To avoid this, consider how
many batteries continue to
operate without problems
every day.

Greentech Media

Grid Fdge  Storage  Wind

APS and Fluence Investigating Explosion at Arizena
Energy Storage Facility

Thu stadens arw Bigh lor the snergy slorage sectar alter an sexplosion with an snknows cesses il srver

firehghtems inpred

RS —

P e
PO ——
Py e g .

https://www.greentechmedia.com/articles/

read/aps-and-fluence-investigating-
explosion-at-arizona-energy-storage-
facility#gs.gpky5k

The Korea Times

ThkeaTiws =& O § W O

Biz & Tech

Frequent fire raising concerns over safety of solar energy

g aoo In

EEEE

By M Hius-wed

A seried of B in energy dorge sswtems [ES56] has been ridsing salely cmeer, svonling 1o
madustry snalysty, Tessday.

With ESds smental for opinezing ssergy sfficency, further sccidents may compromiss the
Femibility of retereabde posr snd bamper e gevemments bid 1o expand The ase of dener
.

Meccoeding to the Mirstry of Tesde, bdustry aed Enecyy, it
azd pther crgaaicetaass o wop eaiag §Eq usin pected ES3s scrvan Lhe coeniry.

https://www.koreatimes.co.kr/www/tec
h/2018/12/133 260560.html



https://www.greentechmedia.com/articles/read/aps-and-fluence-investigating-explosion-at-arizona-energy-storage-facility#gs.gpky5k
https://www.greentechmedia.com/articles/read/aps-and-fluence-investigating-explosion-at-arizona-energy-storage-facility#gs.gpky5k
https://www.greentechmedia.com/articles/read/aps-and-fluence-investigating-explosion-at-arizona-energy-storage-facility#gs.gpky5k
https://www.greentechmedia.com/articles/read/aps-and-fluence-investigating-explosion-at-arizona-energy-storage-facility#gs.gpky5k
https://www.bloomberg.com/news/articles/2019-04-23/explosions-are-threatening-lithium-ion-s-edge-in-a-battery-race
https://www.bloomberg.com/news/articles/2019-04-23/explosions-are-threatening-lithium-ion-s-edge-in-a-battery-race
https://www.bloomberg.com/news/articles/2019-04-23/explosions-are-threatening-lithium-ion-s-edge-in-a-battery-race
https://www.koreatimes.co.kr/www/tech/2018/12/133_260560.html
https://www.koreatimes.co.kr/www/tech/2018/12/133_260560.html

6 ‘ Dedicated facilities for battery testing

* Hundreds of independent channels for testing, from coin cells to
kWh modules

* 150 uA to 2000 A current range capability

* R&D 100 Green Technology-awarded high-precision testers

e 70+ thermal chambers, ranging from 1.2 ft3 to 25 ft3

e —72°Cto 95°C temperature capabilities

* Welding capabilities, including resistance, pinch, and spot

* Additional labs for materials characterization and 8000 ft? dry-
room space for prototyping




World-class battery abuse lab (DOE Core facility)

Comprehensive abuse testing platforms for safety and reliability of cells, batteries and
systems from mWh to kWh

Mechanical abuse

* Penetration
e  Crush
* Impact

*  Immersion

Thermal abuse
*  Over temperature
*  Flammability measurements

*  Thermal propagation

* Calorimetry
Electrical abuse

* Overvoltage/overcharge

* Short circuit

* Overdischarge/voltage reversal
Characterization/Analytical Tools

*  X-ray computed tomography

* Gas analysis

* Surface characterization

*  Optical/electron microscopy



Mechanics of Thermal Runaway

How does thermal runaway start?

o Thermal, electrical, or mechanical “abuse” oS .
Example: LCO/graphite cell
> However, “abuse” thresholds are statistical
properties and can change with time, usage, and 20
environment
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» I Approaches to designing in safety

The current approach is to test our way into safety-

Large system (>1MWh) testing is difficult and costly.

Supplement testing with predictions of challenging scenarios and
optimization of mitigation

Leverage world-class fire sciences, thermal modeling, and
computing resources at SNL

Develop multi-physics models to predict failure
mechanisms and identify mitigation

Build capabilities with small/medium scale measurements
Still requires some testing and validation
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10

Thermal runaway in one cell can drive

Cell to Cell Propagation

nearby cells into thermal runaway
depending on:

o

o

o

o

abuse thresholds,
heat capacity,

heat generation rate, and

heat dissipation rate

Model Based Testing

o Successful prediction over a range of reduced SOC and metallic inserts.
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Kurzawski, A., et al. (2020). "Predicting cell-to-cell failure propagation and limits of propagation in lithium-ion cell stacks." Proc. Combust. Instit. 38.
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An example of propagation testing
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Gas Production from a Li-lon battery pack
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Thermal ramp of central cell resulted in rapid failure of the entire pack

After an initial pressure wave a rough equilibrium equivalent to ~3.3 L., was observed

Conducted on a 7 cell ~21 AH pack, this shows the potential for gas production from even small cells
These gasses can present a hazard even when thermal runaway doesn’t occur



13 I Gas Production in Li-lon thermal runaway
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Different mitigation design strategies

Some of the design options available

° Prevent thermal runaway (e.g. non-lithium-ion chemistry)

° Limit the size (energy) of any one module
> Don’t put the battery in an enclosure

™~

> Enclosure deflagration venting

/

Deflagration Ventilation Systems For Battery Containers
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Andrew F. Blum and R. Thomas Long Jr. “Hazard Assessment
of Lithium lon Battery Energy Storage Systems FINAL REPORT”
Fire Protection Research Foundation, 2016, Available:
https://www.nfpa.org/-/media/Files/News-and-
Research/Fire-statistics-and-reports/Hazardous-
materials/RFFireHazardAssessmentLithiumlonBattery.ashx
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15 I Sharing battery safety tools with the community

Launched heat release calculator based on Li-ion Developing simulator of module-level thermal
battery materials composition runaway propagation
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16 I Safety critical information availability to firefighters

The system should include a durable, external display,
accessible from a safe location, for firefighters to access
the following information:

. Batteries  Air
1. what percentage of the cells in the system have vented, Smoke Detectedinsystem @) Current Highest Temperature Recorded i System
2. is the ventilation system working as expected, Emergency Discharge Active () Highest Temperature Recorded in Past 2 hour
3. what voltages are present in the system Systemstate-ofCharge [T 0
¢ ’
4. what the temperature trending history is internally, rmeosrembcomea Deflagration Prevention ventilation Active @) () Faut
. Ventilation Manual O id
5.  what actions have been taken by the automated systems \ o e e _
(e.g. fire suppression), and A" 90-0000 0 OO
. = 60°C
6. the presence or absence of any gases in hazardous L0 0O0-0-0-C-000
concentrations (including smoke). A T ——————
Training should focus on hazard identification, a

determining safe entry, methods for limiting the spread of
a battery fire, identifying when the best approach is to not
put out the fire (letting hazardous stored energy be
dissipated safely), and determining when it is safe to leave
an incident site.

Example layout for an energy storage fire alarm control panel

From: https://www.sandia.gov/ess-ssl/wp-content/uploads/2020/09/Rosewater-
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Ensuring Safety — Codes and Standards

Safety standards are developed through a
consensus-based development process with
diverse stakeholder participation.

Advantages:
° Broad agreement in the field

° Good at learning from past accidents

Disadvantages
> Slow to change (3-10 year revision schedules)

> Bad at preventing accidents before they happen

A few prominent examples are:

IFC — defines what safety standards shall be used in
regions that have adopted it

UL 9540 — provides a hierarchy of safety standards for
energy storage components, tests, and system
integration

NFPA 855 — covers: installation, commissioning, O & M,
emergency response, and decommissioning

IFC

INTERNATIONAL

®

FIRE
CODE

ANSI/CAN/UL
9540:2020

STANDARD FOR SAFETY

Energy Storage Systems and
Equipment

895

Standard for
the Installation of Stationary
Energy Storage Systems

2020




18 I Codes and Standards Update

Publication released quarterly

The following activities support that
objective and realization of the goal:

1.

Review and assess C/S which affect the
design, installation, and operation of
energy storage systems (ESS)

Identify gaps in knowledge that require
research and analysis to provide data
for technical committee inputs

Identify areas in C/S that are
potentially in need of revision or
enhancement and can benefit from
activities conducted under research
and development

Develop input for new or revisions to
existing C/S through individual
stakeholders, facilitated task forces, or
through laboratory staff supporting
these efforts

Available: https://www.sandia.gov/energystoragesafety-ssl/

.............

BUILT ENVIRONMENT

= iCodes - IFC, IRC, IBC
- |[EEE - C2, SCC 18, SCC21
- NFPA 5000, NFPA 1, ISA

ENERGY STORAGE SYSTEMS

= UL 9540, MESA
- ASME TES-1, NECA
= NFPA 791

INSTALLATION / APPLICATION

- NFPA855 - IEEEC2
- NFPA 70
- UL9540 A - |EEE P1578

SYSTEM COMPONENTS
« UL 1973 = CSA 22.2 No. 340-201
- UL 1974 - |EEE 1547
- UL 810A = |[EEE 1679 Series
= UL1741

= DNVGL GRIDSTOR

- |IEEE 1635/ASHRAE 21 - FM GLOBAL 5-33

- NECA 416 & 416
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