

# AGD: Autonomous Gaussian Decomposition for Spectral Line Identification

•••

P. Cho

08.09.21 | 2021 ZFSW Astrophysics Breakout



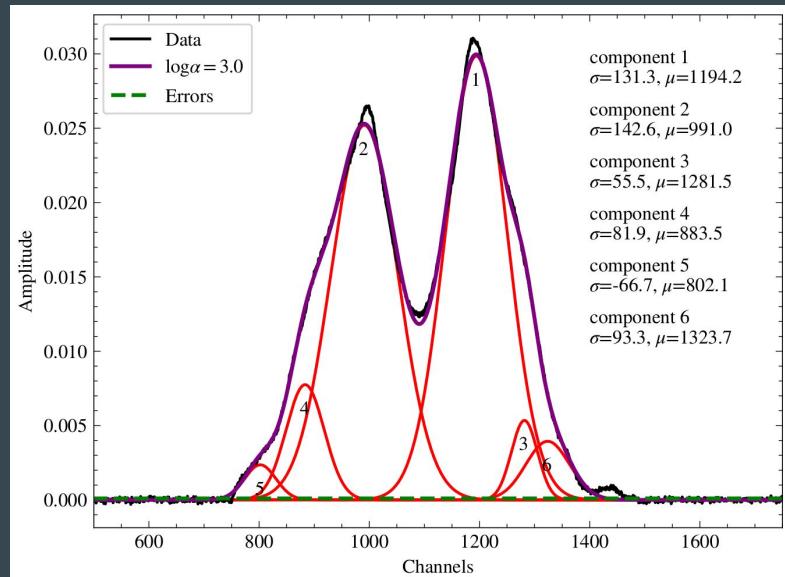
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

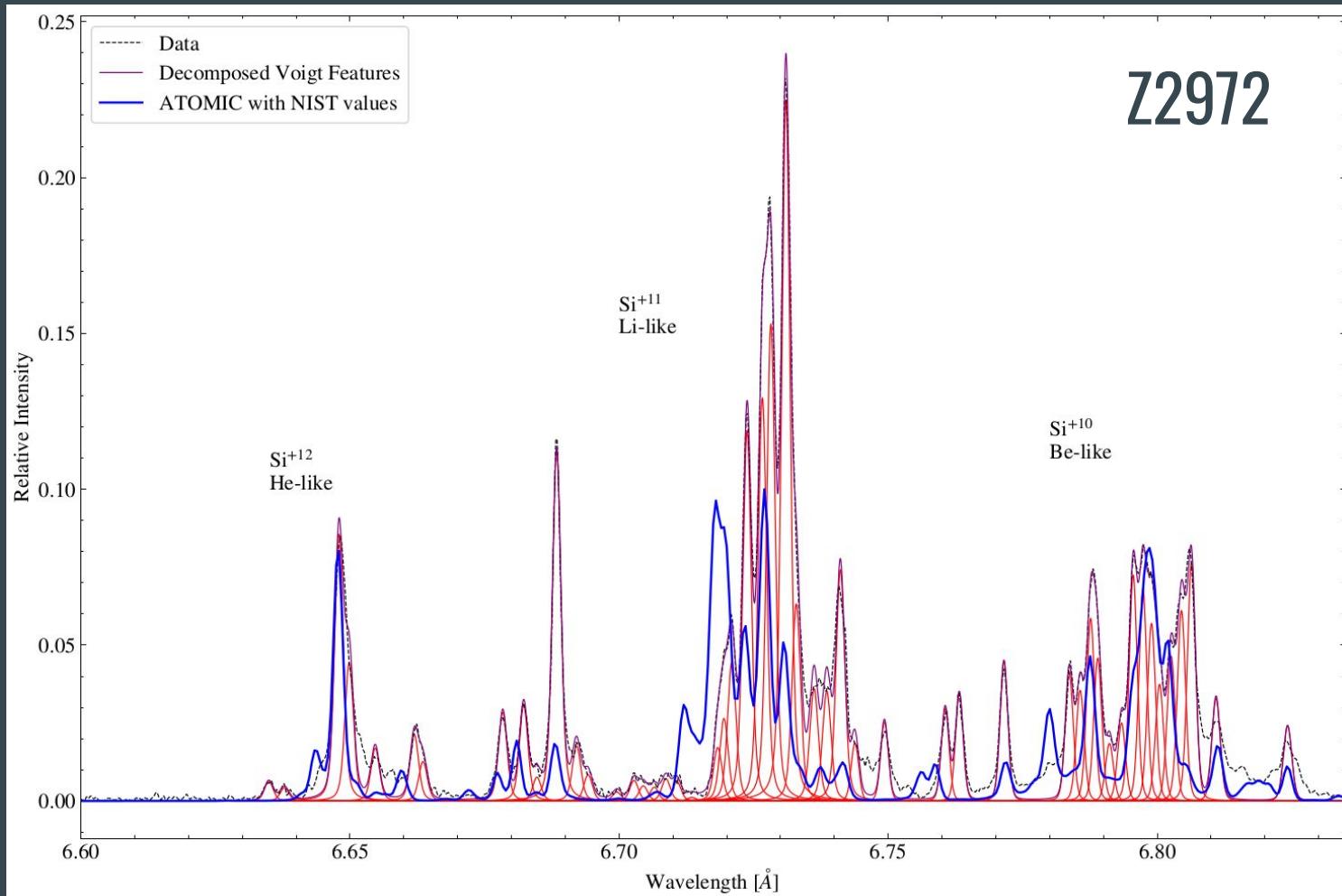
# Motivation

- High resolution Si emission spectra obtained on Z gives us the opportunity to identify many lines/transitions never before observed in laboratory setting
- Line identifications → precise wavelength determinations
  - Beneficial for both laboratory and astrophysical atomic databases
- Identifying the transitions responsible for the features requires fitting their component distributions
  - Broadening dominated by instrumental sources → broadening profile is primarily Gaussian
  - Fitting can be done using Gaussian components
  - Various degrees of blending and overlap makes this non-trivial.
- We can use Autonomous Gaussian Decomposition (AGD) implemented in a Python package called GAUSSPY to find optimal fits for constituent components of spectral features.



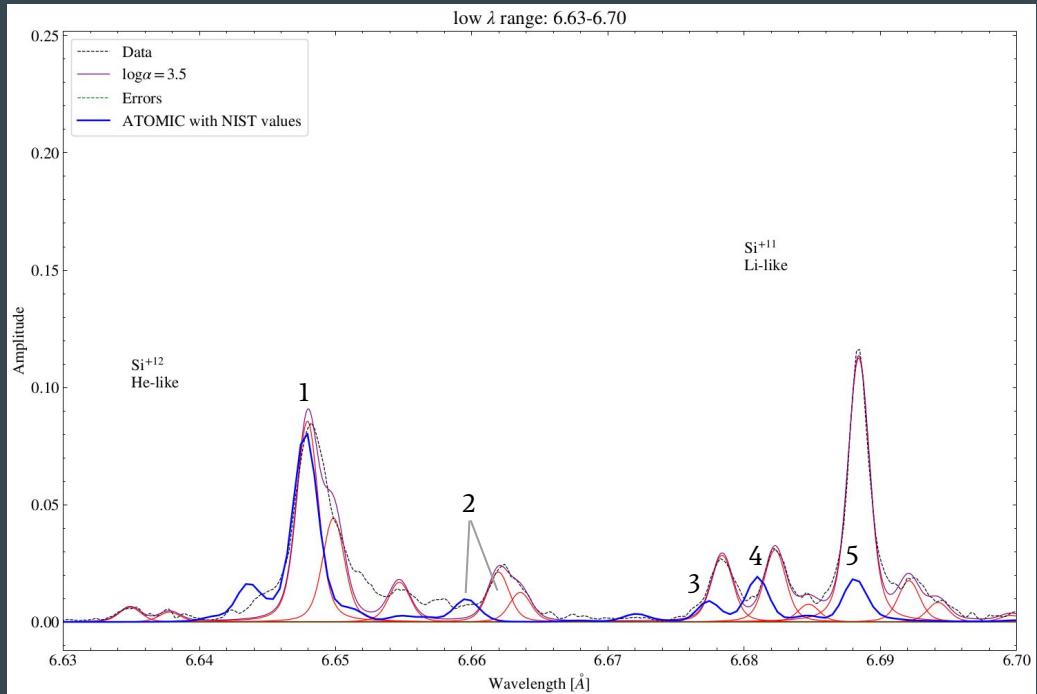
# AGD Algorithm - Overview

- Automatically decomposes spectra into individual components
- Uses derivative spectroscopy and machine learning → optimized guesses for the number of components and their parameters ( $\sigma_L$ ,  $\sigma_G$ , amplitude)
- Autonomous and more computationally efficient
  - Doesn't require a set of manually determined initial guesses
- I modified the source code to use frequency dependent Voigt profiles
  - Gaussian: Source size, detector, doppler
  - Crystal (Lorentzian)



# Z2972 low $\lambda$ range: 6.63-6.70 Å

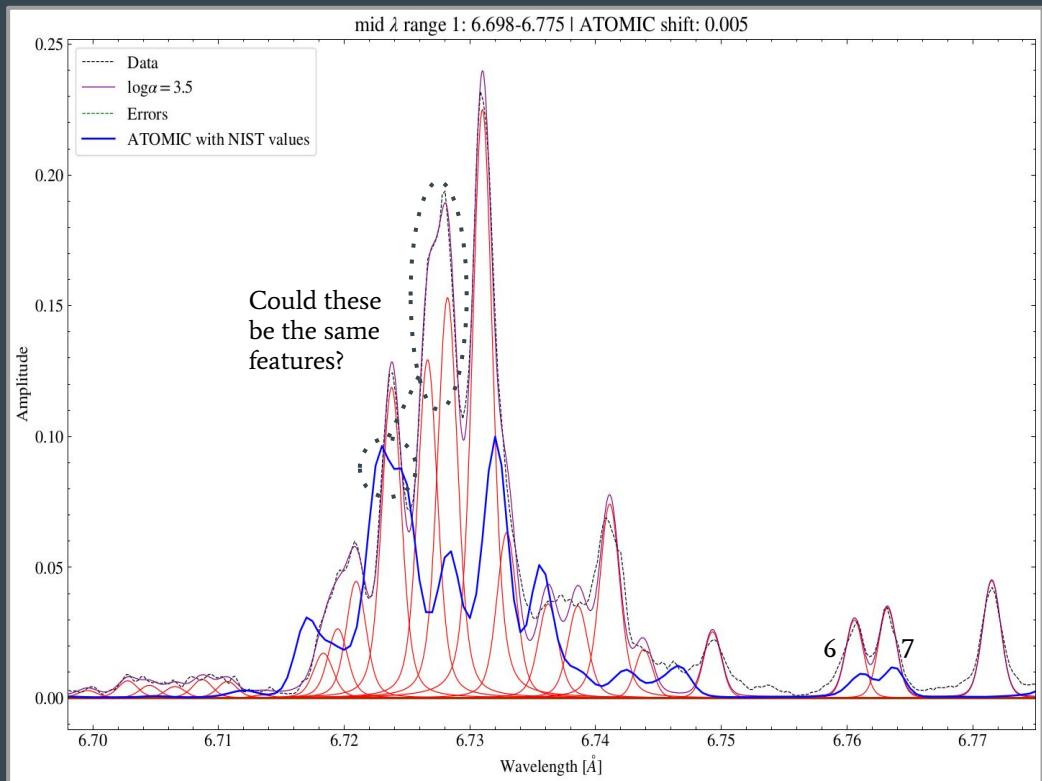
| label | Charge  | Upper        | J   | Lower    | J   |
|-------|---------|--------------|-----|----------|-----|
| 1     | He-like | 1s1 2p1      | 1.0 | 1s2      | 0.0 |
| 2     | Li-like | 1s1 2p1 3p1  | 1.5 | 1s2 3p1  | 1.5 |
|       | Li-like | 1s1 2p1 3p*1 | 0.5 | 1s2 3p*1 | 0.5 |
|       | Li-like | 1s1 2p1 3p*1 | 1.5 | 1s2 3p*1 | 0.5 |
| 3     | Li-like | 1s1 2p1      | 0.5 | 1s2 2p*1 | 0.5 |
| 4     | Li-like | 1s1 2p2      | 0.5 | 1s2 2p*1 | 0.5 |
| 5     | He-like | 1s1 2p*1     | 1.0 | 1s2      | 0.0 |
|       | Li-like | 1s1 2s1 2p1  | 0.5 | 1s2 2s1  | 0.5 |



# Z2972 low/mid $\lambda$ range: 6.698-6.775 $\text{\AA}$

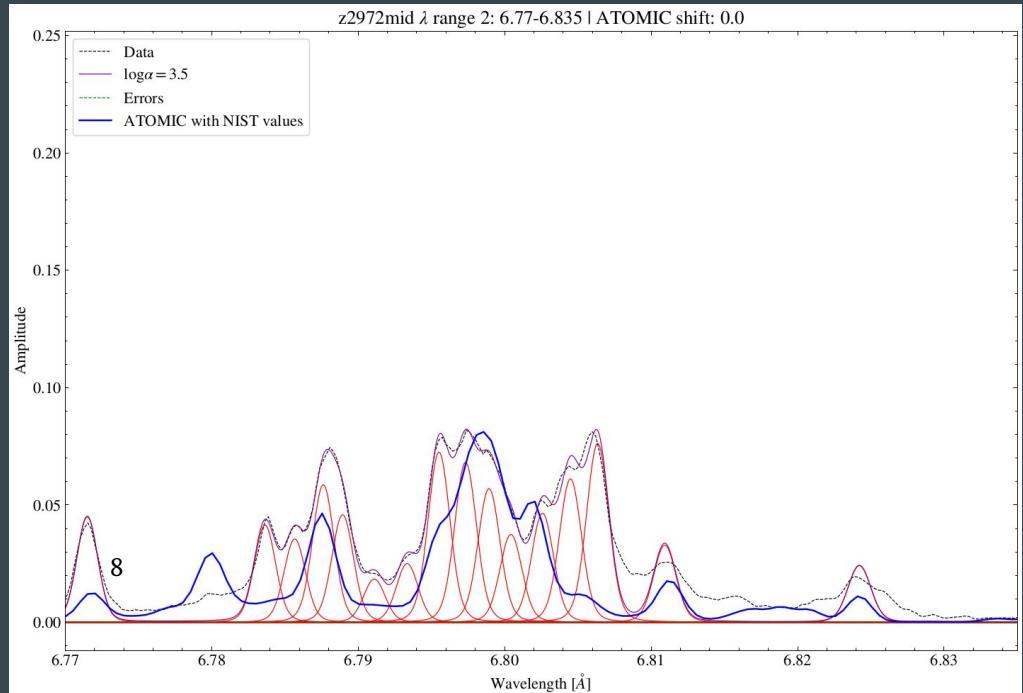
We would probably benefit from higher resolution calculations from here to higher wavelengths.

6 & 7 seem like clear matches but I don't have the label yet from Chris



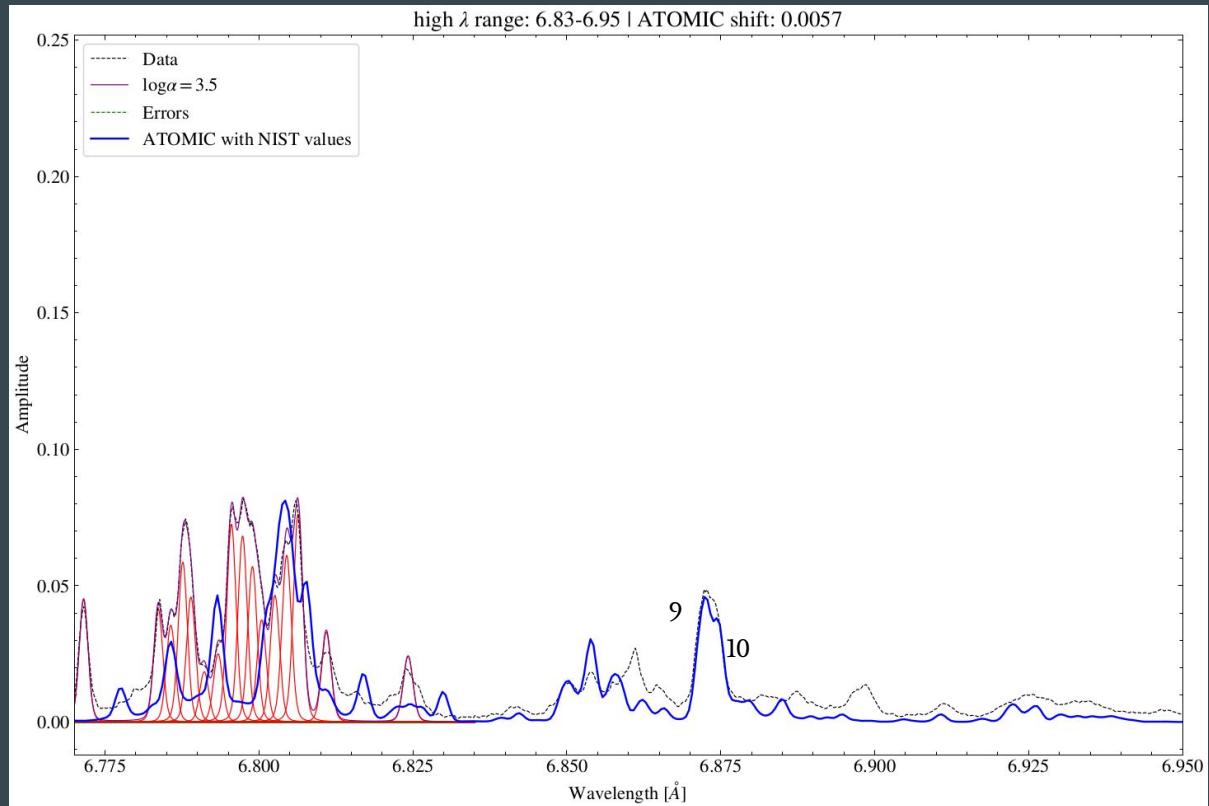
# Z2972 high/mid $\lambda$ range: 6.77-6.835 $\text{\AA}$

8 seems like another clear match  
but I don't have the label yet from  
Chris



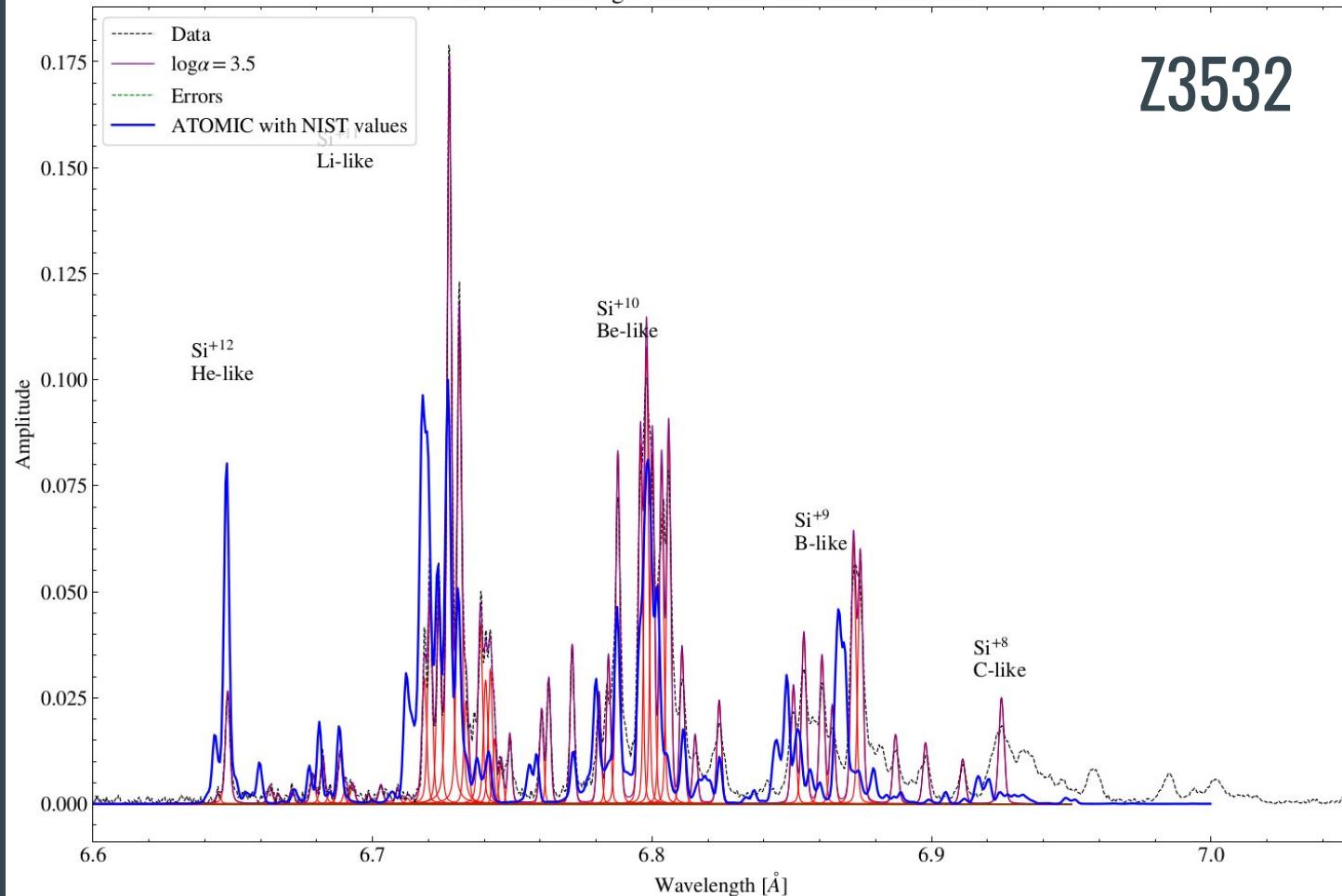
# Z2972 high $\lambda$ range: 6.83-6.95 Å

9 & 10 seem like two more clear matches. There are also some other seemingly clear matches among the B-like features.



z3532full  $\lambda$  range: 6.6-7.05 | ATOMIC shift: 0.0057

Z3532



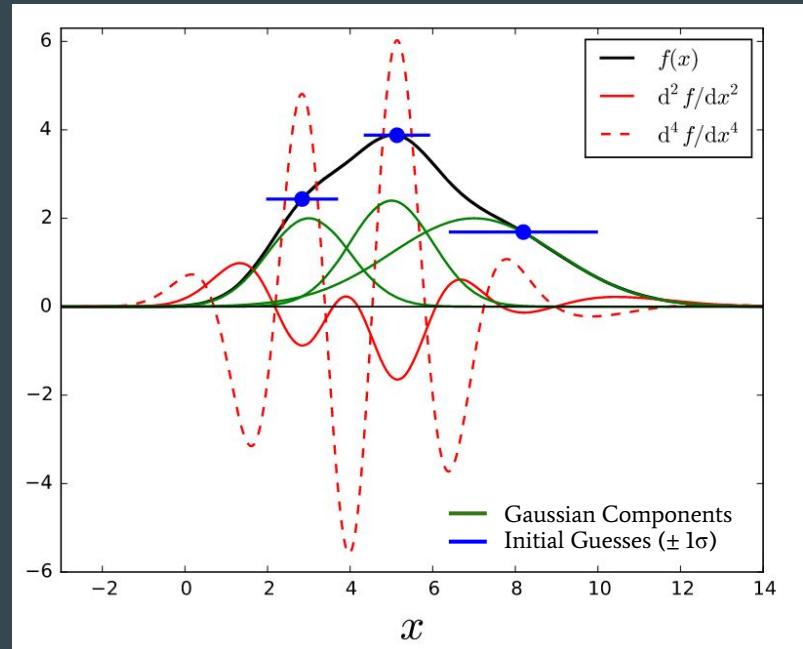
# Extra Slides

# How it Works: Make Initial Guesses for $\mu \rightarrow \sigma \rightarrow$ amplitude

- Choose high quality initial guesses for number of components and their parameters using a set of mathematical criteria.
- Derivative Spectroscopy - technique of analyzing a spectrum's derivatives
- Start by identifying means, those then give you estimates of stdev and amp.

1. intensity exceeds noise
2. Curvature is negative
3. & 4. ensure it's a local min

$$\begin{aligned}f &> \epsilon_0 \\ \frac{d^2 f}{dx^2} &< 0 \\ \frac{d^3 f}{dx^3} &= 0 \\ \frac{d^4 f}{dx^4} &> 0.\end{aligned}$$



# How it Works: Regularized Differentiation

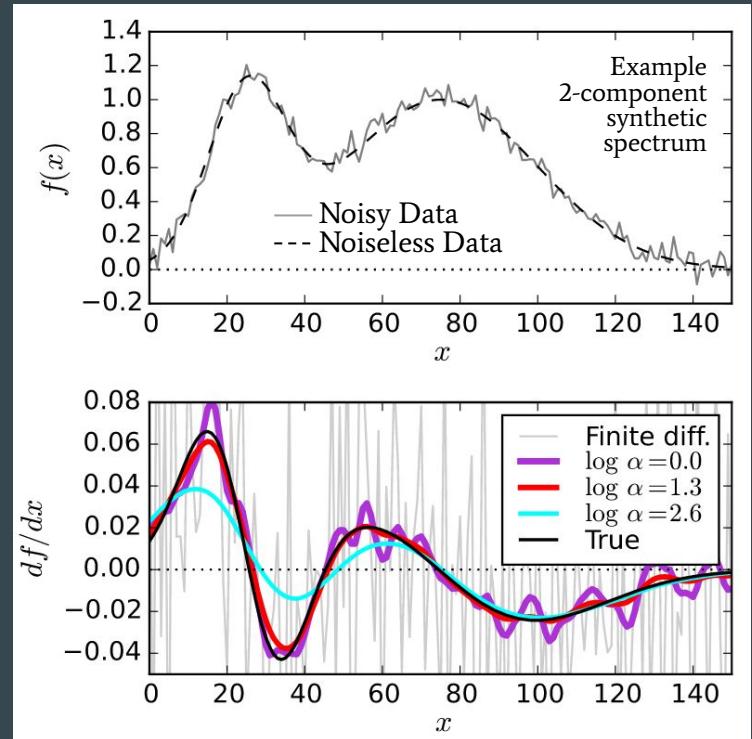
- Derivatives need to be accurate and smoothly varying to identify components.
  - Noise will produce spurious component guesses
  - Finite difference techniques greatly amplify noise in the data
- Regularization done via Tikhonov regularization
  - Derivative is fit to the data under the constraint that it remains smooth

# How it Works: Regularized Differentiation

Regularized Derivative:  $\min(R[u])$

$$R[u] = \alpha \int \sqrt{(D_x u)^2 + \beta^2} + \int |A_x u - f|^2,$$

- Smooths the derivative (first term) while maintaining data fidelity (second term).
- Magnitude of  $\alpha$  defines relative balance between the two.
- $\alpha = 0 \rightarrow$  finite difference derivative
- $\log_{10}(\alpha)$  often used
- Returns higher accuracy derivatives compared to Gaussian convolution.



# Choice of $\alpha$ is optimized using Machine Learning Techniques

Supervised Machine Learning - Computer is “trained” to generate predictions

- Given a training set: collection of input/output pairs
  - Input: spectral emission data,
  - Output: number and parameters of Gaussian components
- “Learns” a general rule for mapping inputs to outputs
  - Iterative process involves assigning a “grade” or accuracy to the machine’s guess for  $\alpha$
  - Guess is updated via least squares minimization - Levenberg-Marquardt algorithm

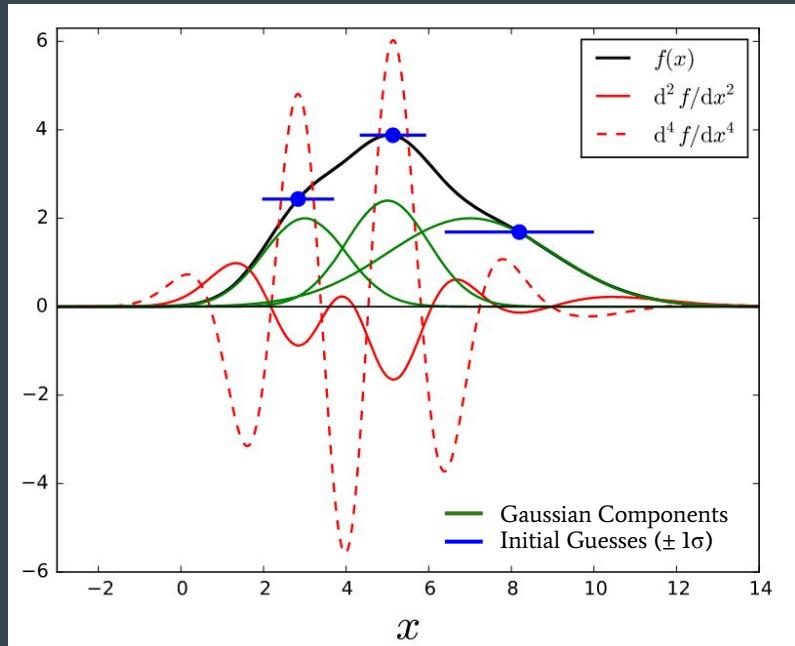
|        | <b>Manually decompose a subset of the data</b> | <b>Generate new synthetic data based on science data</b> |
|--------|------------------------------------------------|----------------------------------------------------------|
| Input  | Actual science data                            | Synthetic data                                           |
| Output | Manually determined components                 | Components based on science data                         |
| Pro    | Training data are same as science data         | Decompositions are guaranteed to be “correct”            |
| Con    | Decompositions not guaranteed to be “correct”  | Risk that training data are different from science data  |

# How it Works: Make Initial Guesses for $\mu$

- Choose high quality initial guesses
  - $x$  and  $f(x)$  are frequency and units of flux density
- Derivative Spectroscopy - technique of analyzing a spectrum's derivatives
  - Places one guess at the location of every local minimum of negative curvature (defined as second derivative) in the data
  - Mathematical criteria:

1. intensity exceeds noise
2. Curvature is negative
3. 4. ensure it's a local min

$$\begin{aligned}f &> \epsilon_0 \\ \frac{d^2 f}{dx^2} &< 0 \\ \frac{d^3 f}{dx^3} &= 0 \\ \frac{d^4 f}{dx^4} &> 0.\end{aligned}$$



# How it Works: Make Initial Guesses for $\sigma$

- Guess component's width by exploiting the relation between width and maximum of second derivative.
- Approximate  $a=f(x)$
- Rearrange to get estimate for  $\sigma$

$$G(x; a, \mu, \sigma) = a e^{-(x-\mu)^2/2\sigma^2}.$$

$$\left. \frac{d^2}{dx^2} G(x; a, \mu, \sigma) \right|_{x=\mu} = -\frac{a}{\sigma^2}.$$

$$\sigma_n^2 = f(x) \left( \frac{d^2 f(x)}{dx^2} \right)^{-1} |_{x=\mu_n}.$$

# How it Works: Make Initial Guesses for Amplitude

- Naive estimates are values of the original data evaluated at the component positions.
- But with significant blending, this can significantly overestimate the guesses
- AGD attempts to “de-blend” the amplitude guesses using the information in the already-produced position and width guesses.
- I haven’t yet dug into the details of the de-blending process

# How it Works: Regularized Differentiation

$$R[u] = \alpha \int \sqrt{(D_x u)^2 + \beta^2} + \int |A_x u - f|^2,$$



**Regularization Term**  
*Constrains  $u$  to be  
smoothly varying*

# How it Works: Regularized Differentiation

$$R[u] = \alpha \int \sqrt{(D_x u)^2 + \beta^2} + \int |A_x u - f|^2,$$



**Regularization Term**  
*Constrains  $u$  to be smoothly varying*



**Data Fidelity Term**  
*Enforces that the integral of  $u$  closely follows the data ( $f$ )*

# How it Works: Regularized Differentiation

$$R[u] = \alpha \int \sqrt{(D_x u)^2 + \beta^2} + \int |A_x u - f|^2,$$

**Alpha**

*Controls relative balance  
between smoothness and  
data fidelity*

**Regularization Term**

*Constrains  $u$  to be  
smoothly varying*

**Data Fidelity Term**

*Enforces that the  
integral of  $u$  closely  
follows the data ( $f$ )*