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Motivation
● High resolution Si emission spectra obtained on 

Z gives us the opportunity to identify many 

lines/transitions never before observed in 

laboratory setting

● Line identifications → precise wavelength 

determinations

○ Beneficial for both laboratory and astrophysical atomic 

databases

● Identifying the transitions responsible for the 

features requires fitting their component 

distributions 

○ Broadening dominated by instrumental sources → 

broadening profile is primarily Gaussian

○ Fitting can be done using Gaussian components

○ Various degrees of blending and overlap makes this 

non-trivial. 

● We can use Autonomous Gaussian 

Decomposition (AGD) implemented in a Python 

package called GAUSSPY to find optimal fits for 

constituent components of spectral features.



AGD Algorithm - Overview

● Automatically decomposes spectra into individual components

● Uses derivative spectroscopy and machine learning → optimized guesses for the 

number of components and their parameters (σ
L

, σ
G

, amplitude)

● Autonomous and more computationally efficient

○ Doesn’t require a set of manually determined initial guesses

 

● I modified the source code to use frequency dependent Voigt profiles

○ Gaussian: Source size, detector, doppler 

○ Crystal (Lorentzian)
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Z2972 low λ range: 6.63-6.70 Å

label Charge Upper J Lower J

1 He-like 1s1  2p1 1.0 1s2 0.0

2
Li-like
Li-like
Li-like

1s1 2p1 3p1
1s1 2p1 3p*1
1s1 2p1 3p*1

1.5
0.5
1.5

1s2 3p1
1s2 3p*1
1s2 3p*1

1.5
0.5
0.5

3 Li-like 1s1 2p1 0.5 1s2 2p*1 0.5

4 Li-like 1s1 2p2 0.5 1s2 2p*1 0.5

5 He-like
Li-like

1s1 2p*1
1s1 2s1 2p1

1.0
0.5

1s2
1s2 2s1

0.0
0.5
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2
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4 5



Z2972 low/mid λ range: 6.698-6.775 Å

6 7

Could these 

be the same 

features?

We would probably benefit from 

higher resolution calculations 

from here to higher wavelengths.

6 & 7 seem like clear matches but I 

don’t have the label yet from Chris



Z2972 high/mid λ range: 6.77-6.835 Å

8

8 seems like another clear match 

but I don’t have the label yet from 

Chris



Z2972 high λ range: 6.83-6.95 Å

9 & 10 seem like two more clear 

matches. There are also some other 

seemingly clear matches among 

the B-like features.

9

10
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How it Works: Make Initial Guesses for μ→ σ→ amplitude
● Choose high quality initial guesses for 

number of components and their 

parameters using a set of mathematical 

criteria.

● Derivative Spectroscopy - technique of 

analyzing a spectrum’s derivatives

● Start by identifying means, those then 

give you estimates of stdev and amp.

Gaussian Components

Initial Guesses (± 1σ)

1. intensity exceeds noise

2. Curvature is negative

3. & 4. ensure it’s a local min



How it Works: Regularized Differentiation

● Derivatives need to be accurate and smoothly varying to identify components.

○ Noise will produce spurious component guesses

○ Finite difference techniques greatly amplify noise in the data

● Regularization done via Tikhonov regularization

○ Derivative is fit to the data under the constraint that it remains smooth



How it Works: Regularized Differentiation

● Smooths the derivative (first term) while 

maintaining data fidelity (second term). 

● Magnitude of α defines relative balance 

between the two.

● α = 0 → finite difference derivative

● log

10

(α) often used

● Returns higher accuracy derivatives 

compared to Gaussian convolution.

Regularized Derivative: min(R[u])

Noisy Data

Noiseless Data

Example 

2-component 

synthetic 

spectrum



Choice of α is optimized using Machine Learning Techniques
Supervised Machine Learning - Computer is “trained” to generate predictions

● Given a training set: collection of input/output pairs

○ Input: spectral emission data, 

○ Output: number and parameters of Gaussian components

● “Learns” a general rule for mapping inputs to outputs

○ Iterative process involves assigning a “grade” or accuracy to the machine’s guess for α
○ Guess is updated via least squares minimization - Levenberg-Marquardt algorithm

Manually decompose a subset of the data Generate new synthetic data based on science data

Input Actual science data Synthetic data

Output Manually determined components Components based on science data

Pro Training data are same as science data Decompositions are guaranteed to be “correct”

Con Decompositions not guaranteed to be “correct” Risk that training data are different from science data



How it Works: Make Initial Guesses for μ
● Choose high quality initial guesses

○ x and f(x) are frequency and units of flux 

density

● Derivative Spectroscopy - technique of 

analyzing a spectrum’s derivatives

○ Places one guess at the location of every 

local minimum of negative curvature 

(defined as second derivative) in the data

○ Mathematical criteria:

Gaussian Components

Initial Guesses (± 1σ)

1. intensity exceeds noise

2. Curvature is negative

3. 4. ensure it’s a local min



How it Works: Make Initial Guesses for σ

● Guess component’s width by 

exploiting the relation between 

width and maximum of second 

derivative.

● Approximate a≈f(x)

● Rearrange to get estimate for σ



How it Works: Make Initial Guesses for Amplitude
● Naive estimates are values of the original data evaluated at the component 

positions.

● But with significant blending, this can significantly overestimate the guesses

● AGD attempts to “de-blend” the amplitude guesses using the information in the 

already-produced position and width guesses.

● I haven’t yet dug into the details of the de-blending process



How it Works: Regularized Differentiation

Regularization Term

Constrains u to be 

smoothly varying



How it Works: Regularized Differentiation

Regularization Term

Constrains u to be 

smoothly varying

Data Fidelity Term

Enforces that the 

integral of u closely 

follows the data (f)



How it Works: Regularized Differentiation

Regularization Term

Constrains u to be 

smoothly varying

Data Fidelity Term

Enforces that the 

integral of u closely 

follows the data (f)

Alpha

Controls relative balance 

between smoothness and 

data fidelity


