Thislpaperldescribeslobjectiveftechnicallresultslandlanalysis JAnvisubiectivelviewslorfopinionsithatimightibellexpressed in| SAND2021-9589C
hepaperfdolnotinecessarilyjrepresentith heJU.S JDepartment]oflEnergyforfthejUnited)StatesfGovernment.

AGD: Autonomous Gaussian Decomposition
or Spectral Line Identification

P. Cho
08.09.21 | 2021 ZFSW Astrophysics Breakout

5 SEPARTMENT OF

ENERGY

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
4 Inc., for the U.S. Department of Energy’s National
= Nuclear Security Administration under contract DE-
islelmultimissionllaboratoryimanagedlandloperatedlbylNationallTechnoloay! &lEngineeringlSolutionstof Sand|a LLC Jaf NA0003525.
subsidiaryjofl[Honeywelljinternationalfinc. Jforfith | 'siNationalfNuclearfSecurityJAdministrationfundercontract DE-NA0003525)




Motivation

e High resolution Si emission spectra obtained on
Z gives us the opportunity to identify many
lines/transitions never before observed in

laboratory setting — Dua
e Line identifications — precise wavelength T w30 1515 11942
determinations | = S
o Beneficial for both laboratory and astrophysical atomic component 3
databases 0=55.5, y=1281.5
e Identifying the transitions responsible for the R compenent 4
features requires fitting their component E ot
distributions gooe o=-66.7, y=802.1
o  Broadening dominated by instrumental sources — e

broadening profile is primarily Gaussian

o  Fitting can be done using Gaussian components

o Various degrees of blending and overlap makes this
non-trivial.

o We can use Autonomous Gaussian
Decomposition (AGD) implemented in a Python

1000 1200

package called GAUSSPY to find optimal fits for Channels
constituent components of spectral features.




AGD Algorithm - Overview

e Automatically decomposes spectra into individual components

e Uses derivative spectroscopy and machine learning — optimized guesses for the
number of components and their parameters (o, O amplitude)

e Autonomous and more computationally efficient
o  Doesn’t require a set of manually determined initial guesses

e I modified the source code to use frequency dependent Voigt profiles
o  Gaussian: Source size, detector, doppler
o Crystal (Lorentzian)



—— Decomposed Voigt Features
—— ATOMIC with NIST values
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—— ATOMIC with NIST values
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72972 low/mid A range: 6.698-6.775 A

mid A range 1: 6.698-6.775 | ATOMIC shift: 0.005

------- Data
— loga=35
<= Brrors
—— ATOMIC with NIST values

We would probably benefit from
higher resolution calculations

from here to higher wavelengths. ' .
be the same -

features?
6 & 7 seem like clear matches but I

don’t have the label yet from Chris
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72972 high/mid A range: 6.77-6.835 A

22972mid A range 2: 6.77-6.835 | ATOMIC shift: 0.0

8 seems like another clear match
but I don’t have the label yet from
Chris




[2912 high A range:

high A range: 6.83-6.95 | ATOMIC shift: 0.0057

—— ATOMIC with NIST values

9 & 10 seem like two more clear
matches. There are also some other
seemingly clear matches among
the B-like features.
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z3532full 4 range: 6.6-7.05 | ATOMIC shift: 0.0057

—— ATOMIC with NIST values
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Extra Slides



How it Works: Make Initial Guesses for y— o— amplitude

Choose high quality initial guesses for
number of components and their
parameters using a set of mathematical
criteria.

Derivative Spectroscopy - technique of
analyzing a spectrum’s derivatives
Start by identifying means, those then
give you estimates of stdev and amp.

: : : f> €
1. intensity exceeds noise

2. Curvature is negative d? f/dx?> < 0

3. & 4. ensure it’s a local min
& f/dx® = 0

d* f/dx* > 0.

= Gaussian Components
— Initial Guesses (+ 15)




How it Works: Regularized Differentiation

e Derivatives need to be accurate and smoothly varying to identify components.
o Noise will produce spurious component guesses
o Finite difference techniques greatly amplify noise in the data

e Regularization done via Tikhonov regularization

o Derivative is fit to the data under the constraint that it remains smooth



How it Works: Regularized Differentiation

Regularized Derivative: min(R[u])

Example
2-component
synthetic
spectrum

Noisy Data
-- Noiseless Data

e Smooths the derivative (first term) while
maintaining data fidelity (second term).
e Magnitude of a defines relative balance

120 140

Finite diff.
between the two. lomo?00
e o =0 — finite difference derivative A e

° loglo(a) often used
e Returns higher accuracy derivatives \
compared to Gaussian convolution. 120 140




Choice of a is optimized using Machine Learning Techniques

Supervised Machine Learning - Computer is “trained” to generate predictions
e Given a training set: collection of input/output pairs
o  Input: spectral emission data,
o0 Output: number and parameters of Gaussian components
e “Learns” a general rule for mapping inputs to outputs
o Iterative process involves assigning a “grade” or accuracy to the machine’s guess for o
o Guess is updated via least squares minimization - Levenberg-Marquardt algorithm

Manually decompose a subset of the data Generate new synthetic data based on science data
Input Actual science data Synthetic data
Output Manually determined components Components based on science data
Pro Training data are same as science data Decompositions are guaranteed to be “correct”
Con Decompositions not guaranteed to be “correct” | Risk that training data are different from science data




How it Works: Make Initial Guesses for

e Choose high quality initial guesses
o  xand f(x) are frequency and units of flux
density

e Derivative Spectroscopy - technique of

analyzing a spectrum’s derivatives
o  Places one guess at the location of every
local minimum of negative curvature
(defined as second derivative) in the data
o  Mathematical criteria:

f>eo
1. intensity exceeds noise , — Gaussian Components
2. Curvature is negative & f/dx? <0 — Initial Guesses (& 10)
3. 4. ensure it’s a local min & f/dd =0

d* f/dx* > 0.




How it Works: Make Initial Guesses for o

e Guess component’s width by
exploiting the relation between
width and maximum of second
derivative.

e Approximate a=f(x)

e Rearrange to get estimate for ¢




How it Works: Make Initial Guesses for Amplitude

e Naive estimates are values of the original data evaluated at the component
positions.

e But with significant blending, this can significantly overestimate the guesses

e AGD attempts to “de-blend” the amplitude guesses using the information in the
already-produced position and width guesses.

e [ haven’t yet dug into the details of the de-blending process



How it Works: Regularized Differentiation

V(D) + 5 + [1au - 1P,
|\
v

J

Regularization Term
Constrains u to be
smoothly varying




How it Works: Regularized Differentiation

J

V(Da} + 5 + [1au - P,
\\ ~ \ J

2

Regularization Term
Constrains u to be
smoothly varying

Data Fidelity Term
Enforces that the

integral of u closely
follows the data (f)




How it Works: Regularized Differentiation

Alpha
Controls relative balance
between smoothness and

data fidelity

Regularization Term
Constrains u to be
smoothly varying

Data Fidelity Term
Enforces that the

integral of u closely
follows the data (f)




