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Motivation: MagLIF

Magnetized Linear Inertial Fusion relies on compression of a magnetized,
laser-heated fuel to achieve thermonuclear ignition
◦ Experiments performed on Sandia’s Z Pulsed Power Facility
◦ Preheated deuterium fuel
◦ Solid beryllium liner

P.F. Knapp, et al, 2015



Motivation: MagLIF
The state of the fuel is not directly observable
Physicists rely on diagnostic metrics to understand:
◦ Target performance
◦ Impact of modifications
◦ Importance of sources of degradation

The calibration of these diagnostics becomes a multi-objective inference problem

P.F. Knapp, et al, 2015



Calibration

Bayesian calibration naturally incorporates uncertainties during calibration and
prediction

π(θ|d) = π(d|θ)π(θ)
π(d)

◦ Both the prediction and propagation phases require many runs of the model and
incur significant computational expense

→ Surrogate
The current standard of practice for multi-output surrogate models is to use individual
phenomenological surrogates
◦ Correlation between QoIs is lost → Co-prediction

Goal: Construct co-predictive surrogate model
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Gaussian Processes

A Gaussian process is a stochastic process such that every finite collection of its
random variables has a multivariate normal distribution

f(x) ∼ N (µ(x),Σ(x, x′))

Σ is completely defined by the correlation function k(x, x′)
◦ Squared exponential
◦ Matern

GP surrogates interpolate data points and provide
uncertainty estimates for each output value
Computation of prediction mean and variance requires
inversion of the N× N correlation matrix

Ri,j = k(xi, xj) C.E. Rasmussen and C.K.I. Williams. Gaussian
Processes for Machine Learning



Multi-Output Gaussian Processes (MOGP)

Consider the multi-output vector

f = [f1, . . . , fT]T

f(x) ∼ N (µ(x),Σ(x, x′))
Σ is defined by a multi-output covariance K(x, x′)

K(x, x′) =

k11(x, x′) . . . k1T(x, x′)
... . . . ...

kT1(x, x′) . . . kTT(x, x′)


Computation of prediction mean and variance requires inversion of the NT× NT
correlation matrix

RIJ = KIJ

[KIJ]ij = kIJ(xi, xj)



Linear Model of Coregionalization (LMC)

Define Q covariance functions kq(x, x′) and sample Rq latent functions

ui
q ∼ GP(0, kq(x, x′))

For output t,

ft(x) =
Q∑

q=1

Rq∑
i=1

ai
t,qui

q(x)

The cross-covariance is given by

cov[f(x), f(x′)] =
Q∑

q=1
AqAT

q kq(x, x′) =
Q∑

q=1
Bqkq(x, x′)

where Aq = [a1
q a2

q . . . aRq
q ]



Two special cases

◦ Q = 1⇒ intrinsic coregionalization model (ICM)
◦ Rq = 1⇒ semi-parametric latent factor model (SLFM)

LMC ICM SLFM

ft(x) =
Q∑

q=1

Rq∑
i=1

ai
t,qui

q(x)
R∑

i=1
ai

tui(x)
Q∑

q=1
at,quq(x)

cov[f(x), f(x′)] =
Q∑

q=1
Bqkq(x, x′) Bk(x, x′)

Q∑
q=1

Bqkq(x, x′)

A(q) = [a1
q a2

q . . . aRq
q ] [a1 a2 . . . aR] aq

Considerations
◦ kq can be the same function with different hyperparameters, or different function

types
◦ Larger Q increases flexibility (up to Q = T), but with computational cost



Benchmarking examples

Forrester
◦ 1 parameter
◦ ρ = 0.71

Accuracy:
◦ SLFM performs the worst, particularly as the

number of parameters increases
◦ ICM and LMC are competitive with SOGP

Expense:
◦ SOGP is cheaper than ICM and LMC
◦ ICM is less expensive than LMC with fewer build

points



Benchmarking examples

Branin
◦ 2 parameters
◦ ρ = 0.68

Accuracy:
◦ SLFM performs the worst, particularly as the

number of parameters increases
◦ ICM and LMC are competitive with SOGP
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Benchmarking examples

Dette & Pepelyshev
◦ 3 parameters
◦ ρ = 0.68

Accuracy:
◦ SLFM performs the worst, particularly as the

number of parameters increases
◦ ICM and LMC are competitive with SOGP

Expense:
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points



Benchmarking examples

Gramacy & Lee
◦ 4 parameters
◦ ρ = 0.83

Accuracy:
◦ SLFM performs the worst, particularly as the

number of parameters increases
◦ ICM and LMC are competitive with SOGP

Expense:
◦ SOGP is cheaper than ICM and LMC
◦ ICM is less expensive than LMC with fewer build

points



Benchmarking examples

Friedman
◦ 5 parameters
◦ ρ = 0.98

Accuracy:
◦ SLFM performs the worst, particularly as the

number of parameters increases
◦ ICM and LMC are competitive with SOGP

Expense:
◦ SOGP is cheaper than ICM and LMC
◦ ICM is less expensive than LMC with fewer build

points



Benchmarking examples

Borehole
◦ 8 parameters
◦ ρ = 1

Accuracy:
◦ SLFM performs the worst, particularly as the

number of parameters increases
◦ ICM and LMC are competitive with SOGP

Expense:
◦ SOGP is cheaper than ICM and LMC
◦ ICM is less expensive than LMC with fewer build

points



VISAR Experiment Simulations

VISAR = Velocity Interferometer System for Any Reflector
◦ Measures the shocks that occur during NIF experiments



VISAR Experiment Simulations
1D simulation using Hydra
◦ Input parameters:
◦ Deposition radius ∼ U [400µm, 1200µm]
◦ Deposition temperature ∼ U [0.8keV, 2.2keV]
◦ Deposition time ∼ U [5ns, 15ns]

◦ Outputs
◦ Deposited energy
◦ Arrival time of main shock
◦ Delta velocity of main shock



VISAR Experiment Simulations

Computation time comparisons are similar
to benchmark examples
◦ SOGP is cheaper than ICM and LMC
◦ ICM is less expensive than LMC with

fewer build points

LMC performs the best
◦ ICM is hit or miss, but better with

fewer build points

340 data points
◦ p = percentage of points used
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Conclusions

Presented examples to compare three methods for calibrating MOGPs
◦ ICM and LMC are favorable over SLFM
◦ Benchmark examples: mixed results
◦ VISAR example: LMC outperforms SOGP

Next steps:
◦ Extend methodology to “field” data
◦ Include physics constraints
◦ Incorporate information from causal statistics



Thank you
Questions?


