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Motivation: MaglLIF

Magnetized Linear Inertial Fusion relies on compression of a magnetized,
laser-heated fuel to achieve thermonuclear ignition

o Experiments performed on Sandia's Z Pulsed Power Facility
© Preheated deuterium fuel

> Solid beryllium liner

Magnetization Laser Preheat Compression

P.F. Knapp, et al, 2015



Motivation: MaglLIF

The state of the fuel is not directly observable

Physicists rely on diagnostic metrics to understand:
o Target performance

> Impact of modifications

> Importance of sources of degradation

The calibration of these diagnostics becomes a multi-objective inference problem

Magnetization Laser Preheat

Compression

P.F. Knapp, et al, 2015



Calibration

Bayesian calibration naturally incorporates uncertainties during calibration and
prediction
m(d|@)7(6)

m(0|d) = (d)

> Both the prediction and propagation phases require many runs of the model and
incur significant computational expense
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Calibration

Bayesian calibration naturally incorporates uncertainties during calibration and
prediction

7(d|6)7(6)

m(0|d) = (d)

> Both the prediction and propagation phases require many runs of the model and
incur significant computational expense — Surrogate

The current standard of practice for multi-output surrogate models is to use individual
phenomenological surrogates

o Correlation between Qols is lost — Co-prediction

Goal: Construct co-predictive surrogate model



Gaussian Processes

A Gaussian process is a stochastic process such that every finite collection of its
random variables has a multivariate normal distribution

flx) ~ N (u(x), Z(x, X))
Y is completely defined by the correlation function k(x, x’)
o Squared exponential

> Matern

GP surrogates interpolate data points and provide
uncertainty estimates for each output value

Computation of prediction mean and variance requires
inversion of the N x N correlation matrix

0 05 1
input, x

Ri,j = k(x,‘, XJ) C.E. Rasmussen and C.K.I. Williams. Gaussian
Processes for Machine Learning



Multi-Output Gaussian Processes (MOGP)

Consider the multi-output vector

f(x) ~ N (m(x), X(x, X))
Y is defined by a multi-output covariance K(x, x’)
k11(x, X,) . le(X, X/)
K(x,x') = _ :
kn(x,x') ... krr(x,x')

Computation of prediction mean and variance requires inversion of the NT x NT
correlation matrix

Ry = Ky
Kuly = ku(xix))



Linear Model of Coregionalization (LMC)

Define Q covariance functions kq(x, x) and sample Ry latent functions
uf7 ~ GP(0, kq(x, x'))

For output t,
Q Rq

x)_zzatq Ug\X

g=1 i=1

The cross-covariance is given by
cov[f(x) ]—ZAAkxx ZBk (x,x)

where A, = [ala2 ... ag’]



Two special cases

- @ = 1 = intrinsic coregionalization model (ICM)
° Ry = 1 = semi-parametric latent factor model (SLFM)

LMC ICM SLFM
Q Rq . . R . . Q
)= DD atqup(x) D aw(x) D anque(x)
a=1 i=1 =1 a=1
Q Q
cov[f(x), f(x')] = Z Bgkqg(x, X') Bk(x, x') Z Bgkq(x, X')
g=1 g=1
R,
Ay = [azal...ag"] [ata®...aF a,

Considerations
° kg can be the same function with different hyperparameters, or different function
types
> Larger Q increases flexibility (up to Q = T), but with computational cost



Benchmarking examples

Forrester
o 1 parameter
°cp=0.71

Accuracy:

> SLFM performs the worst, particularly as the
number of parameters increases

o ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

o ICM is less expensive than LMC with fewer build
points
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Benchmarking examples -
Branin

° 2 parameters

functionName = branin2d, n =

° p=20.68
Accuracy: o
> SLFM performs the worst, particularly as the o
number of parameters increases o

> ICM and LMC are competitive with SOGP . R

Expense:
> SOGP is cheaper than ICM and LMC ::‘::
© ICM is less expensive than LMC with fewer build g
points -

i e st



Benchmarking examples

Dette & Pepelyshev
o 3 parameters
° p=0.68

Accuracy:

o SLFM performs the worst, particularly as the
number of parameters increases

> ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

© ICM is less expensive than LMC with fewer build
points
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Benchmarking examples

Gramacy & Lee
° 4 parameters
- p=20.83

Accuracy:

o SLFM performs the worst, particularly as the
number of parameters increases

> ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

© ICM is less expensive than LMC with fewer build
points
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Benchmarking examples

Friedman
° 5 parameters
° p=0.98

Accuracy:

o SLFM performs the worst, particularly as the
number of parameters increases

> ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

© ICM is less expensive than LMC with fewer build
points
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Benchmarking examples

Borehole

° 8 parameters
cp=1

Accuracy:

o SLFM performs the worst, particularly as the
number of parameters increases

> ICM and LMC are competitive with SOGP

Expense:
> SOGP is cheaper than ICM and LMC

© ICM is less expensive than LMC with fewer build
points
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VISAR Experiment Simulations

VISAR = Velocity Interferometer System for Any Reflector

© Measures the shocks that occur during NIF experiments

hydrocarbon gas

-

T plastic window




VISAR Experiment Simulations

20

1D simulation using Hydra

-
&

° Input parameters:
o Deposition radius ~ U[400pm, 1200m]
° Deposition temperature ~ U[0.8keV, 2.2keV]
o Deposition time ~ U[5ns, 15ns] s
o Qutputs
° Deposited energy O e PP
o Arrival time of main shock
o Delta velocity of main shock 1

i
S

energy (in kj/cm)

visarld_base vl

Linon

shock velocity (kmrs)




VISAR Experiment Simulations

Computation time comparisons are similar
to benchmark examples

> SOGP is cheaper than ICM and LMC
o ICM is less expensive than LMC with
fewer build points
LMC performs the best
o ICM is hit or miss, but better with
fewer build points
340 data points

° p = percentage of points used
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Conclusions

Presented examples to compare three methods for calibrating MOGPs
¢ ICM and LMC are favorable over SLFM
> Benchmark examples: mixed results
> VISAR example: LMC outperforms SOGP

Next steps:
o Extend methodology to “field” data
° Include physics constraints

° Incorporate information from causal statistics



Thank you

Questions?



