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Immiscible/Miscible ) 2,

Figure 13: Immisible fluids on the left and miscible fluids on the right [32].

[32] Baldwin Lawrence. Unit 3 Solutions Chemistry, Aug 2015, URL hetp: //slideplayer.

com/elide/5941102/releaza/woothea. From HeehO,S Dissertation 2



Capillary Pressure
Relative Permeability

Sandia
r‘1 National
laboratories

Van Genuchten M=0.5, a=10"3, 5,=0.1, S;, =0.1 Van Genuchten M=0.5, a=10"%, 5,=0.1, 5, =0.1
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Figure 2: This is an example of van Genuchten analytical formulation with s, = 0.1, s,y =
0.1, « = 1073, and m = 0.5: (a) capillary pressure as a function of saturation is in Eq. 10
and (b) liquid and gas relative permeability as a function of a liquid saturation in Eq. 13 and

Eq. 14, respectively.
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Governing Equations

General Mode (air-water-energy)

O (8 Xf + Sypg XY
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¢ = effective porosity [-] J¥ = water vapor diffusive flux in gas phase [kmol/m?*/sec]
s; = liquid saturation [-] J¥ = air diffusive flux in gas phase [kmol/m?/sec]
s, = gas saturation [-] ¢, = water source/sink [kmol/sec]

p; = liquid phasc density [kmol/m?] q, = air source/sink [kmol/sec]

py = gas phase density [kmol/m’] g. = energy source/sink [Ml/sec]

X!, = mole fraction of water in the liquid phase [-] Uy = liquid phase internal energy [MJ/kmol]

X? = mole fraction of water in gas phase |-] U, = gas phase internal energy [MJ/kmol]

X! = mole fraction of air in the liquid phase [-] H) = liquid phase enthalpy [MJ/kmol]

X9 = mole fraction of air in gas phase [-] H, — gas phase enthalpy [MJ/kmol]

q, = liquid phase Darcy flux [m/sec] C1*°* = rock heat capacity [MJ/kg rock-K]

q, = gas phase Darcy flux [m/sec] Prock = rock particle density [kg/m? rock]

J' = water diffusive flux in liquid phase [kmol/m?/scc] 1" = temperature [C]

J' = air diffusive flux in liquid phase [kmol/m*/sec] K.y = effective thermal conductivity [W/K-m] 4



Governing Equations

Darcy Flux
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Air Diffusion in Liquid Phase
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Air Diffusion in Gas Phase
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g,, = Darcy flux for phase o [m/s]

k = intrinsic permeability [m?]

k. = relative permeability for phase « [-]
Lo, = Vviscosity for phase o [Pa-s]

po = pressure for phase a [Pa]

~, = density for phase o [kg/m?]

g = gravity [m/s?]
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z = elevation [m]

J fl — diffusive flux of air in liquid phase [kmol/m?-s]
T = tortuosity [-]

D, = aqueous diffusivity [m?/s]

J9 = diffusive flux of air in gas phase [kmol/m’-s]
D)) = gas diffusivity [m?/s]

py = reference pressure [Pa]
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Primary Variables ) S,

General Mode

Thermodynamic  Primary Variables
State of Fluid X Xo Xs

Two-Phase Py Sg T
pg S g Pa
Liquid p X T

Gas P, D, T




Linearized System

General Mode
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" Two-phase state
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Single-phase gas state
Phase transition Criteria
Liquid phase — two-phase p, < psat(T)
Liquid phase < two-phase S, < 0.0
Gas phase — two-phase Po = Psat(T)
Gas phase < two-phase Sy > 1.0




Benchmark )

Saturation of Disturbed Rock Fone (DRZ) from Excavation
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van Genuchten extension ) e,

Van Genuchten Unsaturated Extensions
a=107/Pa,S, =005, m=05n=2

IO E T T ] T T T | 1
: FCPC 10° Pa
ECPC 10° Pa
LCPC 10” Pa
ENOC 9.75% E
LNOC 9.75%
1]
= _
e
= A
2 \)
3 |
& 10" b\ |
= \
= fL il
@
10° L o
10t I ! ! ! I I 1 1 !
0% 10% 20% 30% 40% 50% 60% T70% 80% 90% 100%

Liquid Saturation

From Heeho’s Dissertation d



Performance )

Extended VG NTRDC_HI Computation Time
24-PWR 313k unknowns (16 cores)
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Figure 11: The plot shows the coarsened model 24-PWR case (boiling) computation wall clock

time. VG1 is the original van Genuchten curve, VG2 is FNOC, VG3 is ECPC, VG4 is ENOC,
and VG5 is LCPC in Figure [VG curve variance added by Matt]. The extended curve at the

liquid residual saturation improves the nonlinear solver performance.
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Residual Space Change for State
Changes
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Absolute Strong Scaling ) .

Strong Scaling
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Figure 16: Wall clock time in seconds is plotted against the number of cores involved in the
simulation which represents true strong scaling (a single core base case) of Newton (NT'), NTR,
NTRDC, NTR_HI, and NTRDC_HI. The new nonlinear solvers shows as good of scalability
as Newton and follows the trend of ideal strong scaling plot, and it follows the ideal line even

closer when node packing defect is reduced by running on 1 core per node on 32 nodes.

From Heeho’s Dissertation 12



Sandia
r‘1 National
laboratories

Relative Strong Scaling

Strong Scaling
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Figure 17: The plot shows the relative strong scaling where the base case is running 1 node

with 36 cores, a fully packed node. The strong scalability is right on top of the ideal line.

From Heeho’s Dissertation 13



