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‘ Materials are among the largest challenges
for future tokamaks

Exposure conditions:

High-flux D-T plasmas

High-energy fusion products (14 MeV n, helium ash)

Impurities

Charge-exchange neutrals

Charge Slow Neutral
Exchange ® Atom
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Result of sputtering depends on location

In divertor: high plasma density results in ionization and redeposition
* Sputtered material is ionized close to its origin and is redeposited
locally
* Net erosion << Gross erosion [1]
* Afew nm/s for low-Z materials
e Lessthan 1 nm/s for high-Z materials
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Sputtered Wall

Sputtered matsitanss
lonized and redeposited

el ALE DR 2P [1] D.G. Whyte, Fusion Sci. Technol. 48 (2005) 1096.



On first wall: plasma density will be orders of magnitude lower
* |tis a concern that sputtered material may ionize on field lines
connecting to more distant regions
* Net erosion = Gross erosion [2]
e 10’s of kg/yrin ITER
e 1000’s of kg/yr in a power plant

We need diagnostics to

measure charge-exchange
neutral flux O )
Sputtered Wall
+ Atoms

el ALE DR 2P [2] P.C. Stangeby, J. Nucl. Mater. 415 (2011) 5278



Past measurements I
|

Although some studies were done in the 80's / 90’s,
characterization of c-x neutrals is presently lacking on US

Rev. Sci. Instrum. 68, 982 (1997); doi: 10.1063/1.1147731

tokamaks | A HEE -

Diagnostics used: LTl T T
* Low Energy Neutral Analyzer (LENA) - good time and energy [SuiS N SN == |EctCeammy
resolution, but large and complex e
« Carbon Resistance Probe (CRP) - compact and low power, but

permanently saturate at 2 x 10" H/cm?

* | Pd-MIS H-sensors (Palladium Metal-Insulator-Semiconductor) -
same advantages as CRP and can be regenerated, but have
lifetime limited by high energy particles
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Pd-MIS H-sensor operating principle

Metal — semiconductor junction forms a Schottky diode

* In reverse bias, leakage current is exponentially related to the
barrier height

« Implanted hydrogen rapidly diffuses to the Pd-SiO, interface,
where the hydrogen is weakly trapped changing the barrier
height

* Hydrogen is detected by monitoring the reverse current
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R. Bastasz, B.L. Cain, T.E. Cayton, R.C. Hughes, and D.N. Ruzic, J. Nucl. Mater. 162-164 (1989) 587 biaS (OXide nOt Shown for S1mplIC1ty)
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Energy resolution provided by gold overlayer

Thin Au coatings can be deposited on different
sensors to provide energy discrimination

D, not penetrating the Au layer can not reach the
SiO, interface

Requires modelling to interpret (assume Maxwellian
energy distribution + SRIM to estimate ion range)

Overlayer (Au)

Metal (Pd) c :
urren
Monitor

Sensing —— Junction

Junction o

Semiconductor (n-Si) T Bias
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Design modifications to improve ruggedness |

High energy particles result in charge accumulation in the oxide layer

Remedies:
Minimize oxide thickness \/ Maximize metal layer thickness ?
e Must be grown slowly with (~500 nm)
careful surface preparation » Thick layers (greater than ~ 50 :

* Done at Sandia MESA facility nm) result in poor fabrication

yields |

« Adhesion layer would typically be
used in this situation (Ti/Cr), but

this blocks H from reaching

Adhesion Layer ) ]
Metal (Pd) ' junction
/\ Current I
S i
Insulator (Si0,) oner . 1A
. Maybe a compromise is possible?
Sensm g —— Junction B
Semiconductor (n-Si) Junction T Bias
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Patterned adhesion layer enables H sensing
with thick Pd layer

Adhesion layer is deposited through a fine hole pattern
* Hydrogen still has access to junction
* With improved bond between Pd and SiO,

|

Microscope image of shadow mask
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Pd
Newest sensors have 500 nm Pd

* Expected to withstand c-x energies up to ~50 KeV based on SRIM
calculations (30x improvement)

 Have demonstrated excellent hydrogen sensitivity in laboratory
testing at 340 eV/D and 1500 eV/D

* DIII-D piggyback experiment June 2021

Dual e-beam evaporator located

at Sandia Nation Laboratories
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Nanoscratch testing shows improved adhesion
with patterned Cr layer

1 um radius diamond probe dragged
across surface of sensor while maintaining

normal force

« Pd layer appears to fail above 2 mN force
without Cr

« Deeper scratches without Cr

“max scratch depth”

SEM images from J. Whaley Nanoscratch testing by R. Friddle
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Sensors conditioned using D ion beam before

testing in DIII-D tokamak

Conditioning performed using SIMS ion beam
* Precision dosing by measuring collected ion current
e Control of beam energy and sensor temperature

7 nm Au, patterned Cr sensor test

Strong response (~ 1-10 uA)
#— 1500 eV/D exposure 6
—&— 1500 eV/D exposure 7
340 eV/D exposure 8
—&— 340 oV/D exposure 9

Good sensitivity (~ 300%)
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Consistent response to dose
after ~ 4 regeneration cycles
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SIMS ion beam station at
Sandia National Laboratories

Sensors on TO-5 headers mounted for
conditioning



Sensors were tested at DIII-D tokamak in
piggyback experiments (June 2021)

Sensors were mounted in Divertor Material Evaluation

System (DIMES) and tested over several days

* Test of sensors and data collection system in the tokamak
environment

« Same gold thickness on each sensor (7 nm Au)

B
-
-
Adapted from: Rudakov D., Abrams T., Ding R., Guo H., Stangeby P., I
Wampler W., Boedo J., Briesemeister A., Brooks J., Buchenauer D., Bykov I.,
Chrobak C., Doerner R., Donovan D., Elder J., Fenstermacher M., Guterl J.,
Hinson E., Hollmann E., Lasnier C., Leonard A., McLean A., Moyer R., Nygren R.,
Thomas D., Unterberg E., Watkins J., Wong C. Fusion Eng. Des., 124 (2017),
pp- 196-201 s
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Sensors were successfully demonstrated in
tokamak environment

Data collected from ~ 27 plasma
shots over 2 days

e Saturation after ~ 4 shots in USN

configuration
e Strong signal!
 Can be reduced with apertures or
thicker gold layers

 Demonstrated sensor regeneration
with thermal cycling

* Nearly identical response from pair of
sensors in USN configuration before
saturation

* Multiple gold thicknesses needed for
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DIlI-D shots 187014-187015 H-sensor test, 15Jun2021

Shot 187014

\

Shot 187015

\

Interrupted bias

causes drop in signal ——

Detector
Response

Detector
Response

Sensor 1 (7 nm Au, -1 V Bias)
Sensor 2 (7 nm Au, -1V Bias)

100 150
Time [s]

H-sensor data from consecutive USN plasma shots at DIII-D
tokamak, starting from regenerated state

fluence measurement
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DIMES cap apertures visible in SEM and
AES measurements

Sensors used in DIlI-D seem to show erosion
from neutrals and carbon deposits from
sputtering

Dust is mostly from DIII-D system

Sensor A2
(sensor #1 in DIII-D test)
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‘ AES map of DIlI-D sensors

Palladium

* Sensors 1 and 2 were tested in DIII-D and show significant carbon
deposit and erosion

* Sensor 3 was only conditioned with 340 and 1500 eV D+ ion beam
and shows slight erosion/cleaning

Sensor1l Sensor 2
(7 nm Au) (7 nm Au)
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‘ Future work

Explore optimization of adhesion layer (strength vs sensitivity)

Continue laboratory testing of sensors with thick Pd layer

« Calibrate hydrogen response
« Extract energy distribution from array of sensors

Further testing at DIII-D to measure shot-to-shot energy distribution and fluence

This work was funded by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences
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Supplemental slides
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Pd-MIS sensors have been tested in DIlI-D (2018)@®

. . Pd-MOS H-sensor (1st tests using DIMES)
Legacy sensor tested in DIMES Shots 176898 & 176899 s

« Demonstrated ability to function in Tokamak
environment
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Figure courtesy of Dean Buchenauer
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EDS and EELS measurements show minimal
intermixing or oxidation of Cr

4 . ' . B
% ', 5 il

:‘.

S nm 5 nm 5 nm 5nm Snm

EDS measured 2.8 nm thick for Cr and 2.5 nm thick for oxide

EELS suggests something more like 2.5 nm : :
for both the Cr and the O layer 1 Wllspecra from ea

Spectrum
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EDS and EELS measurements by J. Sugar |



Adhesion testing “tape peel method” has shown
promising results for Ti posts

* Overall good performance with patterned Ti

* Tape-peel method is highly variable though

wis g S0l » NoOTi ( Patterned Ti g
;pt' /fayer/ Layer ¥ God ™ 3
| / Jrl : >V T & - I

Results of a tape peel adhesion test: sensors
with patterned Ti out perform others in first test
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