
P R E S E N T E D B Y

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering

Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

Programming Model Developments
Present Opportunities for Runtime
and Operating Systems

Stephen Olivier

SAND2020-12772CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Feature Development Cycle2

Initial
Implementations

User Experiences
Identify

Performance
Gaps

Improved
Implementations

User Experiences
Identify

Semantic Gaps

Propose New
Feature or

Enhancement to
Existing Feature

Some Recent Developments in
OpenMP

3

OpenMP Timeline4

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

3.1
(Better Tasking,
Thread Binding)

4.0
(Devices, Affinity,

Dependences, SIMD)

5.0
(Tools, Allocators, Requires,

Variants, Metadirective,
Detached Tasks)

6.0
<Expected>

3.0
(Tasking)

4.5
(Better Device

Support, Taskloop)

5.1
(Interop, Assume,

Loop Transformations)

Recommended Reading: “The Ongoing Evolution of OpenMP” (Proc. of the IEEE)

https://doi.org/10.1109/JPROC.2018.2853600

OpenMP 5.0: Requires directive (Program Only Valid if…)5

 Sets system conditions for program execution:
◦ Unified address space across host and devices
◦ Unified shared memory across host and devices
◦ Default memory order for atomics, e.g., release/acquire
◦ Supports “reverse offload” from accelerator back to

host
◦ Supports OpenMP allocators in offloaded code

 Can also define implementation-defined clauses
◦ OpenMP-approved way to allow for extensions

 Can make the program less portable
◦ If the conditions aren’t met by the implementation,

compilation and/or execution can fail

NO UNIFIED MEMORY

NO REVERSE OFFLOAD

NO SERVICE

OpenMP 5.0: Allocators (User Chooses Memory Space + Traits)6

Where to put it
[Choose 1]

Configure as desired
[or use defaults] What happens

if not available

NUMA

Init. using
compile-time
constants or
firstprivate

OpenMP 5.0: Tools and Debugging Interfaces (OMPT and OMPD)7

 Huge untapped potential in the area of tools and
debuggers for multithreaded programming

 Need for common interfaces between
tools/debuggers and OpenMP implementations
◦ Previously untenable m : n mapping of tools to

runtimes
◦ Focus of tool development shifts to developing more

capabilities rather than maintaining multiple interfaces

 Now can understand OpenMP runtime behavior on
its own terms
◦ Measure overheads of parallel regions threads, tasks
◦ Reveal thread idleness, scheduling decisions
◦ Opens doors for runtime introspection

Too
l

Runtime
A

Runtime
B

Runtime
C

Video: “How to Write an OMPT-Based Tool”

https://youtu.be/pghHrqjhEhI

OpenMP 5.0: Loop Directive (Descriptive Instead of Prescriptive)8

 Wait, hasn’t OpenMP supported parallel loops
since 1997?
◦ Yes, but in a prescriptive way: the worksharing loop

(omp for/do)
◦ Many constraints on execution, mapping iterations to

threads

 New loop directive allows implementation freedom
◦ Inspired by OpenACC loop
◦ “…associated loops may execute concurrently…”
◦ In the absence of clauses constraining behavior, just

make it run fast using the execution resources
available

 For completeness, note also availability of taskloop
and distribute directives introduced in previous
OpenMP versions

OpenMP
implementation

Your Loop(s) Code

Loop Execution

OpenMP 5.0: Declare Variant and Metadirective (Pick Code A in Situation X)9

 Context selector defines properties of the code and
the system used to determine which code to run
◦ Vendor, ISA, architecture
◦ On host or device
◦ Enclosing OpenMP constructs (e.g., parallel, teams)

 Specify code to run based on context selector
◦ Declare variant designates different versions of a

function
◦ Metadirective chooses directive to use based on

context
◦ Extended in OpenMP 5.1 with the dispatch directive

 Performance portability requires some effort
◦ Added maintenance requirement for code

specialization
◦ Burden for consistency across variants is on the

programmer Choose variant f42()

Intel

Inside
parallel
region

On the
host

YouTube video (includes 5.1 extensions)

https://youtu.be/ruugaX95gIs

OpenMP 5.0: Detached Tasks (Event Handles for Task Completion)10

 Ordinarily, reaching the end of an OpenMP task’s
body of code results in task completion, but…
◦ With the detach clause, completion is postponed until

an event handle is set to fulfilled by an
omp_fulfill_event runtime call

 Can pass the event handle object to other
functions
◦ E.g., callbacks for asynchronous native device

operations
◦ Since detached tasks are part of the OpenMP

dependence graph, such operations can trigger further
OpenMP tasks

 Step in the direction of more interoperability with
other programming models

Task A

Task B

De
pe

nd
s

on

Callback

Pass Event
Handle

Fu
lfi

ll E
ve

nt
 H

an
dle

OpenMP 5.1: Assume Directive (Invariant Information About the Code)11

 Notifies implementation of invariants in code
◦ No OpenMP code
◦ No OpenMP runtime calls
◦ No OpenMP parallelism
◦ Certain constructs absent OR code contains them
◦ Given expression evaluates to true throughout

 Rich trove of information for runtime decisions
◦ Choose optimized “fast paths” for some cases
◦ Estimate overhead costs
◦ Influence scheduling of tasks

Runtime Calls

YouTube presentation on this feature

https://youtu.be/XZtPTSjPB6Q

OpenMP 5.1: Interop Directive (Cooperating with Other Runtimes)12

 Longstanding need to enable cooperation between
directive-based programming and “native” device
code
◦ E.g., CUDA, OpenCL, SYCL

 First in what will likely be many steps toward such
interoperability, but for now:
◦ Get device context / platform properties
◦ Get CUDA/OpenCL stream
◦ Avoid blocking where not required

 (Note that OpenMP 5.0 already provided simple
runtime calls to pause the OpenMP runtime)

YouTube presentation on this feature

In
te

ro
p

OpenMP

OpenCL

https://youtu.be/qjkTL2CT37w

OpenMP 6.0: What’s on the Horizon (Your Contributions Welcome!)13

 Many new possibilities for tasks
◦ Tasks transferrable between teams of threads
◦ Allow the runtime to manage “free-agent threads” that

don’t belong to any team but can execute tasks from
any teams

◦ Tasks with progress guarantees to enable event-loop
parallelism, polling, and real-time systems use cases

 Further improvements for heterogeneous systems
◦ Coordinated work across multiple devices
◦ Affinity across host and device threads, tasks, and data
◦ Support for persistent memory

 Additional power and flexible parallelism for loop
directive

 User-defined loop schedules

Thread 0
Thread 1
Thread 2

Team 0

Thread 0
Thread 1
Thread 2

Team 1

Tas
k

Free-
agent

Thread

Tas
k

OpenMP: How to Contribute14

 LLVM open-source OpenMP runtime library
◦ Repository: https://github.com/llvm
◦ 12.0 status: https://clang.llvm.org/docs/OpenMPSupport.html
◦ Most vendor OpenMP implementations are LLVM-based
◦ Implementing proposed features in LLVM (or GCC) greatly increases

chances of eventual inclusion in the specification

 Related runtime efforts, e.g., Argobots / BOLT, StarPU, Nanos++ /
OmpSs

 Socialize your work and ideas with the OpenMP community
◦ Intl. Workshop on OpenMP (IWOMP): http://www.iwomp.org
◦ Presenting at IWOMP bestows membership in cOMPunity, the OpenMP

users group that is part of the Language Committee
◦ Language Committee meets 3X/year and has weekly telecons
◦ Other opportunities posted at https://www.openmp.org
◦ SC20 BoF (link)

LLVM dragon logo copyright Apple Inc.

OpenMP logo copyright OpenMP ARB.

https://github.com/llvm
https://clang.llvm.org/docs/OpenMPSupport.html
https://www.argobots.org/
https://www.bolt-omp.org/
https://starpu.gitlabpages.inria.fr/
https://pm.bsc.es/nanox
https://pm.bsc.es/ompss
http://www.iwomp.org
https://www.openmp.org
https://sc20.supercomputing.org/presentation/?id=bof132&sess=sess304

Some Recent Developments in MPI

15

MPI Timeline16

2012 2013 2014 2015 2016 2017 2018 2019 2020 Early
2021

Near
Future

Recommended Presentation: “Final Steps to MPI 4.0… and What’s Next” (EuroMPI 2020)

3.0
(Nonblocking & neighborhood collectives,
Tools interface, Better one-sided comm.)

3.1
(Corrections,

Minor additions)

4.0
(Partitioned communication,

Sessions, Persistent collectives)

4.1
(Corrections,

Minor additions)

https://eurompi.github.io/assets/papers/2020-09-eurompi2020-mpi4.pdf

MPI 4.0: Partitioned Communication (A Way Forward for Threading and MPI)17

 Low-overhead multithreaded operations
◦ Each thread in sender process contributes its portion of

data into its own partition of the buffer
◦ Can start transferring filled partitions to partitioned

buffer at receiver while other send partitions not yet
filled

◦ Does not inflate the rank space

 Expected follow-on for MPI 4.x/5.0
◦ Enhanced GPU support when paired with NIC offering

triggered operations
◦ Apply to other MPI features
◦ Partitioned collectives?

T0 T1 T2 T3 T4 T5 T6 t7

Detailed presentation on Partitioned Communication

https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2020/200692pe.pdf

MPI 4.0: Sessions (Enabling Scalability and Composition)18

 Current limitations of MPI stand in the way of
scalability and composition
◦ Applications increasingly composed of multiple district

libraries or constituent components
◦ MPI initialization, MPI_COMM_WORLD set up, and

communicator splitting not well suited to this reality

 New approach: MPI sessions
◦ MPI session is a handle to the MPI library
◦ Through the session handle, can query available

process list and construct a group of processes
◦ Communicator can be formed based on the group

MPI Library

Lib A Lib B Lib C

IEEE CLUSTER paper on sessions implementation in OpenMPI

https://doi.org/10.1109/CLUSTER.2019.8891002

MPI 4.0: Persistent Collectives (Because Optimization Loves Repetition)19

 Persistent operations useful for iterative patterns
commonly encountered in applications
◦ Available for point-to-point communication since early

days of MPI standard

 Now extended to collectives
◦ Initial setup costs, but subsequent calls optimized
◦ Runtime can develop and reuse a plan
◦ Possible to further optimize as more calls made

Parallel Computing article on persistent collectives

https://doi.org/10.1016/j.parco.2018.08.001
https://doi.org/10.1016/j.parco.2018.08.001

MPI: How to Contribute20

 Major open-source implementations with online repositories you
can fork
◦ OpenMPI: https://www.open-mpi.org/ (repo)
◦ MPICH: https://www.mpich.org (repo)
◦ Most vendor implementations are based on one of the above

implementations
◦ Also MPICH-based MVAPICH (can download source at OSU-hosted site)

 Socialize your work and ideas with the MPI community
◦ EuroMPI conference: https://eurompi.github.io
◦ ExaMPI conference (today):

https://sites.google.com/site/workshopexampi/
◦ MPI Forum meets (typically) 4X per year and has weekly telecons
◦ SC20 BoF (link)

https://www.open-mpi.org/
https://github.com/open-mpi/ompi
https://www.mpich.org
https://github.com/pmodels/mpich
http://mvapich.cse.ohio-state.edu/
https://eurompi.github.io
https://sites.google.com/site/workshopexampi/
https://www.mpi-forum.org/
https://sc20.supercomputing.org/presentation/?id=bof126&sess=sess309

Other Programming Models
and Closing Thoughts

21

C++ Parallelism and SYCL (Gaining Momentum)22

 C++ Performance portability libraries popular with Exascale app
developers
◦ Kokkos (Sandia Labs) and RAJA (Lawrence Livermore National Lab)

 ISO C++ embracing parallelism/concurrency in recent/upcoming
versions
◦ Parallel STL in C++17 (sequential, parallel, vectorized options)
◦ C++20 coroutines, atomic_ref, synchronization (latches, barriers, etc.)
◦ Executors in C++23 (proposed based on best practices of Kokkos and

RAJA)
◦ OpenMP language committee closely monitoring advances in C++ to

anticipate and define interactions between base language features and
OpenMP

 SYCL (standard from Kronos – the OpenCL & OpenGL people)
◦ Based on standard C++11
◦ oneAPI’s Data Parallel C++ geared toward Intel devices: CPUs, GPUs,

and FPGAs
◦ hipSYCL for some AMD and NVIDIA GPUs
◦ triSYCL reference implementation
◦ Codeplay’s ComputeCpp

SYCL and the SYCL logo are trademarks
of the Khronos Group Inc.

oneAPI logo trademark Intel Corp.

Kokkos / Sandia National Labs

RAJA / LLNL

https://github.com/kokkos/kokkos
https://github.com/LLNL/RAJA
https://www.oneapi.com/
https://uob-hpc.github.io/zoo/tools/hipSYCL.html
https://github.com/triSYCL/triSYCL
https://www.codeplay.com/solutions/ecosystem/

Chapel (Reimagining Parallel Programming)23

 Unlike other programming models discussed in this talk
◦ Distinct programming language (not C/C++/Fortran extension)
◦ Effort headed by a dedicated team at Cray (now HPE)
◦ Initially part of DARPA’s High Productivity Computing Systems program

 Global view parallelism approach
◦ Parallel loops and data structures distributed across nodes
◦ Task parallelism with flexible synchronizations

 Runtime incorporates several distinct layers
◦ Berkeley GASNet for communication, Partitioned Global Address Space
◦ Sandia Qthreads for on-node task parallelism

 Chapel Community resources
◦ CHUIW workshop usually in conjunction with IPDPS
◦ Cray Chapel web site

Chapel logo by Jim Cissell, Kristina Davis,
Oli Laurelle, and Timothy Stitt.

Qthreads

https://gasnet.lbl.gov/
https://github.com/Qthreads/qthreads
https://chapel-lang.org/

Closing Thoughts24

 Staying power of MPI and OpenMP not to be underestimated, but
they are looking over their shoulders…
◦ Applications thrive on sustainable programming models
◦ Early success of OpenACC pushed OpenMP to prioritize accelerator

support
◦ MPI Forum considering separation of semantics and bindings in the

standard to accommodate new base languages like Python
◦ C++ and Fortran upping their parallelism support in each new version

 More ways than ever to make an impact
◦ Ample room for already implemented features to optimized
◦ Some features even specified before implementation
◦ New capabilities rely on efficient runtime, and some cases, OS

foundations
◦ Open-source runtimes enable realistic prototyping and smooth feature

uptake
◦ Many ideas and techniques transferable across programming models

 It’s an exciting time to be working in these communities!

The Python logo is a trademark of the Python Software Foundation

