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3 | Motivation and Context

*DOE is interested in many problems that require high-fidelity physics-based HPC
simulations

T(K): 800 1000 1200 1400 1600

Combustio | Climate Modeling Fluid
n Dynamics

*Want to find “interesting” events, anomalies, state changes, etc.

- Examples may include cyclones, onset of combustion, or other things that the scientists may
not prescribe a priori and may be difficult to perform via rule-based detection

*Desired solution would be to take all the data and run the appropriate detection
algorithms (e.g., LOF, isolation forests, clustering)

*These simulations produce massive amounts of data (problems for storage capacity,




+ I Current state-of-the-art for HPC simulation analysis

*Take “snapshots” in space and time (1/1000" or 1/10000%")

*Post-process snapshot data with standard algorithms

Problems with the current methods:

Interesting events may happen between or outside of these snapshots
*Important information leading up to the captured event could be lost

*Rerunning simulations to capture lost information is expensive

*This problem will only get worse as the amount of data and fidelity of the simulations
iIncreases

Is there a way to detect the anomalies in-situ,

thus facilitating more precisely targeted event capture?




s I Changing the Paradigm with /n-Situ Event Detection

‘Develop techniques to detect interesting spatial and temporal events in-situ for HPC
physics simulations

*Scalable : Can’t significantly hinder the runtime of the application

*Unsupervised : To enable discovery, should not require labeling of interesting events
*Generalizable : Not focused on one specific event or domain

*Online : Don’t require having access to all the data from every time step (post-
processing)

This is foundational research, with a focus on algorithms

that can motivate changes to simulation code and facilitate
more intelligent, focused data capture




« | Related Research is in the Early Stages

*Domain-specific

- J. Bennett, A. Bhagatwala, J. Chen, A. Pinar, M. Salloum, and C. Seshadhri. 2016. Trigger Detection for
Adaptive Scientific Workflows Using Percentile Sampling. SIAM Journal on Scientific Computing 38, 5
(2016), S240-S263. https: //doi.org/10.1137/15M1027942

* P. Malakar, V. Vishwanath, C. Knight, T. Munson, and M. E. Papka. 2016. Optimal Execution of Co-
analysis for Large-Scale Molecular Dynamics Simulations. In SC '16: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis. 702—715.
https://doi.org/10. 1109/SC.2016.59

*Non /n-Situ

* Bo Zhou and Yi-Jen Chiang. 2018. Key Time Steps Selection for Large-Scale Time-Varying Volume Datasets
Using an Information- Theoretic Storyboard. Computer Graphics Forum (2018). https:
//doi.org/10.1111/cgf.13399

*Domain Agnostic/In-Situ

« K. Myers, E. Lawrence, M. Fugate, C. McKay Bowen, L. Ticknor, J. Woodring, J. Wendelberger, and J.
Ahrens. 2014. Partitioning a Large Simulation as It Runs. ArXiv e-prints (Sept. 2014).
arXiv:stat.ME/1409.0909

* Larsen, M., Woods, A.L., Marsaglia, N., Biswas, A., Dutta, S., Harrison, C., & Childs, H. (2018). A flexible
system for in situ triggers. ISAV@ SC.



7 1 Vehicles for Exploration and Experimentation

*Sandia 3D Direct Numerical Solver (S3D)
 Used for reacting flows (e.g., combustion)

*Python Interpreter

*In-Situ code has access to state variables.

*Enabled immediate use of OTS algorithms
and facilitated the development of new

algorithms

*Tested algorithms on combustion in-situ, climate offline

(e.g., LOF, DBSCAN, i-Forests)

Python

In-situ

MPI
code
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Embedded Python interpreter enables execution of

algorithms inside HPC applications.

2018.

Timothy M. Shead et al. “Embedding Python
for In-Situ Analysis.” SAND2018-9009. August



A New Anomaly Detection Framework: Signatures, Measures, and Decisions

Communication is a constraint for In-Situ HPC Anomaly Detection
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o I Signhatures Represent the Data on a Partition

Individual mesh attributes for P,
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0 | Signatures Can Take Many Forms

Individual mesh attributes for P,

Examples
10 4 2 4

* Mean 20 10 8 8
. : . ” 30 8 8 12

* Individual attribute mean values over the mesh points on a partition 40 6 P 16

* FIEDA Feature Importance Metric (FIM) scores *

* First, kernel-density estimation to produce a probability distribution over
the state variables

* Next, random forests to predict the pdf given the state variables

- Lastly, extract feature importance values from the random forest and Signature Function

use as a signature

*Ling et al. “Using feature importance metrics to detect events
of interest in scientific computing applications.” 2017 IEEE 7th
Symposium on Large Data Analysis and Visualization

(LDAV) (2017): 55-63. P, signature
25 7 5 10

Signatures are significantly smaller than all the data on a partition, and

can be communicated with little cost, comparatively.



1 I Measures Indicate the Distance of a Signature From
Neighbors

Measures take as input a list of T P x S matrices where T is the number of elapsed
timesteps and each P x S matrix contains the signatures for the partitions at a given
timestep.

Measures can be specific to a type of signature, or general measures, including typical
anomaly detection algorithms

Examples

* Mean-Squared Distance
- DBSCAN

* FIEDA M1*

*Ling et al. “Using feature importance metrics to detect events
of interest in scientific computing applications.” 2017 IEEE 7th
Symposium on Large Data Analysis and Visualization

(LDAV) (2017): 55-63.



2 I Decisions Allow for Customization

Measures are scalar values that do not, by themselves, answer whether something is
anomalous.

Different applications can decide an appropriate anomalousness point

Examples
* Threshold
* Percentile-Change

* Memory / Feathering

Decision functions are meant to be adjustable to fit application needs

and are the final arbiter of what is “interesting” in a simulation.



13

ew, Effective In-Situ Anomaly Detection Algorithms

Using Fcaturc Importance Metrics to Detect Events of Interest in Scientific
Computing Applications
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14 | Rapid Development and Testing

» S3D is useful but too unwieldy for rapid experimentation

» Mantaflow (ETH Zurich, Technical University of Munich)
* Mini-app that can be run on the desktop
* Modified to simulate HPC environment (partitioning, inter-partition communication model)

Approximately 30 new viable algorithms, some of which perform better than our previous published algorithms



15 I Experiments and the Complexity of Measuring
Performance

*Buoyant fluid injections simulated in Mantaflow

*Various algorithms capture different aspects of the simulation
* Hard to get a crisp definition of accuracy vs. data efficiency

- We devised a way of adding anomalies independent of the flow simulation
* Modifications to mesh attributes that wouldn’t be congruent with the simulation

* Determining recall in relation to data export is now possible

We can measure the accuracy
of our methods along with the
data savings and compare to
“snapshotting” and other
approaches.




16 ‘ In-Situ Detection is More Accurate and Efficient

Snapshot (Conventional)

Interesting partitions: 10.0% Anomalous cells: 1253 Recall: 10.0%
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17 I Fluid Flow (Snapshots)

. density

density (masked)



« | Fluid Flow (In-Situ)
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19 I Climate
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20 I Summary

*Conventional approaches to anomaly detection in HPC simulations are insufficient, and
this problem will grow

*Experiments have shown that in-situ anomaly detection is possible, both implementation
-wise and algorithmically

°|n-situ detection is more accurate and efficient

*Developed new algorithms and a framework for rapid development and testing



Towards Exascale

*Signature families TR PO T

* Gradient

- Frequency g AR Ty P ¢

« Simulation-driven error indicators

 Multi-fidelity/scale signatures D m g m P pm a0
*Partition/time-window effects P12 [ U14 P

L | 1 01 | |
*Utilization of simulation data Detection of statistically homogenous anomalous
patterns

» Unsupervised to supervised (e.g., anomaly classification)
» Creating supervised signatures without event labels

» Creating supervised signatures with labels

» Using generative models to predict anomalies

*Reduced-order modeling (ROM)

Our research will enhance the utility of machine

learning in HPC scientific computation, creating | R
new capabilities and increasing our overall efficacy. Mesh sampling for ROM refinement




Projection-Based Reduced Order Models (ROMs)

ROMs = physics-based surrogates tied directly to a “full-order model” (FOM) that can enable full-field predictions in real time.

1. Data Acquisition

Number of
Sample FOM parameter space, time steps
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2. Manifold Learning

Unsupervised Learning of Reduced Basis

(e.g. via Principal Component Analysis or Nonlinear Methods):

I I ’

3. Projection and Reduction

Choose ODE

dt
Temporal
Discretization r(x";

Reduce the

Number of

Unknowns
minimize||

Minimize the Residual
(Galerkin or Petrov-
Galerkin Projection)
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Projection-Based Reduced Order Models (ROMs)

Challenge: for non-linear problems, residual minimization
requires operations scaling like FOM.

1. Data Acquisition
Sample FOM parameter space,
{2 e D

=

SRS

1 Collect solutions

Number of State

Number of
time steps

A

Variables

<
«
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2. Manifold Learning

Unsupervised Learning of Reduced Basis

(e.g. via Principal Component Analysis or Nonlinear Methods):

VT

3. Projection and Reduction

Choose ODE % = f(x; t, )
Temporal J
Discretization r"(x" n=1...T
x(t) =~ x(t) = ® x(1)
Reduce the |
Number of
Unknowns
minimize|| r'(® U p)-2
v ; I

Minimize the Residual
(Galerkin or Petrov-
Galerkin Projection)
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4 ‘ Projection-Based Reduced Order Models (ROMs)

Solution is hyper-reduction: compute the residual on a small
subset of the mesh, represented by matrix A

1. Data Acquisition
Number of

Sample FOM parameter space, time steps
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1 Collect solutions
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2. Manifold Learning

Unsupervised Learning of Reduced Basis

(e.g. via Principal Component Analysis or Nonlinear Methods):
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3. Projection and Reduction

Choose ODE % = f(x; t, )

Temporal J

Discretization r"(x"pu)=0, n=1,..,T

x(t) = x(t) = ® x(1)
Reduce the |
Number of
Unknowns
minimize|| r(® U M)Hz

(Galerkin or Petrov-
Galerkin Projection)

Minimize the Residual ﬂ:[']:l |
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Hyper-reduction using a “Sample Mesh”

minimize| A
|

r
Minimize the |]:|:[|:I | {

Residual

« Asingle “sample mesh” is typically
computed using a simple greedy algorithm
that minimizes reconstruction error of the non
-linear function being approximated and that
same sample mesh is used for hyper-
reduction at all time-steps.

Static sample mesh obtained using
g-sampling (Parish et al. 2020)



ISML algorithms have potential for revolutionizing hyper-reduction by
calculating an evolving sample mesh!

26

p =snapshot #1

decision - snapshot #1

X

Dynamic sample mesh containing ~4% of the total
mesh points, obtained using ISML algorithms

Static sample mesh obtained using
g-sampling (Parish et al. 2020)
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