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U.S. DOE Base Computer Science Research

•DOE Office of Science - ASCR funded research

•Phase 1: Three-year research, Collaborative research with Stony Brook University

•Phase 2: Recently renewed as a 4-year project
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Motivation and Context

•DOE is interested in many problems that require high-fidelity physics-based HPC 
simulations

•Want to find “interesting” events, anomalies, state changes, etc.
• Examples may include cyclones, onset of combustion, or other things that the scientists may 
not prescribe a priori and may be difficult to perform via rule-based detection

•Desired solution would be to take all the data and run the appropriate detection 
algorithms (e.g., LOF, isolation forests, clustering) 

•These simulations produce massive amounts of data (problems for storage capacity, 
bandwidth)
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Current state-of-the-art for HPC simulation analysis

•Take “snapshots” in space and time (1/1000th or 1/10000th)
•Post-process snapshot data with standard algorithms

Problems with the current methods:
•Interesting events may happen between or outside of these snapshots
•Important information leading up to the captured event could be lost
•Rerunning simulations to capture lost information is expensive

•This problem will only get worse as the amount of data and fidelity of the simulations 
increases
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Is there a way to detect the anomalies in-situ,
thus facilitating more precisely targeted event capture?



Changing the Paradigm with In-Situ Event Detection

•Develop techniques to detect interesting spatial and temporal events in-situ for HPC 
physics simulations

•Scalable : Can’t significantly hinder the runtime of the application
•Unsupervised : To enable discovery, should not require labeling of interesting events
•Generalizable : Not focused on one specific event or domain
•Online : Don’t require having access to all the data from every time step (post-
processing)
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This is foundational research, with a focus on algorithms 
that can motivate changes to simulation code and facilitate 

more intelligent, focused data capture



Related Research is in the Early Stages6

•Domain-specific
• J. Bennett, A. Bhagatwala, J. Chen, A. Pinar, M. Salloum, and C. Seshadhri. 2016. Trigger Detection for 
Adaptive Scientific Workflows Using Percentile Sampling. SIAM Journal on Scientific Computing 38, 5 
(2016), S240–S263. https: //doi.org/10.1137/15M1027942

• P. Malakar, V. Vishwanath, C. Knight, T. Munson, and M. E. Papka. 2016. Optimal Execution of Co-
analysis for Large-Scale Molecular Dynamics Simulations. In SC ’16: Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis. 702–715. 
https://doi.org/10. 1109/SC.2016.59 

•Non In-Situ
• Bo Zhou and Yi-Jen Chiang. 2018. Key Time Steps Selection for Large-Scale Time-Varying Volume Datasets 
Using an Information- Theoretic Storyboard. Computer Graphics Forum (2018). https: 
//doi.org/10.1111/cgf.13399

•Domain Agnostic/In-Situ
• K. Myers, E. Lawrence, M. Fugate, C. McKay Bowen, L. Ticknor, J. Woodring, J. Wendelberger, and J. 
Ahrens. 2014. Partitioning a Large Simulation as It Runs. ArXiv e-prints (Sept. 2014). 
arXiv:stat.ME/1409.0909 

• Larsen, M., Woods, A.L., Marsaglia, N., Biswas, A., Dutta, S., Harrison, C., & Childs, H. (2018). A flexible 
system for in situ triggers. ISAV@SC.



Vehicles for Exploration and Experimentation

•Sandia 3D Direct Numerical Solver (S3D)
• Used for reacting flows (e.g., combustion)

•Python Interpreter

•In-Situ code has access to state variables.

•Enabled immediate use of OTS algorithms

   and facilitated the development of new

   algorithms

•Tested algorithms on combustion in-situ, climate offline

(e.g., LOF, DBSCAN, i-Forests)
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Embedded Python interpreter enables execution of 
algorithms inside HPC applications.

Application
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Timothy M. Shead et al. “Embedding Python 
for In-Situ Analysis.” SAND2018-9009. August 
2018.



A New Anomaly Detection Framework: Signatures, Measures, and Decisions8

Communication is a constraint for In-Situ HPC Anomaly Detection



Signatures Represent the Data on a Partition9
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p0

Individual mesh attributes for P0 

m Number of mesh points
a Attributes per mesh point

t m*a, the total number of values on a partition 

Signatures can be shorter or longer than a, as long 
as they are shorter than t

P0 signature



Signatures Can Take Many Forms

Examples
• Mean
• Individual attribute mean values over the mesh points on a partition

• FIEDA Feature Importance Metric (FIM) scores *
• First, kernel-density estimation to produce a probability distribution over

the state variables
• Next, random forests to predict the pdf given the state variables
• Lastly, extract feature importance values from the random forest and

use as a signature
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Signatures are significantly smaller than all the data on a partition, and 
can be communicated with little cost, comparatively.

P0 signature

Individual mesh attributes for P0 

*Ling et al. “Using feature importance metrics to detect events 
of interest in scientific computing applications.” 2017 IEEE 7th 
Symposium on Large Data Analysis and Visualization 
(LDAV) (2017): 55-63.



Measures Indicate the Distance of a Signature From 
Neighbors

Measures take as input a list of T P × S matrices where T is the number of elapsed 
timesteps and each P × S matrix contains the signatures for the partitions at a given 
timestep.

Measures can be specific to a type of signature, or general measures, including typical 
anomaly detection algorithms

Examples

• Mean-Squared Distance

• DBSCAN

• FIEDA M1*
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*Ling et al. “Using feature importance metrics to detect events 
of interest in scientific computing applications.” 2017 IEEE 7th 
Symposium on Large Data Analysis and Visualization 
(LDAV) (2017): 55-63.



Decisions Allow for Customization

Measures are scalar values that do not, by themselves, answer whether something is 
anomalous.

Different applications can decide an appropriate anomalousness point

Examples

• Threshold

• Percentile-Change

• Memory / Feathering
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Decision functions are meant to be adjustable to fit application needs 
and are the final arbiter of what is “interesting” in a simulation.



New, Effective In-Situ Anomaly Detection Algorithms13

Ling et al. “Using feature importance metrics to detect events 
of interest in scientific computing applications.” 2017 IEEE 7th 
Symposium on Large Data Analysis and Visualization 
(LDAV) (2017): 55-63.

Aditya et al. "Anomaly detection in scientific data using 
joint statistical moments", Journal of Computational 
Physics, Vol 387, June 15 2019, pp. 522-538.



Rapid Development and Testing

• S3D is useful but too unwieldy for rapid experimentation

• Mantaflow (ETH Zurich, Technical University of Munich)
• Mini-app that can be run on the desktop
• Modified to simulate HPC environment (partitioning, inter-partition communication model) 
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Approximately 30 new viable algorithms, some of which perform better than our previous published algorithms



Experiments and the Complexity of Measuring 
Performance

•Buoyant fluid injections simulated in Mantaflow
•Various algorithms capture different aspects of the simulation
• Hard to get a crisp definition of accuracy vs. data efficiency
• We devised a way of adding anomalies independent of the flow simulation
• Modifications to mesh attributes that wouldn’t be congruent with the simulation

• Determining recall in relation to data export is now possible
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We can measure the accuracy 
of our methods along with the 
data savings and compare to 
“snapshotting” and other 
approaches.



In-Situ Detection is More Accurate and Efficient16
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Fluid Flow (Snapshots)17



Fluid Flow (In-Situ)18



Climate19



Summary20

•Conventional approaches to anomaly detection in HPC simulations are insufficient, and 
this problem will grow

•Experiments have shown that in-situ anomaly detection is possible, both implementation
-wise and algorithmically

•In-situ detection is more accurate and efficient

•Developed new algorithms and a framework for rapid development and testing



Towards Exascale
•Signature families
• Gradient
• Frequency
• Simulation-driven error indicators
• Multi-fidelity/scale signatures

•Partition/time-window effects

•Utilization of simulation data
• Unsupervised to supervised (e.g., anomaly classification)
• Creating supervised signatures without event labels
• Creating supervised signatures with labels
• Using generative models to predict anomalies

•Reduced-order modeling (ROM)
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Mesh sampling for ROM refinement

Detection of statistically homogenous anomalous 
patterns

Our research will enhance the utility of machine 
learning in HPC scientific computation, creating 

new capabilities and increasing our overall efficacy.



Projection-Based Reduced Order Models (ROMs)22

Unsupervised Learning of Reduced Basis 
(e.g. via Principal Component Analysis or Nonlinear Methods):

Sample FOM parameter space, 

1. Data Acquisition

2. Manifold Learning

3. Projection and Reduction
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ROMs = physics-based surrogates tied directly to a “full-order model” (FOM) that can enable full-field predictions in real time.

Minimize the Residual
(Galerkin or Petrov-
Galerkin Projection)



Projection-Based Reduced Order Models (ROMs)23

Unsupervised Learning of Reduced Basis 
(e.g. via Principal Component Analysis or Nonlinear Methods):
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Challenge: for non-linear problems, residual minimization 
requires operations scaling like FOM.



Projection-Based Reduced Order Models (ROMs)24

Unsupervised Learning of Reduced Basis 
(e.g. via Principal Component Analysis or Nonlinear Methods):

Sample FOM parameter space, 

1. Data Acquisition

2. Manifold Learning

3. Projection and Reduction
Number of 
time steps

N
um

be
r 

of
 S

ta
te

 
Va

ri
ab

le
s

Collect solutions

Choose ODE 
Temporal 

Discretization

Reduce the 
Number of 
Unknowns

Minimize the Residual
(Galerkin or Petrov-
Galerkin Projection)



Hyper-reduction using a “Sample Mesh”25

Minimize the 
Residual

• A single “sample mesh” is typically 
computed using a simple greedy algorithm 
that minimizes reconstruction error of the non
-linear function being approximated and that 
same sample mesh is used for hyper-
reduction at all time-steps.

Static sample mesh obtained using            
q-sampling (Parish et al. 2020)



ISML algorithms have potential for revolutionizing hyper-reduction by 
calculating an evolving sample mesh!
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Static sample mesh obtained using            
q-sampling (Parish et al. 2020)

Dynamic sample mesh containing ~4% of the total 
mesh points, obtained using ISML algorithms
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