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+ I HERMES-III Background
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Nominally an 18MV, 550kA coaxial accelerator

Uses Inductive Voltage Adders (IVAs) to combine Marx pulses

This requires a floating cathode

Can operate in bremsstrahlung mode or an ion-diode mode (reverse pole




MITL Basics (Planar Example)

SCL emission once breakdown threshold is reached
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[1] — Griffiths, David J. Introduction to Electrodynamics. Upper Saddle River, N.J: Prentice Hall, 1999.
[2] — Chen, Francis F., Introduction to Plasma Physics and Controlled Fusion. N.Y.: Plenum Press, 1984.
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MITL Voltage Calculation A
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[4] - Miller, P. A., Mendel, C. W., "Analytic model of Applied-B ion diode impedance behavior" (Appendix A), Journal of Applied Physics, 61, 529. 1987.
[5] - Ottinger, P. F., Schumer, J. W., Hinshelwood, D. D., and Allen, R. J., “Generalized Model for Magnetically Insulated Transmission Line Flow”. IEEE Transactions on Plasma Science, Vol 36, No. 5. October, 2008.
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7 I Legacy Extended MITL Configuration

Courtyard used to test large articles

Extended MITL transports power
through indoor test cell into
courtyard

Anode and cathode radii varied
dramatically

Impedance more than tripled in the
first few meters

Sheath flow would lift off of cathode
and short into anode.

Current lost was roughly half of
pulse magnitude
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Redesigned Configuration




9 ‘ Constant Impedance Dsin

Design focused on maintaining the
ratio of R/r

1
Zo=—1/Emn (E)
2m\V € r

Engineering problem: cantilevered
floating cathode

Engineering solution: Thin “nacho
cheese can’ cathode with clocking
rings every few meters

Deflection at diode was typically
fractions of an inch

Addition of several cathode B-dot
sensors

Simulations performed in both
EMPHASIS and EMPIRE
o EMPHASIS: Legacy PIC code

developed at Sandia National
Laboratories

o EMPIRE: PIC-Fluid-Hybrid code in
development at Sandia National
Laboratories
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Simulation and Shot 11148
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Simulation and Shot 11150
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Lisgaary MITTL Fscapluts Dass: [Total Dons o 5228 krd)

12 ‘ TLD Qualification of MITL Performance -

0" TLDs [Top of MITL) & Lost Charge Denaity
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Sheath Expansion: EMPHASIS
¢0.00 ns 88.05 ns
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14 ‘ Sheath Expansion: EMPIRE
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‘Voltage Calculation (Sensor Station 1)

272 _ 12 me? Iy — Ik
gme® 15 — I Vg 12 _ 2 A~ 1K
[6]: V:ZD\/P—I?,— = Zo\[1y — 1 —
A 2e I € Ik
00 Voltages at XB1 using Ottinger 2006 model 5 0‘u'cdtrm_:;es at XB1 using Ottinger 2008 model with G =0
EMPHASIS: EDL EMPHASIS: EDL i
— EMPHASIS: 06 — EMPHASIS: 08
—— EMPIRE: EDL —— EMPIRE: EDL
15 — EMPIRE: 06 15 — EMPIRE: 08
——11148 ——11148
— 11150 — 11150
> >
=3 =3
&,10 &,10
: g
S S
S S
0 : ' 0 :
20 40 60 80 100 20 60
Time [ns] Time [ns]

[6] - Ottinger, P. F., and Schumer, J. W., “Rescaling of Equilibrium Magnetically Insulated Flow Theory Based on Results from Particle-In-Cell Simulations”. Physics of Plasmas 13, 063109. 2006.
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‘Voltage Calculation (Sensor Station 3)
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Voltage Calculation (Fingerprint Plots)
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‘Voltage Calculation (Fingerprint Plots)
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A look at electron pressure
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20 | Conclusions and Future Work

Maintaining constant geometric impedance in the

MITL transports power much more effectively. 25
EMPHASIS: Overpredicts both sheath and anode
currents 20 -

> Due to Dirichlet voltage boundary condition

EMPIRE: Underestimates sheath current overall
o Using TLBC gives better agreement

G [MV?]

Ottinger’s simplified model yields decent
approximations for voltages

More work needs to be done to understand the
sheath parameters in simulation

A better TLBC will be implemented in EMPIRE in 0 10 20 30 40
the future (but not for EMPHASIS) Electron Temperature [keV]




