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Motivation

Substantial reductions in the cost of wind energy have come from large
Increases in rotor size

Performance: Larger rotors capture substantially more energy both
through a greater swept area and accessing increased wind speeds at
higher altitude

Grid Integration: Larger rotors also enable higher capacity factor wind
plants, yielding less variability in power production

Deployment: Limited high wind resource sites remain, further
deployment depends on developing lower wind resource sites



Transportation

Both max-chord (4.75m) and length (~80m)
constrained for transportation, and approaching

root constraint

Pre-bend limited to 4m, creating tip clearance

problems

Solutions are being implemented, but at a cost
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Large Deflections

Conventional blades are constrained by tip
deflection

Pitch rates can be prohibitive for blades > 100m;
this can cause excessive design loads/deflections

Blade under high deflection during structural testing



5 I Aeroelastic Stability

Large blades are being
designed and built with
relatively unvalidated codes for

aeroelastic stability.
Codes exist (HAWC, FAST) but |
have not been validated with
highly flexible designs 525
Non-classical instabilities have
been observed in edgewise
direction as weight and
flexibility trade off
Likely sensitive to blade

deflection coupling
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Downwind Rotors

Downwind machines offer the potential to enable large
flexible rotors

Challenges:

> Tower shadow can cause an increase in fatigue loading
on the blades, advanced control strategies and active
aerodynamic devices may decrease the LCOE

> Noise from the tower shadow is not full characterized
> Benefits of up-tilt can be explored

> Represents a large change for OEMs, so some de-risking
IS necessary

——— . —

Upwind and downwind rotors
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Distributed Aerodynamic Controls

Large rotors are limited by pitch rate which produces
high strains and deflections in extreme winds

Active aerodynamics can quickly alter lift

Reduction of both fatigue and extreme loads

Faster actuation than pitch control

duty cycle

May allow for reduced pitch system requirements and - ..\-

Possible solution for flutter issues on future long
flexible blades

Challenges:
> Controls Integration

Aeroacoustics

Reliability impact of additional sensors
Integration into manufacturing process
Effect of unsteady aerodynamics from actuation i A 3 F———
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Trailing edge tabs and flaps, top, and synthetic jets,
bottom (UC-Davis, 2008)



Carbon Fiber

Si %nlﬂcant increase in strength and stiffness,
at added cost

Recent innovation: Textile carbon fiber
materials are processed in a heavy tow size

3MW and 10MW designs were analyzed
22% increase in cost-specific tensile strength

Tow Tensile Strength [MPa]

100% increase in cost-specific modulus

Challenges:
> Cost

> Manufacturing
> Lightning
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9 I Advanced Concepts

On-Site Assembly: Moving all or part of
the blade manufacturing process to site
would drastically reduce transportation
costs for future large blades

Inflatable Blade: Part of the blade is

“inflated” on site for final manufacturing On-Site Manufacturing (TPl Composites, 2003)
step. Reduces blade width for I
tra n S pO rtatl O n p::::r:,h;::::m aerodynamic shell

Aera-shell is sandwich
Multi-Element Blade: Uses two or more perosheicanbe Jvers with nectale foam
blade elements inboard to increase flap  omwie an chorewise C*—’" — )

stiffness and reduce chord length. May —
allow for multi-piece blade with smaller, Inflatable Blade Concept (Mendoza, 2017) —

faster-acting, outboard pitch system

Bi-Wing Concept (Chu, 2017)



Validation Needs

Highly Flexible Blades (HFB) Distributed Am_'o Controls
Aerodynamics 3D aerodynamic and wfuake response
O ofpne seodmarie v
* Unsteady aerodynamics
* Wake b;I:avInr ft:r high deflections (HpasLOn b_lade stru.ctl.fr_e
*  High Reynolds number airfoil estimation Manufacturing & reliability
Structures . .
Large deformations Validation Needs
Dynamic torsional flexibility
Structural dynamic validation
Fatigue performance of subscale components
Off-axis fiber, and bend-twist coupling
Failure criteria (PUCK, LaRC)
Aeroelasticity
* Frequency and stability analysis
Flutter and Vortex Induced Vibration

Downwind
Aeroacoustics and low frequency noise
Fatigue impacts from tower shadow
Unsteady aerodynamics from tower shadow
Aerodynamics of highly tilted rotors
Control strategies for shutdowns







