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All the water seen here constitutes 0.025% of Earth’s mass.

Many primitive/chondridic meteorites still contain 5-10 wt%H2O

Accretion, core formation, 99% loss -> 0.1 wt%H2O bulk Earth

¾ of the planets water…missing? 

All the water seen here constitutes 0.025% of Earth’s mass.

Many primitive/chondridic meteorites still contain 5-10 wt%H2O

Accretion, core formation, 99% loss -> 0.1 wt%H2O bulk Earth

¾ of the planets water…missing? 

Water abundant in planetary building blocks.
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Other experimental studies have largely 
focused on WHERE water is in the present-day 
Earth. 

We want to understand the dynamics of HOW 
water is incorporated during planet formation.



Other experimental studies have largely 
focused on WHERE water is in the present-day 
Earth. 

We want to understand the dynamics of HOW 
water is incorporated during planet formation.

Can primordial 
water be retained 
during planet 
forming impacts?



EFFECT OF VOLATILES

Jacobsen et al. 2008
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Amorphous Silica

Adsorption

Coasne et al. 2014



SHOCK-RAMP OF SiO2 GLASS

Lyzenga et al. 1983



SHOCK-RAMP EXPERIMENTS
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TWO DIFFERENT STRIP LINES

2 Drive – 6 Samples 4 Drive – 4 Samples

North
Panel

South
Panel

North
Panel
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Panel



STARTING MATERIALS 
CORNING INCORPORATED 

North PanelSouth Panel

Dry (1ppm) SiO2 –
0.8mm

LiF Window Only

Damp (1000 ppm) 
SiO2 - 0.8mm

LiF Window Only

Dry (1 ppm) SiO2 –
1.2 mm

Dry (1 ppm) SiO2 –
1.0 mm

Damp (1000 ppm) SiO2 –
1.2 mm

Damp (1000ppm) SiO2 –
1.0 mm



MEASURED 
VELOCITY
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VELOCITY 
COMPARISON 
WITH 
SESAME 7361

Sesame 7361
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ITERATIVE LAGRANGIAN ANALYSIS (ILA) 
DETERMINES STRESS-DENSITY PATH 

FROM VELOCIMETRY OF LIF-WINDOWED 
“DRIVE” AND SAMPLE
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EXPANDING 
COMPOSITION
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POROUS MEDIA MODEL

Micrographs of aerogel and 
porous tantala Ta2O5

Increasing porosity growing the number of voids – or with a growing void 

Modeling the Shock Hugoniot in Porous Materials
Kyle Cochrane (Sandia) – ZFSP Workshop 2017



MOLECULAR DYNAMICS – LAMMPS

With Matt Lane (Sandia)

Recently used to study
• pressure waves
• void collapse
• crush-up 
• Melt
• solid-solid phase transition 

MD simulation from LAMMPS of silica (SiO2) 
glass with 90% porosity. Image from J.M.D. 

Lane. 



• Determination of extent of network flexibility and decoupling of elastic and volumetric properties
for amorphous silicates by simultaneous density and velocity measurements on the Z-machine.
These data are critical for equation of state development for amorphous materials.

• Determination of the compressibility and water retention capabilities of silicate liquids at
pressures corresponding to the deep mantle to address the question of what is the origin of
Earth’s water and mechanism(s) for water retention during planet-formation processes.

• Development and expansion of applications for LAMMPS and the Porous Media model will
benefit for SNL for both fundamental and programmatic research.

• Provide experimental calibration of the Porous Materials Model and comparison to static data.
P-T range ideal for supplementary experiments on Thor and DICE.

EXPECTED OUTCOMES
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