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Water abundant in planetary building blocks.
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REPORT

naturere h

Precometary organic matter: A
hidden reservoir of water inside the
snow line

Hideyuki Nakano'”, Naoki Hirakawa®', Yasuhiro Matsubara, ShigeruYamashita?,

Takuo Okuchi®?, Kenta Asahina®, Ryo Tanaka*“*?, Neriyuki Suzuki®, Hiroshi Naraoka (%,
Yoshinori Takano (2%, Shogo Tachiba 78 Tetsuya Hama (3% Yasuhiro Oba(®®, Yuki Kimura(®®,
NaokiWatanabe(>* & Akira Kouchi(*®

The origin and evolution of selar system bodies, including water on the Earth, have been discussed
based on the assumption that the relevant ingredients were simply silicates and ices. However, large
amounts of organic matter have been found in cometary and interplanetary dust, which are recognized
as remnants of interstellar/precometary grains. Precometary organic matter may therefore be a
potential source of water; hawever, ta date, there have been no experimental investigations into
this possibility. Here, we experimentally demonstrate that abundant water and il are formed via the
heating of a precometary-organic-matter analog under conditions appropriate for the parent bodies of
meteorites inside the snow line. This implies that H,0 ice is net required as the sole source of water on
planetary bodies inside the snow line. Further, we can explain the change in the oxidation state of the
Earth from an initially reduced state to a final oxidized state. Our study also suggests that petroleum
was present in the asteroids and is present in icy satellites and dwarf planets.
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Other experimental studies have largely
focused on WHERE water is in the present-day
Earth.

We want to understand the dynamics of HOW
water is incorporated during planet formation.
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Can primordial
water be retained
during planet
forming impacts?




EFFECT OF VOLATILES
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EFFECT OF VOLATILES
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SHOCK-RAMP OF Si0, GLASS
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SHOCK-RAMP EXPERIMENTS
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TWO DIFFERENT STRIP LINES
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STARTING MATERIALS
CORNING INCORPORATED

| South Panel North Panel
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MEASURED
VELOCITY
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1.0mm SiO, sample
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ITERATIVE LAGRANGIAN ANALYSIS (ILA)
DETERMINES STRESS-DENSITY PATH
FROM VELOCIMETRY OF LIF-WINDOWED
“DRIVE” AND SAMPLE
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POROUS MEDIA MODEL

Modeling the Shock Hugoniot in Porous Materials
Kyle Cochrane (Sandia) — ZFSP Workshop 2017

Increasing porosity growing the number of voids — or with a growing void

Micrographs of aerogel and
porous tantala Ta,Os



MOLECULAR DYNAMICS - LAMMPS

With Matt Lane (Sandia

ecently used to study
pressure waves

void collapse

crush-up

Melt __
solid-solid phase transition




EXPECTED OUTCOMES

Determination of extent of network flexibility and decoupling of elastic and volumetric properties
for amorphous silicates by simultaneous density and velocity measurements on the Z-machine.
These data are critical for equation of state development for amorphous materials.

Determination of the compressibility and water retention capabilities of silicate liquids at
pressures corresponding to the deep mantle to address the question of what is the origin of
Earth’s water and mechanism(s) for water retention during planet-formation processes.

Development and expansion of applications for LAMMPS and the Porous Media model will
benefit for SNL for both fundamental and programmatic research.

Provide experimental calibration of the Porous Materials Model and comparison to static data.
P-T range ideal for supplementary experiments on Thor and DICE.
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