

informs ANNUAL MEETING

2021 ANAHEIM, CALIFORNIA

Resilience Optimization with Grid Dynamics

Presented by: Nathan Stewart

Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Problem

- Objective: Mitigation planning optimization for wide-area n-k emergencies where multiple contingencies occur across a wide area in quick succession
- Even with mitigations in place, major dynamics and protective tripping are likely to ensue, with major implications to system stability and operability
 - Particularly want to avoid cascading and large blackouts
- Current goals are to minimize cascading, widespread blackout & permanent damage to long-lead devices, and to improve restorability
- Decisions may include hardening, preventive & emergency control, strategic spare purchases and placement, etc.

Key Research Challenge

Prior resilience optimization work does not address wide-area $n-k$ events

- Typically assumes either minor or localized hazards
- Relies on non-dynamic impact models, which cannot detect loss of stability
- Relies upon tight bound constraints which are likely not feasible in these emergencies (e.g., protective tripping may be unavoidable)
 - Incapable of addressing hybrid/cascading behavior due to assuming away protective devices

We intend to incorporate both dynamic system physics *and* discrete protection in our optimization model

- for accuracy of impact modeling and
- to allow relaxing constraints that severely limit feasible space

Approach

Stochastic planning optimization

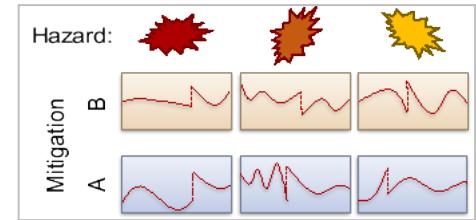
- choose from proposed hardening and mitigation measures and locations
- optimize dynamically-assessed resilience
- across a set of scenarios representing hazard uncertainty

Two optimization stages:

- mitigation decisions enacted across all hazard scenarios
- impacts (and emergency control) assessed for each hazard scenario, using dynamic system physics and discrete protective schemes

Our phased project plan:

- build stochastic, continuous-dynamic optimization models
- add appropriate discrete planning options to address hazard scenarios
- add variables and constraints to represent discrete dynamics from protective devices, and address temporal discretization challenges



$$\min_{x, y_\psi} c(x) + E[d(y_\psi)]$$

s.t.

$$f(x) \leq b$$

$$g_\psi(y_\psi) \leq f_\psi$$

$\forall \psi \in \Psi$

$$h(x) + k(y_\psi) \leq g_\psi$$

$$\forall \psi \in \Psi$$

We are here

Year 1	Year 2	Year 3
Optimal control	+ optimal planning	+ hybrid dynamics
stochastic NLP	+ discrete 1 st stage vars (MINLP)	+ switching vars in 2 nd stage (time-sensitive)

Dynamics Optimization Literature

- Transient Stability Constrained
 - Optimal Power Flow (TSCOPF)
 - Emergency Control (TSEC)
- Minimize objective subject to DAE path constraints, over some contingency
 - TSCOPF: optimize initial conditions x_0 for potential contingencies
 - TSEC: optimize control inputs u for realized contingency
 - Economic (generation cost) objectives
 - Simple stability constraints limiting:
 - Power angles with respect to center of inertia (approximate treatment of transient stability)
 - Line currents
 - Voltages
 - Decision variables: Generator setpoints and load shed

$$\min h(x, y, u)$$

objective

subject to

$$\frac{d}{dt} x = f(x, y, u)$$

$$0 = g(x, y, u)$$

} DAE

$$c(x, y, u) < 0$$

constraints

$$x(0) = x_0,$$

$$y(0) = y_0$$

initial conditions

Dynamic Power Systems Modeling

In major emergencies, dynamics play important role in system stability

Generator dynamics (Sauer, Pai, Chow)

- Angular acceleration = mechanical power in, minus electrical power out
- We use the 4th order flux-decay model commonly used in stability studies
- An additional term (turbine with no reheating) models torque response delay

Network power balance

Load dynamics

- Play an important role in stability studies*
- Exponential recovery model (Karlsson & Hill) captures load responses to voltage fluctuations

Combined, these pose a system of differential algebraic equations (DAE)

$$\frac{2H}{\omega_0} \frac{d^2\delta}{dt^2} = P_m - P_e$$

$$0 = V e^{i\theta} \odot (Y V e^{i\theta})^* - S_{net}$$

*R. Zhang, Y. Xu, W. Zhang, Z. Y. Dong, and Y. Zheng (2016), *Impact of dynamic models on transient stability-constrained optimal power flow*, 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 18–23

Decision Variables, Parameters, and DAE Variables

Set	Index	Symbol	Description
\mathcal{B}	b		Buses
\mathcal{G}	g		Generators
\mathcal{L}	l		Loads
Ψ	ψ		Scenarios

Set	Index	Symbol	Description
\mathcal{G}_b	b		Generators at bus b
\mathcal{L}_b	b		Loads at bus b

Variable	Index	Description
V_{ref}	g	Exciter reference voltage
P_{ref}	g	Generator mechanical torque power
Variable	Index	Description
δ	g	Rotor angle
ω	g	Generator frequency
E'_q	g	q-axis transient voltage
E_{fd}	g	Field voltage
I_q	g	q-axis current
I_d	g	d-axis current
T_M	g	Shaft mechanical torque
V	b	Voltage
θ	b	Phase angle
P_L	l	Active load power draw
Q_L	l	Reactive load power draw
x_p	l	Load active power state variable
x_q	l	Load reactive power state variable

Parameter	Index	Description
T		Time horizon
ω_s		Rated synchronous speed
M	g	Shaft inertial constant
D	g	Damping coefficient
K_A	g	Exciter amplifier gain
T_A	g	Exciter amplifier time constant
R_s	g	Scaled resistance after dq transformation
X_q	g	q-axis synchronous reactance
X_d	g	d-axis synchronous reactance
X'_d	g	d-axis transient reactance
T'_{do}	g	Transient time constant
T_{ch}	g	Mechanical torque damping const.
b_g	g	Bus connected to generator g
P_{oL}	1	Initial active power
Q_{oL}	1	Initial reactive power
T_{PL}	1	Active power time constant
T_{QL}	1	Reactive power time constant
α_s	1	First active power exponent
α_t	1	Second active power exponent
β_s	1	First reactive power exponent
β_t	1	Second reactive power exponent
b_l	1	Bus connected to load l
Y	b,b	Admittance magnitude matrix
A	b,b	Admittance phase angle matrix
η_1		V objective scaling parameter
η_2		ω objective scaling parameter
γ_1		V objective shaping parameter
γ_2		ω objective shaping parameter

Model Dynamics

Generator model:

$$\frac{d\delta_g}{dt} = \omega_g - \omega_s$$

$$\frac{d\omega_g}{dt} = \frac{T_{M_g}}{M_g} - E'^{'} \frac{I_{q_g}}{M_g} - I_{d_g} I_{q_g} \frac{X_{q_g} - X'^{'}_{d_g}}{M_g}$$

$$- D_g \frac{\omega_g - \omega_s}{M_g}$$

$$\frac{dE'^{'}_{q_g}}{dt} = - \frac{E_{q_g}}{T'^{'}_{d o_g}} - X_{d_g} - I_{d_g} \frac{X'^{'}_{d_g}}{T'^{'}_{d o_g}} + \frac{E_{f d_g}}{T'^{'}_{d o_g}}$$

$$\frac{dE_{f d_g}}{dt} = - \frac{E_{f d_g}}{T_{A_g}} + (V_{ref_g} - V_{b_g}) \frac{K_{A_g}}{T_{A_g}}$$

$$\forall g \in \mathcal{G}$$

Governor model:

$$\frac{dT_{M_g}}{dt} = \frac{P_{ref_g} - T_{M_g}}{T_{ch_g}}$$

$$\forall g \in \mathcal{G}$$

Stator equations:

$$V_{b_g} \sin(\delta_g - \theta_{b_g}) + R_{s_g} I_{d_g} - X_{q_g} I_{q_g} = 0$$

$$E'^{'}_{q_g} - V_{b_g} \cos(\delta_g - \theta_{b_g}) - R_{s_g} I_{q_g} - X'^{'}_{q_g} I_{d_g} = 0$$

$$\forall g \in \mathcal{G}$$

Model Dynamics (cont.)

Balance equations:

$$-\sum_{i \in \mathcal{B}} (V_i V_b Y_{i,b} \cos(\theta_i - \theta_b - A_{i,b}))$$

$$-\sum_{l \in \mathcal{L}_b} (P_{L_l}) + \sum_{g \in \mathcal{G}_b} (I_{d_g} V_b \sin(\delta_g - \theta_b))$$

$$+ I_{q_g} V_b \cos(\delta_g - \theta_b)) = 0$$

$$-\sum_{i \in \mathcal{B}} (V_i V_b Y_{i,k} \sin(\theta_i - \theta_b - A_{i,b}))$$

$$-\sum_{l \in \mathcal{L}_b} (Q_{L_l}) + \sum_{g \in \mathcal{G}_b} (I_{d_g} V_g \cos(\delta_g - \theta_b))$$

$$+ I_{q_g} V_b \sin(\delta_g - \theta_b)) = 0$$

$$\forall b \in \mathcal{B}$$

Exponential recovery load model:

$$\frac{dx_{p_l}}{dt} = \frac{x_{p_l}}{T p_{L_l}} + P o_{L_l} V_{b_l}^{\alpha_{s_l}} - P o_{L_l} V_{b_l}^{\alpha_{t_l}}$$

$$\frac{dx_{q_l}}{dt} = \frac{x_{q_l}}{T q_{L_l}} + Q o_{L_l} V_{b_l}^{\beta_{s_l}} - Q o_{L_l} V_{b_l}^{\beta_{t_l}}$$

$$P_{L_l} = \frac{x_{p_l}}{T p_{L_l}} + P o_{L_l} V_{b_l}^{\alpha_{t_l}}$$

$$Q_{L_l} = \frac{x_{q_l}}{T q_{L_l}} + Q o_{L_l} V_{b_l}^{\beta_{t_l}}$$

$$\forall l \in \mathcal{L}$$

Generator Ramp Rate:

$$\left| \frac{dV_{ref_g}}{dt} \right| \leq k$$

$$\left| \frac{dP_{ref_g}}{dt} \right| \leq k$$

Time Discretization

- To approximate differential equations in $[0, T]$ time horizon, time is partitioned into finite points:
- Discretized points are then used to discretize differential equations
 - Forward finite difference
 - Collocation

$$\{0, t_2, \dots, t_f, \dots, t_{n-1}, T\}$$

$$\frac{dx}{dt} \approx \frac{x_{t_k} - x_{t_{k-1}}}{t_k - t_{k-1}}$$

Stability Metrics

- In severe emergencies, bound constraints may be temporarily exceeded, and our goal is to position the system within bounds as quickly as possible
- Instead of treating limits as path constraints, we penalize approaching/exceeding limits in the objective function

$$M_v(t_1, t_2) = \sum_{t \in \{\tau \in \mathcal{P} | t_1 \leq \tau < t_2\}} \sum_{b \in \mathcal{B}} \left(\frac{1 - V_{b,t}}{\eta_1} \right)^{\gamma_1}$$

$$M_\omega(t_1, t_2) = \sum_{t \in \{\tau \in \mathcal{P} | t_1 \leq \tau < t_2\}} \sum_{g \in \mathcal{G}} \left(\frac{\omega_{g,t} - \omega_s}{\omega_s \cdot \eta_2} \right)^{\gamma_2}$$

Disjunctive Constraints

- To model disjunctions between baseline dynamics and trips, we introduce binary protection variable R
 - Indexed by component y (load, generator, line)
 - Cost of protection depends on component
- Dynamics of the system for post-failure time horizon will be one of two disjuncts

$$D_y = R_y$$

$$\sum_{y \in Y} c(R_y)$$

$$\left[\begin{array}{l} P_{L_l} = \frac{x_{p_l}}{T p_{L_l}} + Po_{L_l} V_{b_l}^{\alpha_{t_l}} \\ Q_{L_l} = \frac{x_{q_l}}{T q_{L_l}} + Qo_{L_l} V_{b_l}^{\beta_{t_l}} \\ \frac{dx_{p_l}}{dt} = \frac{x_{p_l}}{T p_{L_l}} + Po_{L_l} V_{b_l}^{\alpha_{s_l}} - Po_{L_l} V_{b_l}^{\alpha_{t_l}} \\ \frac{dx_{q_l}}{dt} = \frac{x_{q_l}}{T q_{L_l}} + Qo_{L_l} V_{b_l}^{\beta_{s_l}} - Qo_{L_l} V_{b_l}^{\beta_{t_l}} \end{array} \right] \vee \left[\begin{array}{l} P_{L_l} = 0 \\ Q_{L_l} = 0 \\ x_{p_l} = 0 \\ x_{q_l} = 0 \end{array} \right]$$

Component Failure Disjunctions

Load Trip Disjunct

$$\left[\begin{array}{l} P_{L_l} = \frac{x_{p_l}}{T_{p_{L_l}}} + P_{o_{L_l}} V_{b_l}^{\alpha_{s_l}} \\ Q_{L_l} = \frac{x_{q_l}}{T_{q_{L_l}}} + Q_{o_{L_l}} V_{b_l}^{\beta_{s_l}} \\ \frac{dx_{p_l}}{dt} = \frac{x_{p_l}}{T_{p_{L_l}}} + P_{o_{L_l}} V_{b_l}^{\alpha_{s_l}} - P_{o_{L_l}} V_{b_l}^{\alpha_{t_l}} \\ \frac{dx_{q_l}}{dt} = \frac{x_{q_l}}{T_{q_{L_l}}} + Q_{o_{L_l}} V_{b_l}^{\beta_{s_l}} - Q_{o_{L_l}} V_{b_l}^{\beta_{t_l}} \end{array} \right] \vee \left[\begin{array}{l} P_{L_l} = 0 \\ Q_{L_l} = 0 \\ x_{p_l} = 0 \\ x_{q_l} = 0 \end{array} \right]$$

Generator Trip Disjunct

$$\left[\begin{array}{l} V_{b_g} \sin(\delta_g - \theta_{b_g}) + R_{s_g} I_{d_g} - X_{q_g} I_{q_g} = 0 \\ E'_{q_g} - V_{b_g} \cos(\delta_g - \theta_{b_g}) - R_{s_g} I_{q_g} - X'_{q_g} I_{d_g} = 0 \end{array} \right] \vee \left[\begin{array}{l} I_{q_g} = 0 \\ I_{d_g} = 0 \end{array} \right]$$

$\forall g \in \mathcal{G}$

Line Trip Disjunct

$$\left[\begin{array}{l} P_{ij} = \frac{1}{\tau_{ij}} (V_i^2 \frac{G_{ij}}{\tau_{ij}} - V_i V_j G_{ij} \cos(\theta_i - \theta_j) - V_i V_j B_{ij} \sin(\theta_i - \theta_j)) \\ P_{ji} = V_j^2 G_{ij} - \frac{1}{\tau_{ij}} (V_i V_j G_{ij} \cos(\theta_i - \theta_j) + V_i V_j B_{ij} \sin(\theta_i - \theta_j)) \\ Q_{ij} = \frac{1}{\tau_{ij}} (-V_i^2 \frac{B_{ij} - \frac{B_{s_{ij}}}{2}}{\tau_{ij}} + V_i V_j B_{ij} \cos(\theta_i - \theta_j) - V_i V_j G_{ij} \sin(\theta_i - \theta_j)) \\ Q_{ji} = -V_j^2 (B_{ij} - \frac{B_{s_{ij}}}{2}) + \frac{1}{\tau_{ij}} (V_i V_j B_{ij} \cos(\theta_i - \theta_j) + V_i V_j G_{ij} \sin(\theta_i - \theta_j)) \end{array} \right] \vee \left[\begin{array}{l} P_{ij} = 0 \\ P_{ji} = 0 \\ Q_{ij} = 0 \\ Q_{ji} = 0 \end{array} \right]$$

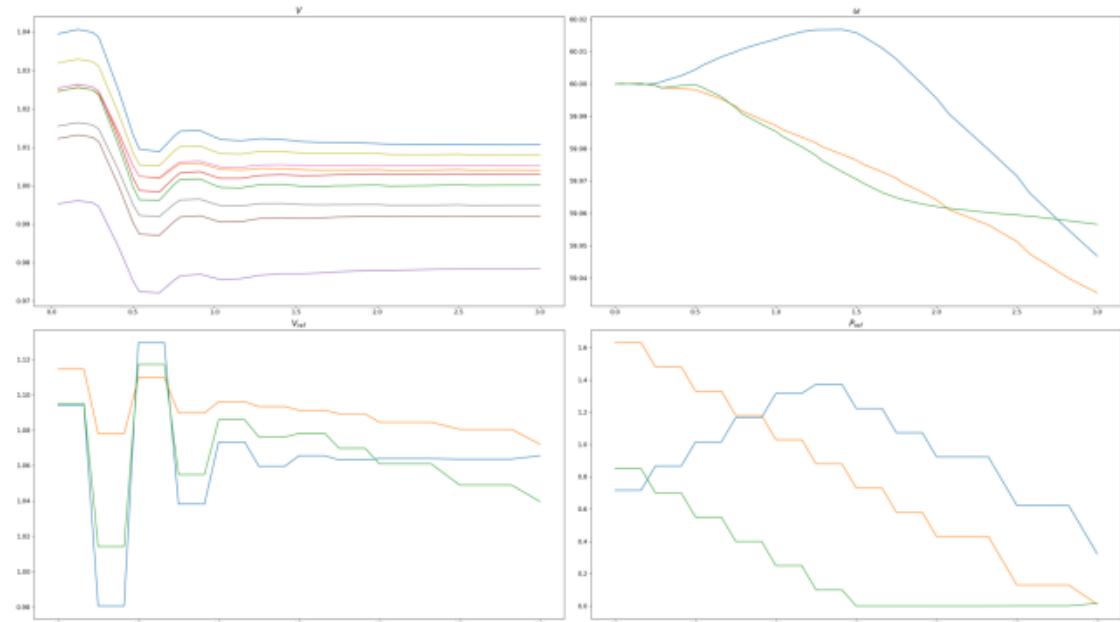
Objective

- Objective value could be either:
 - Minimizing cost of protection subject to stability metric criteria
 - Minimizing total cost and stability deviation

$$\min_{V_{ref}, P_{ref}} M_v(0, T) + M_\omega(0, T) + \sum_{y \in Y} c(R_y)$$

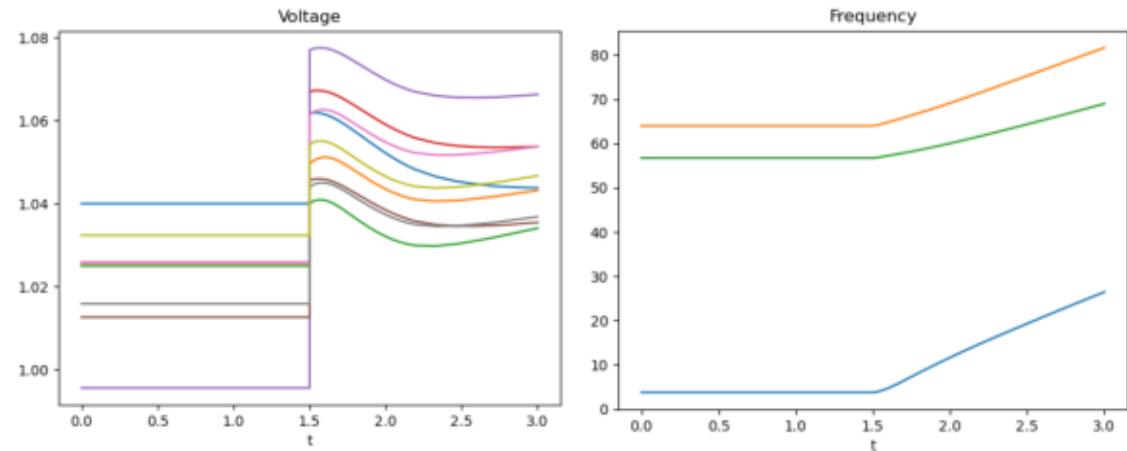
Example – Baseline Dynamics, No Tripping

- WECC 9-bus system
- No trips are being incurred, just the initial conditions of the system
- Controls still occur to maximize stability over the time horizon



Example – Tripping, No Controls

- Three components tripped at time $t = 1.5$
 - Load trip (5)
 - Gen trip (2)
 - Line trip (2, 7)
- Predisposed to overvoltage even before trip, overvoltage possible post trip

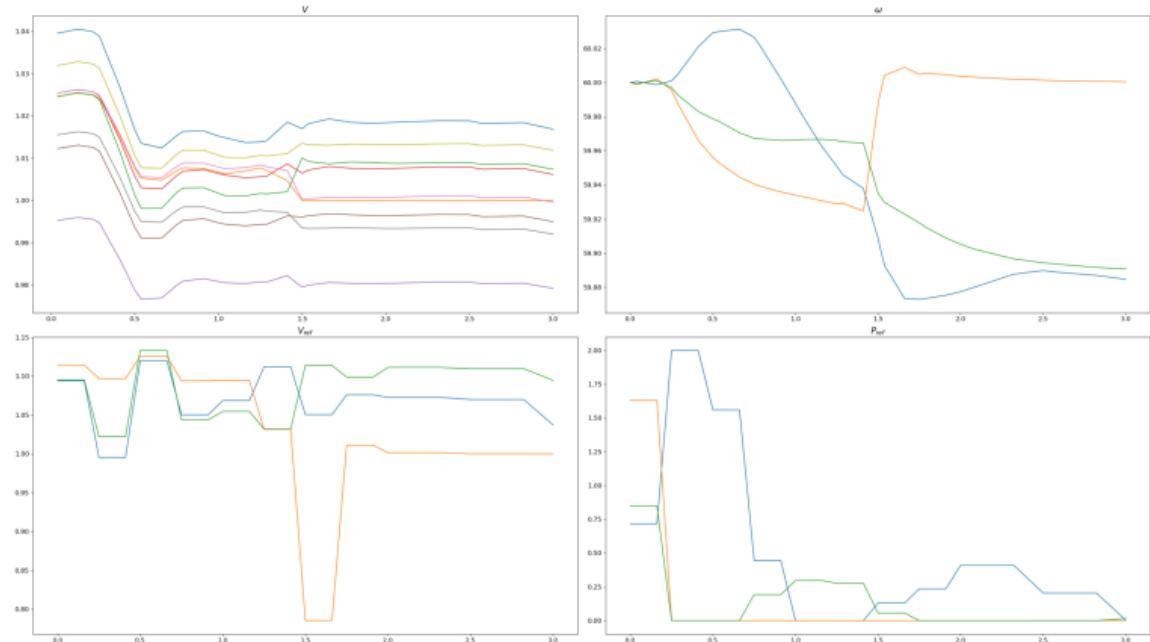


Example – Tripping 3 Components

- Three components tripped at time $t = 1.5$

- Load trip (5)
- Gen trip (2)
- Line trip (2, 7)

- At the given cost curves, the model chose to protect only load 5



Example – Tripping 3 Components

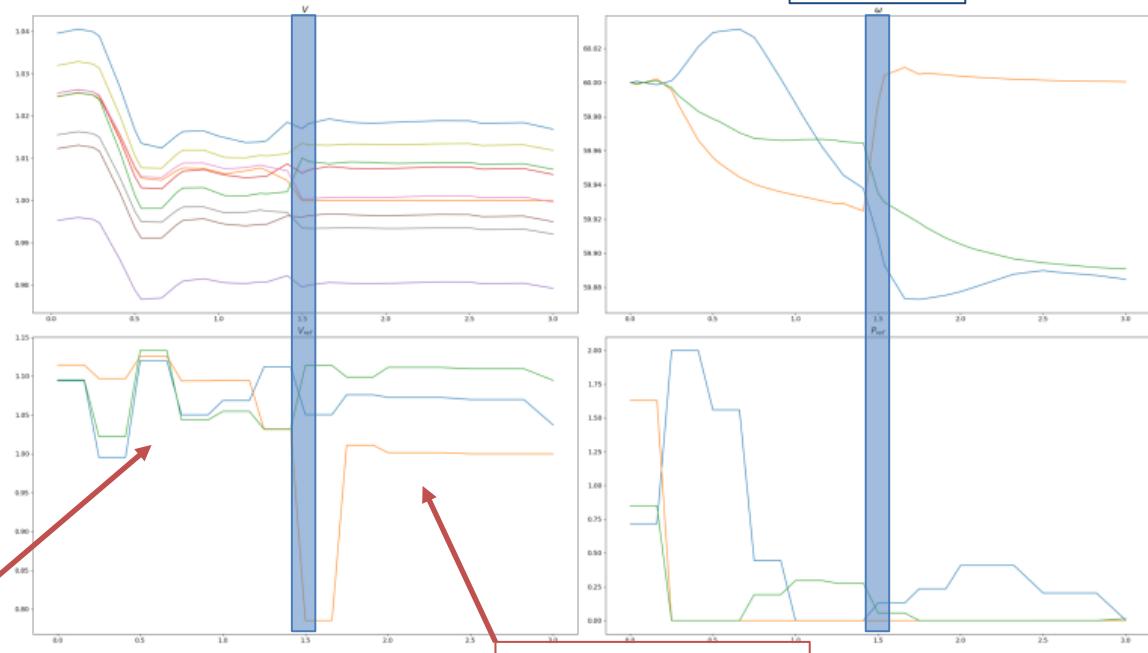
- Three components tripped at time $t = 1.5$

- Load trip (5)
- Gen trip (2)
- Line trip (2, 7)

- At the given cost curves, the model chose to protect only load 5

Preventative control

Corrective control



Conclusion

- Leveraging disjunctive programming, widespread outage performance can be improved
 - Both preventative and corrective controls
 - Hardening decisions to protect components that are costly to fail

Future Research

- Introduce stochastic failure scheme with discrete hardening decisions
- Adding behavior of discrete protective devices
- Scale to larger power systems such as the RTS-96 system
- Incorporate more complex failure contingencies