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Problem

• Objective: Mitigation planning optimization for wide-area n-k emergencies where 
multiple contingencies occur across a wide area in quick succession

• Even with mitigations in place, major dynamics and protective tripping are likely to 
ensue, with major implications to system stability and operability

• Particularly want to avoid cascading and large blackouts
• Current goals are to minimize cascading, widespread blackout & permanent damage 

to long-lead devices, and to improve restorability
• Decisions may include hardening, preventive & emergency control, strategic spare 

purchases and placement, etc.



Key Research Challenge

Prior resilience optimization work does not address wide-area n-k events
• Typically assumes either minor or localized hazards
• Relies on non-dynamic impact models, which cannot detect loss of stability
• Relies upon tight bound constraints which are likely not feasible in these 

emergencies (e.g., protective tripping may be unavoidable)
 Incapable of addressing hybrid/cascading behavior due to assuming away protective devices

We intend to incorporate both dynamic system physics and discrete 
protection in our optimization model

• for accuracy of impact modeling and 
• to allow relaxing constraints that severely limit feasible space



Approach

Stochastic planning optimization
• choose from proposed hardening and mitigation measures and locations
• optimize dynamically-assessed resilience 
• across a set of scenarios representing hazard uncertainty

Two optimization stages:
• mitigation decisions enacted across all hazard scenarios
• impacts (and emergency control) assessed for each hazard scenario, 

using dynamic system physics and discrete protective schemes 
Our phased project plan:

1. build stochastic, continuous-dynamic optimization models
2. add appropriate discrete planning options to address hazard scenarios
3. add variables and constraints to represent discrete dynamics 

from protective devices, and address temporal discretization challenges

We are here



Dynamics Optimization Literature

• Transient Stability Constrained
• Optimal Power Flow (TSCOPF)
• Emergency Control (TSEC)

• Minimize objective subject to DAE path constraints, over some 
contingency

• TSCOPF: optimize initial conditions x0 for potential 
contingencies

• TSEC: optimize control inputs u for realized 
contingency

• Economic (generation cost) objectives
• Simple stability constraints limiting:

• Power angles with respect to center of inertia
(approximate treatment of transient stability)

• Line currents
• Voltages

• Decision variables: Generator setpoints and load shed

DAE

objective

constraints

initial
conditions



Dynamic Power Systems Modeling

In major emergencies, dynamics play important role in system stability
Generator dynamics (Sauer, Pai, Chow)

• Angular acceleration = mechanical power in, minus electrical power out
• We use the 4th order flux-decay model commonly used in stability studies
• An additional term (turbine with no reheating) models torque response delay

 Network power balance
 Load dynamics 

• Play an important role in stability studies*
• Exponential recovery model (Karlsson & Hill) captures load responses to 

voltage fluctuations
 Combined, these pose a system of differential algebraic equations (DAE)

*R. Zhang, Y. Xu, W. Zhang, Z. Y. Dong, and Y. Zheng (2016), Impact of dynamic models on transient stability-constrained optimal power flow, 
2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 18–23



Decision Variables, Parameters, and DAE Variables 



Model Dynamics



Model Dynamics (cont.)
Generator Ramp Rate:



Time Discretization

• To approximate differential equations in [0,T] 
time horizon, time is partitioned into finite points:

• Discretized points are then used to discretize 
differential equations 

• Forward finite difference
• Collocation



Stability Metrics

• In severe emergencies, bound constraints 
may be temporarily exceeded, and our goal is 
to position the system within bounds as quickly 
as possible

• Instead of treating limits as path constraints, 
we penalize approaching/
exceeding limits in the objective function



Disjunctive Constraints 

• To model disjunctions between baseline 
dynamics and trips, we introduce binary 
protection variable R

• Indexed by component y (load, 
generator, line)

• Cost of protection depends on 
component

• Dynamics of the system for post-failure 
time horizon will be one of two disjuncts



Component Failure Disjunctions
Load Trip 
Disjunct

Generator Trip Disjunct

Line Trip Disjunct



Objective

• Objective value could be either:
• Minimizing cost of protection subject to stability metric criteria
• Minimizing total cost and stability deviation 



Example – Baseline Dynamics, No Tripping

• WECC 9-bus system 

• No trips are being incurred, 
just the initial conditions of 
the system 

• Controls still occur to 
maximize stability over the 
time horizon



Example – Tripping, No Controls

• Three components tripped at 
time t = 1.5 

• Load trip (5)
• Gen trip (2) 
• Line trip (2, 7)

• Predisposed to overvoltage 
even before trip, overvoltage 
possible post trip



Example – Tripping 3 Components 

• Three components tripped at 
time t = 1.5 

• Load trip (5)
• Gen trip (2) 
• Line trip (2, 7)

• At the given cost curves, the 
model chose to protect only 
load 5



Example – Tripping 3 Components 

• Three components tripped at 
time t = 1.5 

• Load trip (5)
• Gen trip (2) 
• Line trip (2, 7)

• At the given cost curves, the 
model chose to protect only 
load 5

Preventative control

Corrective control

Fail Time



Conclusion

• Leveraging disjunctive programming, widespread outage 
performance can be improved

• Both preventative and corrective controls
• Hardening decisions to protect components that are costly to 

fail 



Future Research

• Introduce stochastic failure scheme with discrete hardening decisions 

• Adding behavior of discrete protective devices 

• Scale to larger power systems such as the RTS-96 system

• Incorporate more complex failure contingencies


