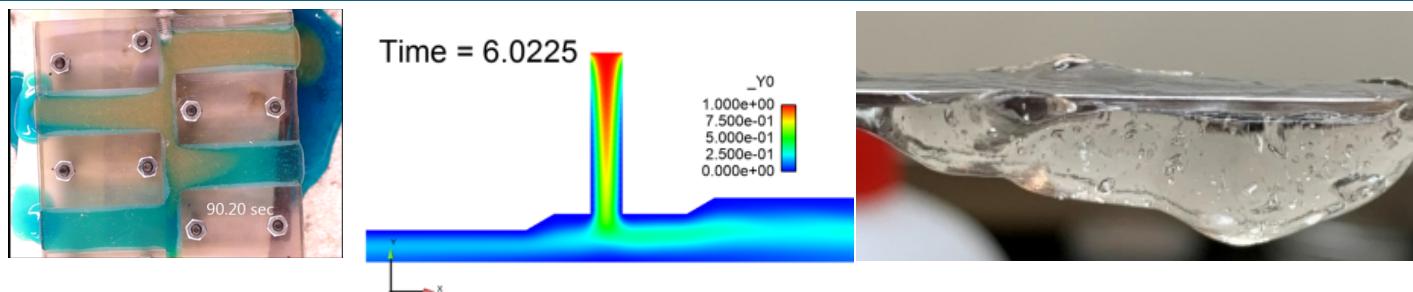


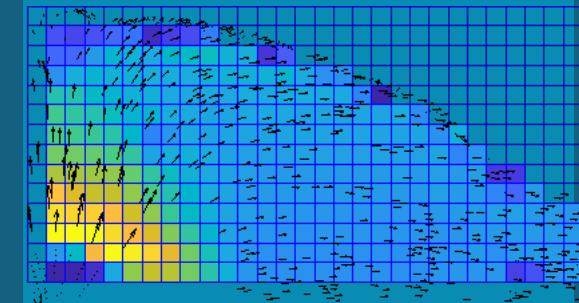


Sandia  
National  
Laboratories

# Computational Models for Fluid-to-Solid Transitions in Yield Stress Fluids



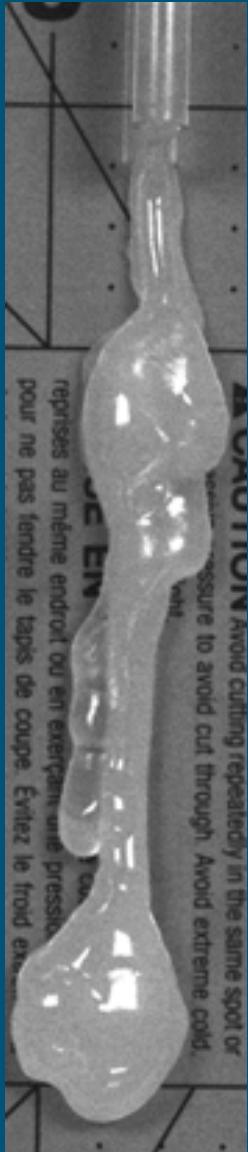
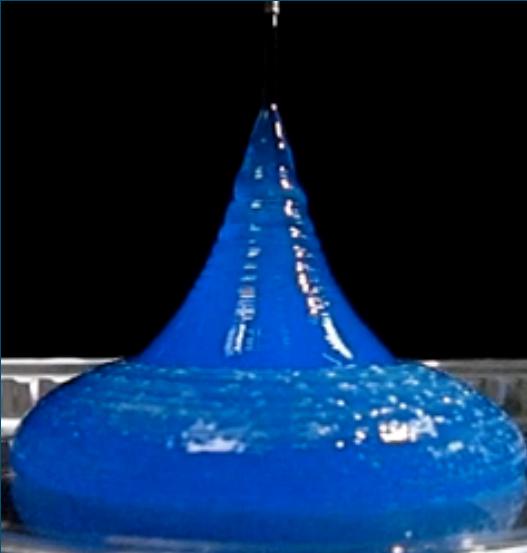
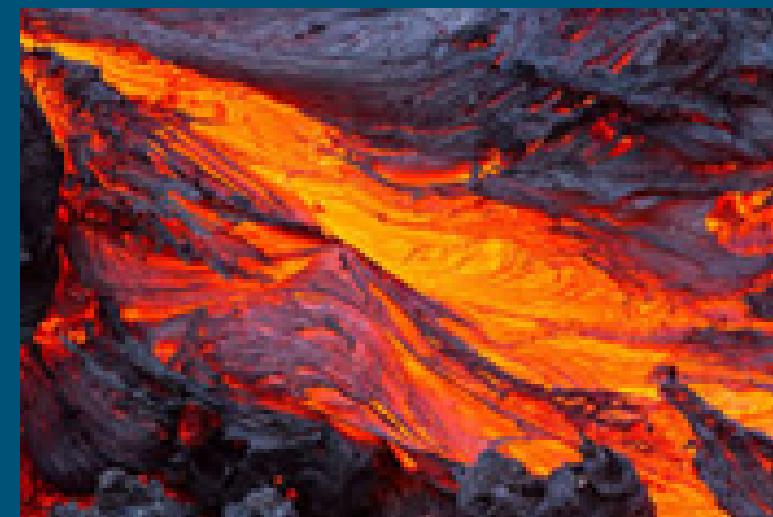
Josh McConnell, Rekha Rao (SNL)  
Pania Newell (University of Utah)  
Weston Ortiz (UNM)



16<sup>th</sup> US National Congress on Computational Mechanics

July 26, 2021

# Motivation for studying yielding fluids



Yield stress can be seen in wax, whipped cream, toothpaste, lava, ceramic pastes, and Carbopol

### 3 Develop computational models for free surface flows of yield stress fluids



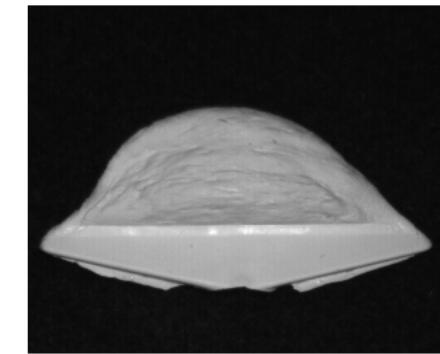
#### Why is this needed?

- Accurate predictions of surface profiles and spreading dynamics for flowing systems

#### Current state-of-the-art in production codes:

- Ramp viscosity arbitrarily high to “solidify” a fluid
- Does not accurately preserve the stress state that develops in the fluid
- One way coupling between fluid and solid codes

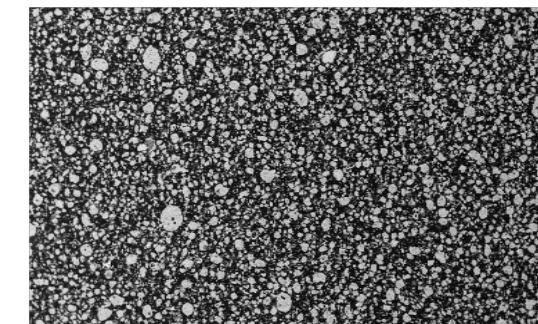
We propose developing numerical methods informed by novel experimental diagnostics that transition from solid-to-fluid, while accurately predicting the stress and deformation regardless of phase.



2.5 mm shot, 100% injection speed



2.5 mm shot, 40% injection speed



Target system: solidifying continuous phase with particles and droplets

Green ceramic processing shows yield stress and both fluid and solid-like behavior

# Equations of Motion and Stress Constitutive Equations



Momentum and Continuity

$$\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{u} \mathbf{u} \right) = -\nabla P + \nabla \cdot (2\mu \dot{\gamma}) + \nabla \cdot \boldsymbol{\sigma}$$

$$\nabla \cdot \mathbf{u} = 0$$

Oldroyd-B stress constitutive model + Saramito yield model

$$\lambda \left( \frac{\partial \boldsymbol{\sigma}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\sigma} - \nabla \mathbf{u} \cdot \boldsymbol{\sigma} - \boldsymbol{\sigma} \cdot [\nabla \mathbf{u}]^T \right) + \mathcal{S}(\boldsymbol{\sigma}, \tau_y) \boldsymbol{\sigma} = 2\eta \dot{\gamma}$$

$$\mathcal{S}(\boldsymbol{\sigma}, \tau_y) = \max \left( 0, \frac{|\boldsymbol{\sigma}_d| - \tau_y}{|\boldsymbol{\sigma}_d|} \right) \text{ Saramito yield model}$$

Solve with Finite Element Method for  $\mathbf{u}$ ,  
 $P$ ,  $\boldsymbol{\sigma}$  and  $\dot{\gamma}$  tensors

- Guénette, R. and Fortin, M. *Journal of Non-Newtonian Fluid Mechanics* (1995) 60: 1, 27-52.
- Saramito, P. *Journal of Non-Newtonian Fluid Mechanics* (2007) 145: 1, 1-14.
- Fraggedakis, D et al. *Journal of Non-Newtonian Fluid Mechanics* (2007) 236, 104-122.

# Model validation: Planar Poiseuille flow



## Analytical solution

$$\sigma_{xy} = (\nabla_x P)y$$

$$\sigma_{xx} = 2\lambda \frac{(\nabla_x P)^2}{\eta} y^2$$

$$|\sigma_d| = \sqrt{\sigma_{xy}^2 + \sigma_{xx}^2/4} \quad y_c = \pm \frac{h}{a\sqrt{2}} \sqrt{\sqrt{1 + 4\left(\frac{a\tau_y}{h\nabla_x P}\right)^2} - 1}$$

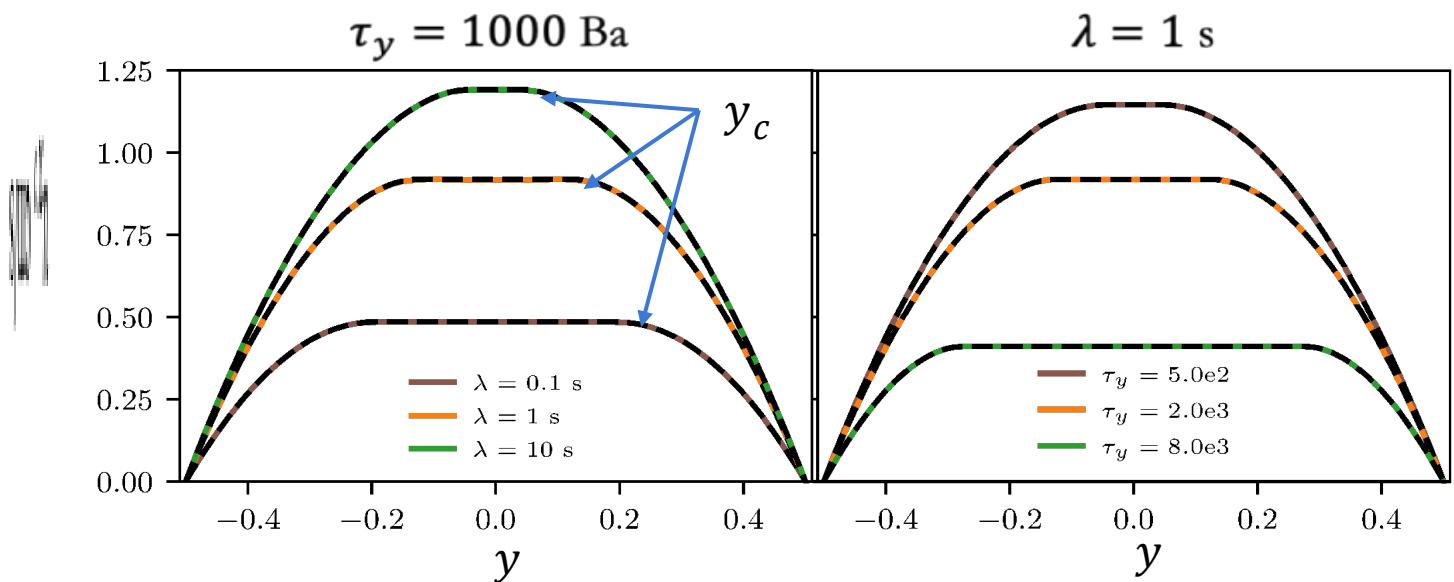
$$u_y = \frac{\nabla_x P}{2\eta} (y^2 - h^2) + \frac{\tau_y}{\lambda \nabla_x P} [\sinh^{-1}(ay/h) - \sinh^{-1}(a)].$$

$$a = \lambda h \nabla_x P / \eta$$

- Colorful lines are computed solutions, black dashed lines are exact solutions

$$\nabla_x P = 1000 \text{ Pa}$$

$$h = 0.5 \text{ cm}$$



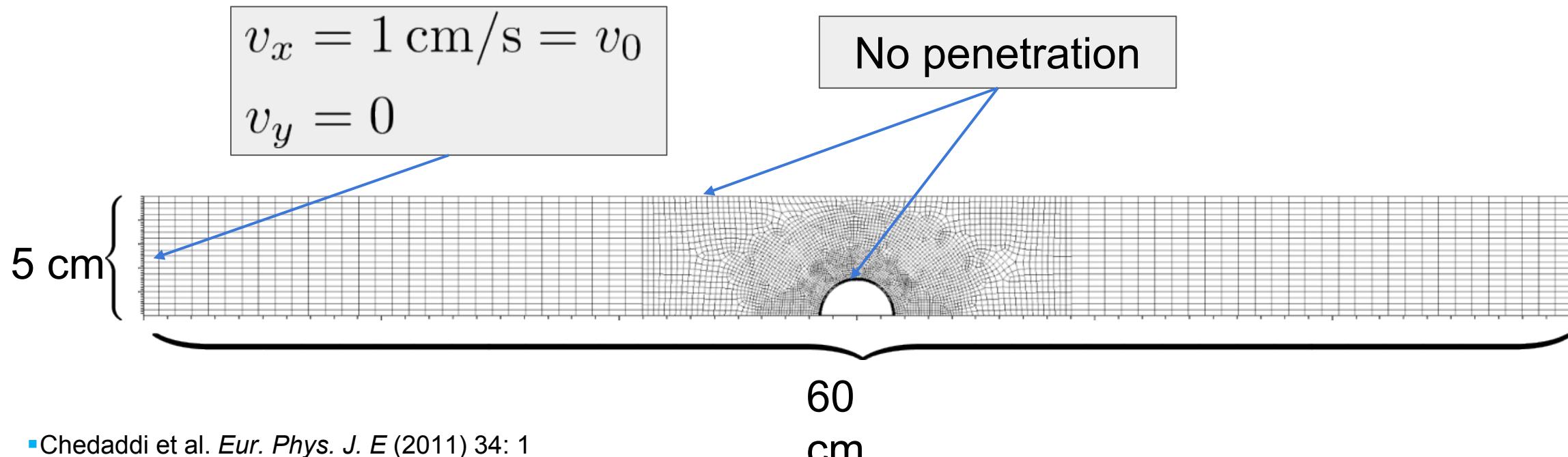
# Model validation: flow past a cylindrical obstruction



- Quasi-two dimensional experiments presented from case in Cheddadi et al., 2011
- Fluid is a “wet foam,” which has a yield stress, elasticity and also exhibits slip at solid boundaries

model parameters

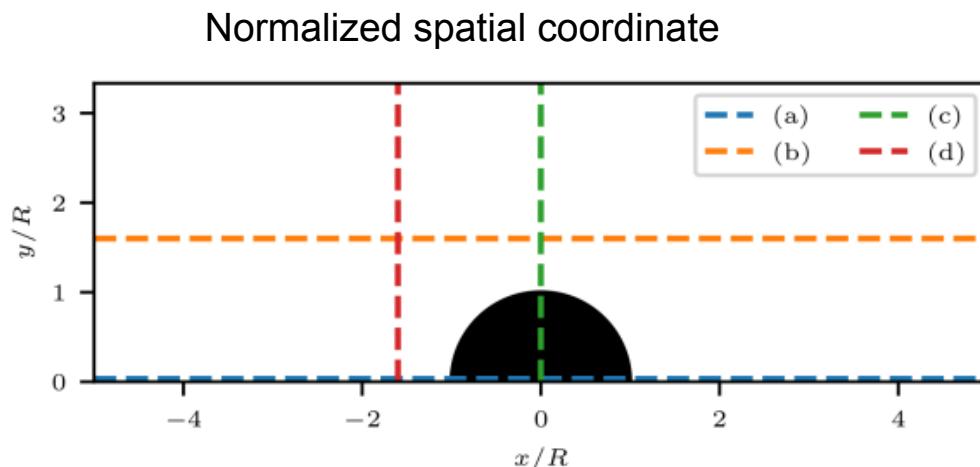
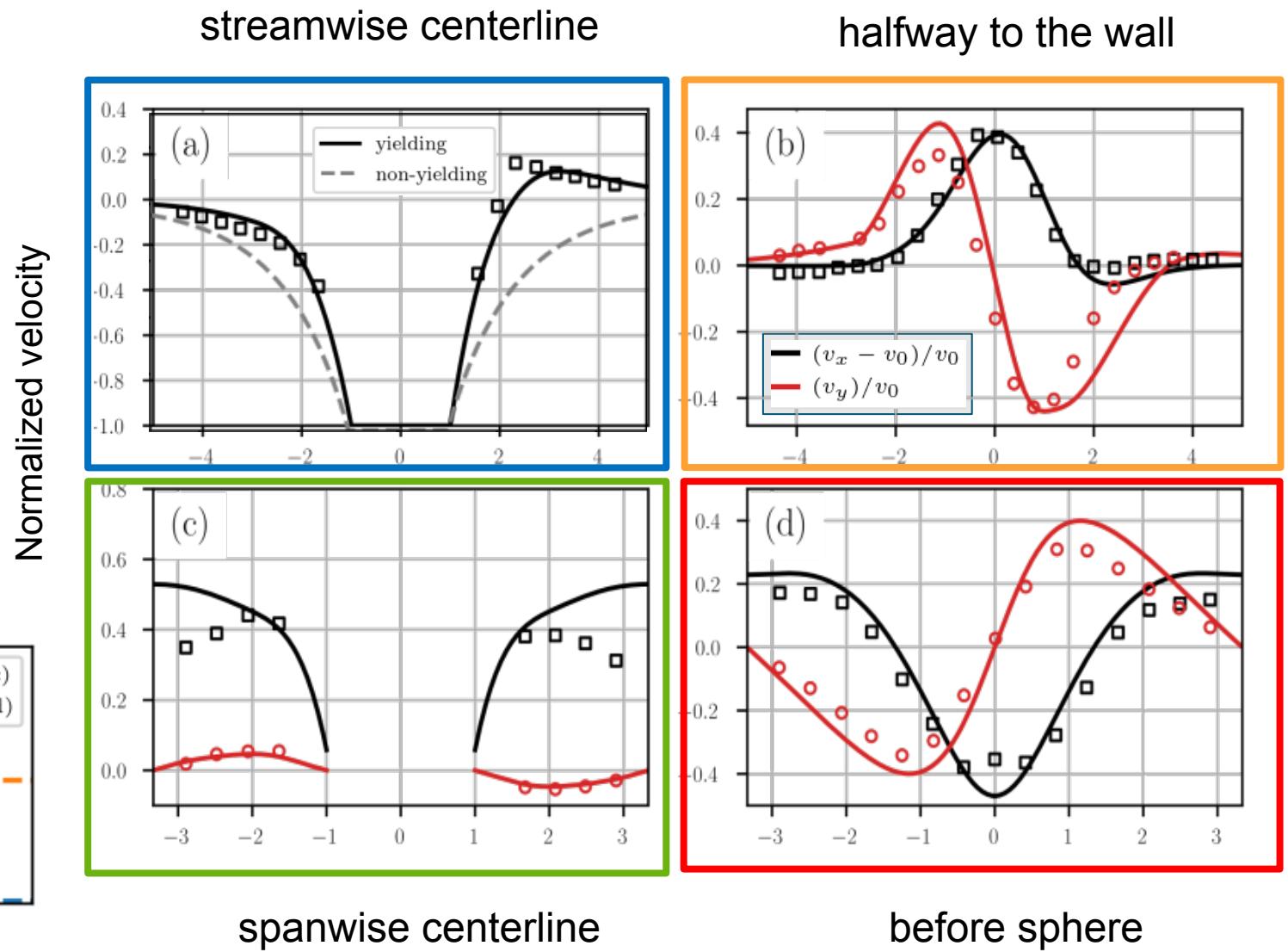
| $\eta$ , (Ba.s) | $\tau_y$ , (Ba) | $\lambda$ , (s) |
|-----------------|-----------------|-----------------|
| 2.6             | 26              | 0.2             |



# Comparing computations to experimental observations



- Computed velocities match experiments for the most part.
- Velocity asymmetry observed for line-of-sight (a) is characteristic of a yielding fluid
- Symmetric result from the non-yielding computation (gray dashed line)



# Mold Filling Simulation

## Constitutive models

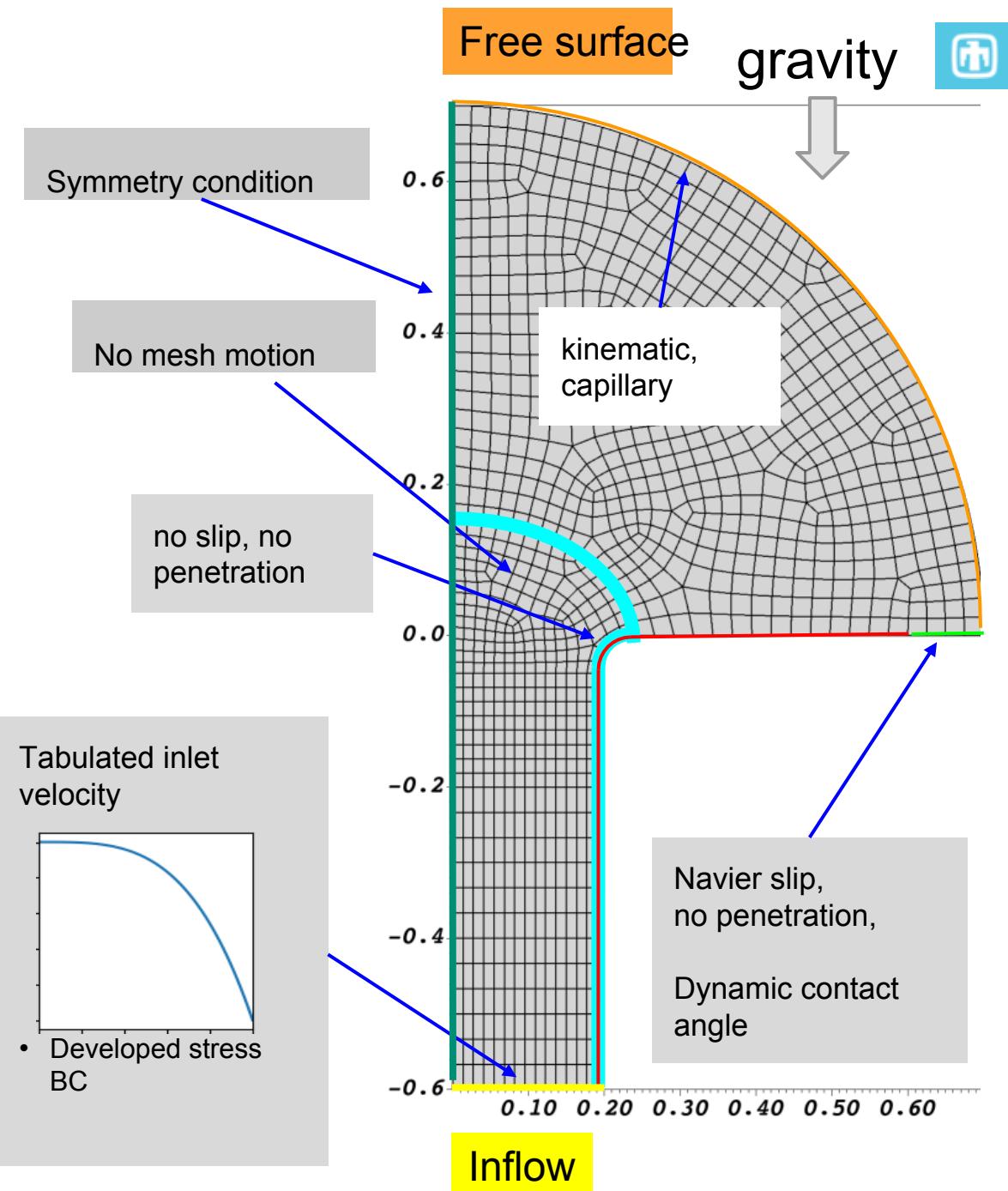
- Saramito-Oldroyd-B (EVP)
- Bingham-Carreau-Yasuda (generalized Newtonian)

## Computations

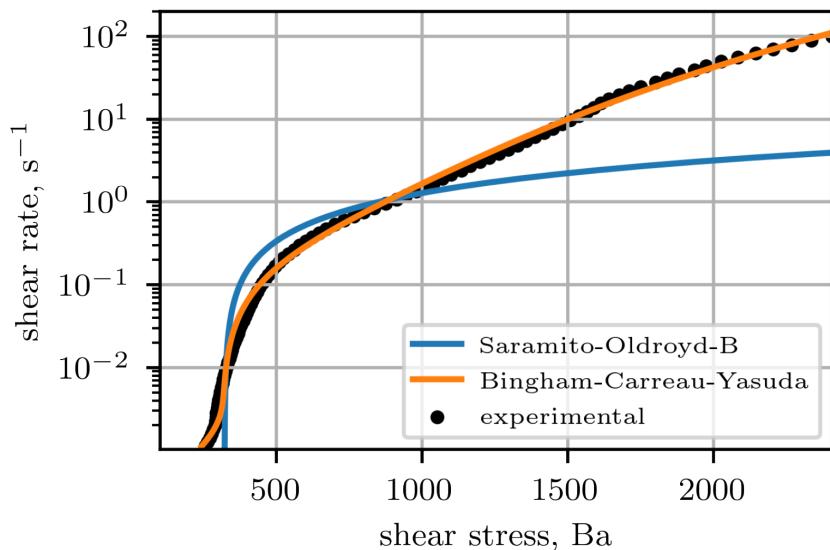
- Finite element method in Goma
- Arbitrary Eulerian-Lagrangian moving mesh framework

## Validation Experiments

- 0.3 wt.% Carbopol
- 5-20 mL/min flow rate



# Characterization of Carbopol and Parameter fitting



## Bingham-Carreau-Yasuda (BCY)

$$\mu = \mu_\infty + \left[ \mu_0 - \mu_\infty + \tau_y \frac{1 - e^{-F\dot{\gamma}}}{\dot{\gamma}} \right] [1 + (b\dot{\gamma}^a)]^{\frac{n-1}{a}}$$

| Carbopol % | $\mu_0$ , (Ba·s) | $\mu_\infty$ , (Ba·s) | $b$ (s⁻¹) | $a$   | $n$   | $\tau_y$ , (Ba) |
|------------|------------------|-----------------------|-----------|-------|-------|-----------------|
| 0.3%       | 2171.5           | 0.18                  | 3.112     | 0.966 | 0.190 | 312.1           |

## Saramito-Oldroyd-B

$$\lambda \left[ \frac{\partial \boldsymbol{\sigma}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\sigma} - \boldsymbol{\sigma} \cdot \nabla \mathbf{u} - \nabla \mathbf{u}^T \cdot \boldsymbol{\sigma} \right] + \max \left[ 0, \frac{|\boldsymbol{\sigma}_d| - \tau_y}{|\boldsymbol{\sigma}_d|} \right] \boldsymbol{\sigma} = \eta_{fluid} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

| Carbopol % | $\eta$ , (Ba·s) | $\tau_y$ , (Ba) | $\lambda$ , (s) |
|------------|-----------------|-----------------|-----------------|
| 0.3%       | 528.5           | 321.0           | 0.1102          |



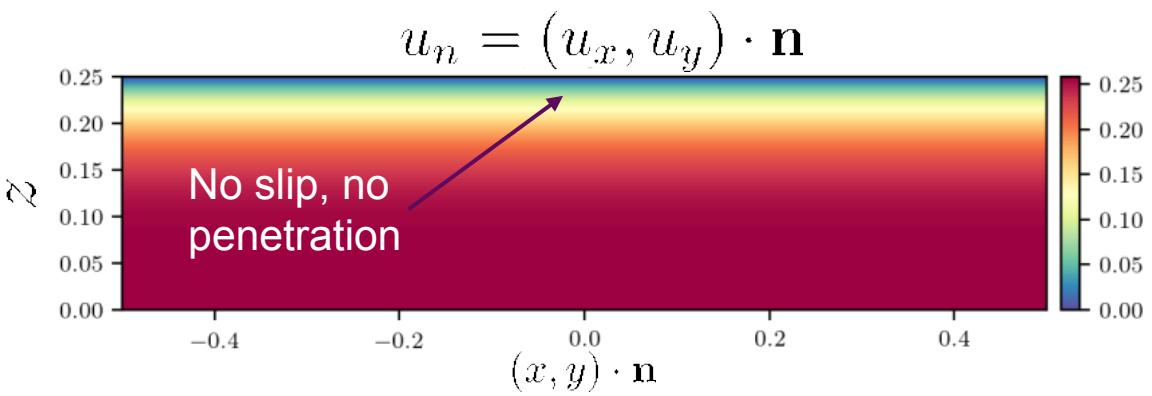
- Small amplitude stress vs. strain curve, gives the elastic modulus ( $G = 440$  Pa).
- Other rheological parameters were determined using a nonlinear least squares fit.

# Mold filling geometry: Flow between two thin plates

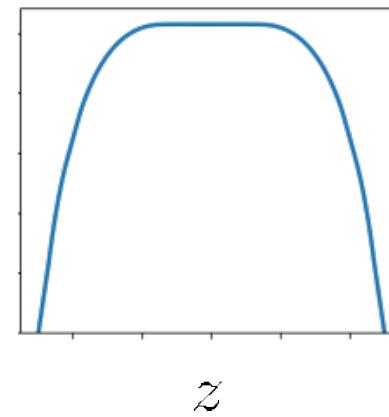
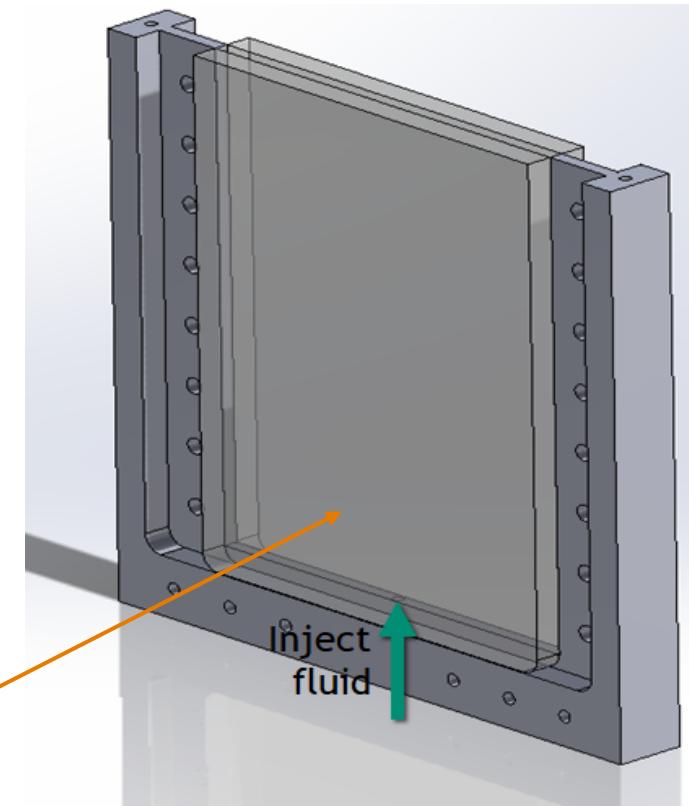


## Apparatus dimensions

- Inlet diameter = 0.138 cm
- (x) Width = 15.2 cm
- (y) Height > Width
- (z) Gap between plates = 0.5 cm
  - This dimension is not resolved in computations
  - Drag force due to unresolved stress needs to be modeled



$$u_n = (u_x, u_y) \cdot \mathbf{n}$$



# Drag model



- Drag model accounts for force due stress caused by the presence of a shear gradient in the unresolved dimension
- Included in flow model as a momentum source term and has the following form:

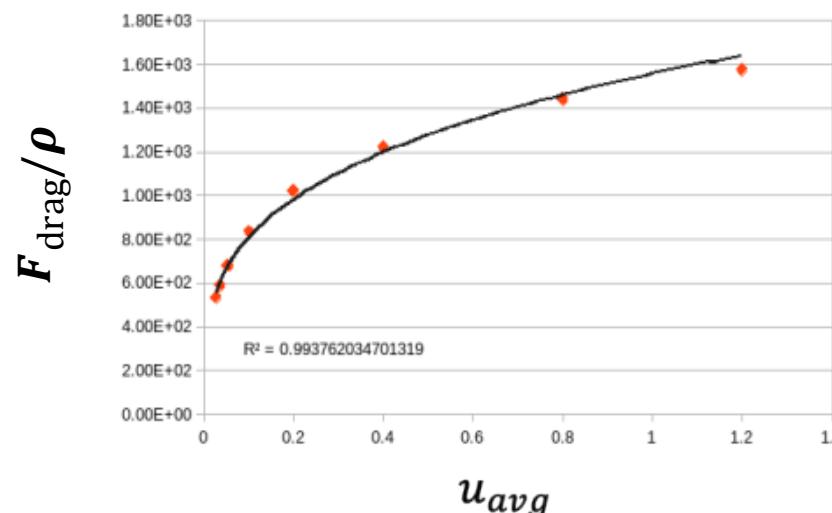
$$\mathbf{F}_{\text{drag},i} = a \mathbf{u}_i \left( \sqrt{|\mathbf{u}|^2 + \epsilon} \right)^{b-1}$$

$a, b$  are fitted parameters,  $\epsilon = 10^{-4}$

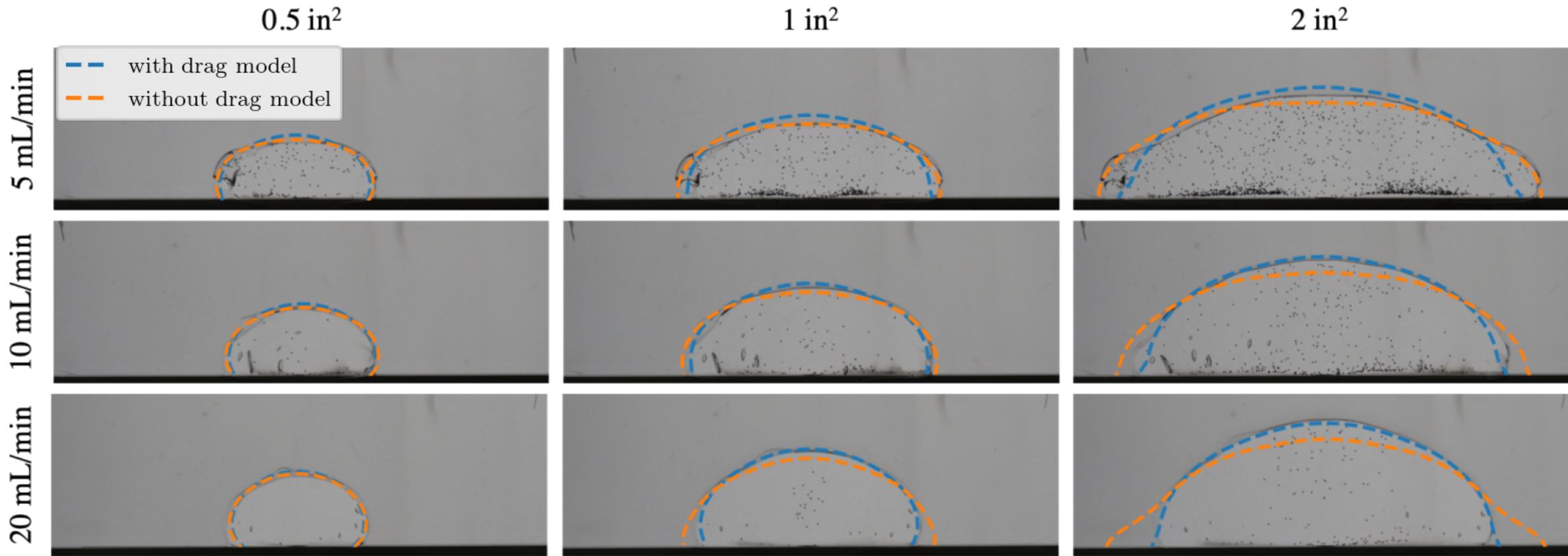
- Computations for obtaining drag model parameters are done with the Bingham-Carreau-Yasuda (BCY) generalized Newtonian model



1. Perform computations for a planar Poiseuille system over a range of  $\nabla P$  values,
2. compute  $u_{avg}$  and average force due to shear stress,  $\mathbf{F}_{\text{drag}}$
3. Obtain values of  $a, b$  via regression to get  $\mathbf{F}_{\text{drag}}(u_{avg}; a, b)$



## Comparing computed and observed droplet shapes



- Impact of including drag model is most apparent near the contact line
  - Drag model inhibits predicted fluid yielding near the contact line which inhibits droplet spreading
- Using the drag model improves accuracy of predicted shape for elevated flow rates

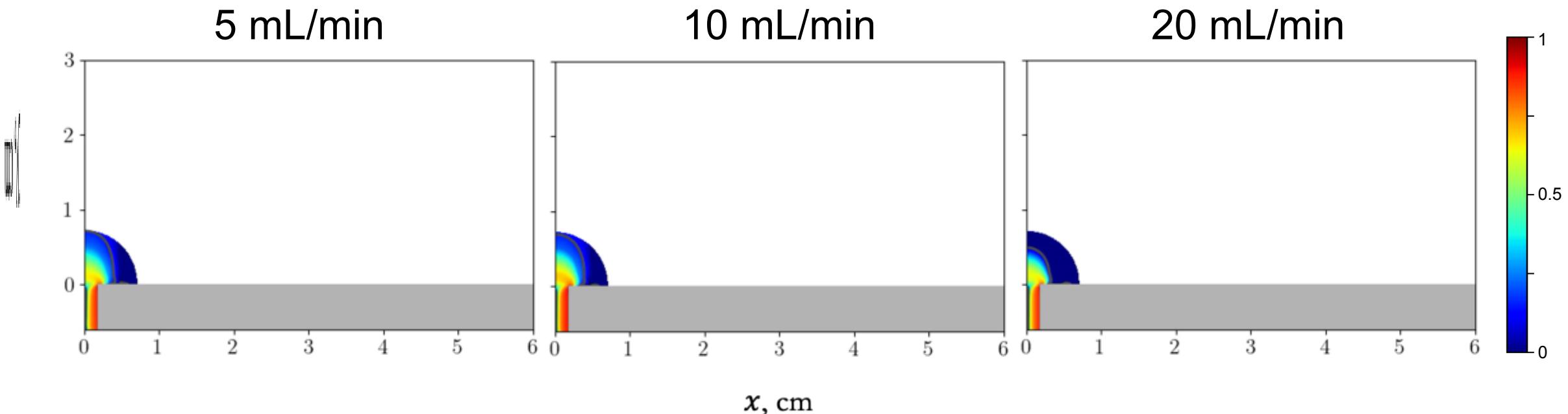
## Comparing computed and observed blob dimensions



- Predicted droplet dimensions are more accurate when drag model is used for the 10 and 20 mL/min computations
  - 5 mL/min case performs worse with drag model; fitted BCY model likely overestimates the viscosity for this scenario

# Computed Yield coefficient

$$\mathcal{S}(\boldsymbol{\sigma}, \tau_{\text{yield}}) = \max \left( 0, \frac{|\boldsymbol{\sigma}_d| - \tau_{\text{yield}}}{|\boldsymbol{\sigma}_d|} \right),$$



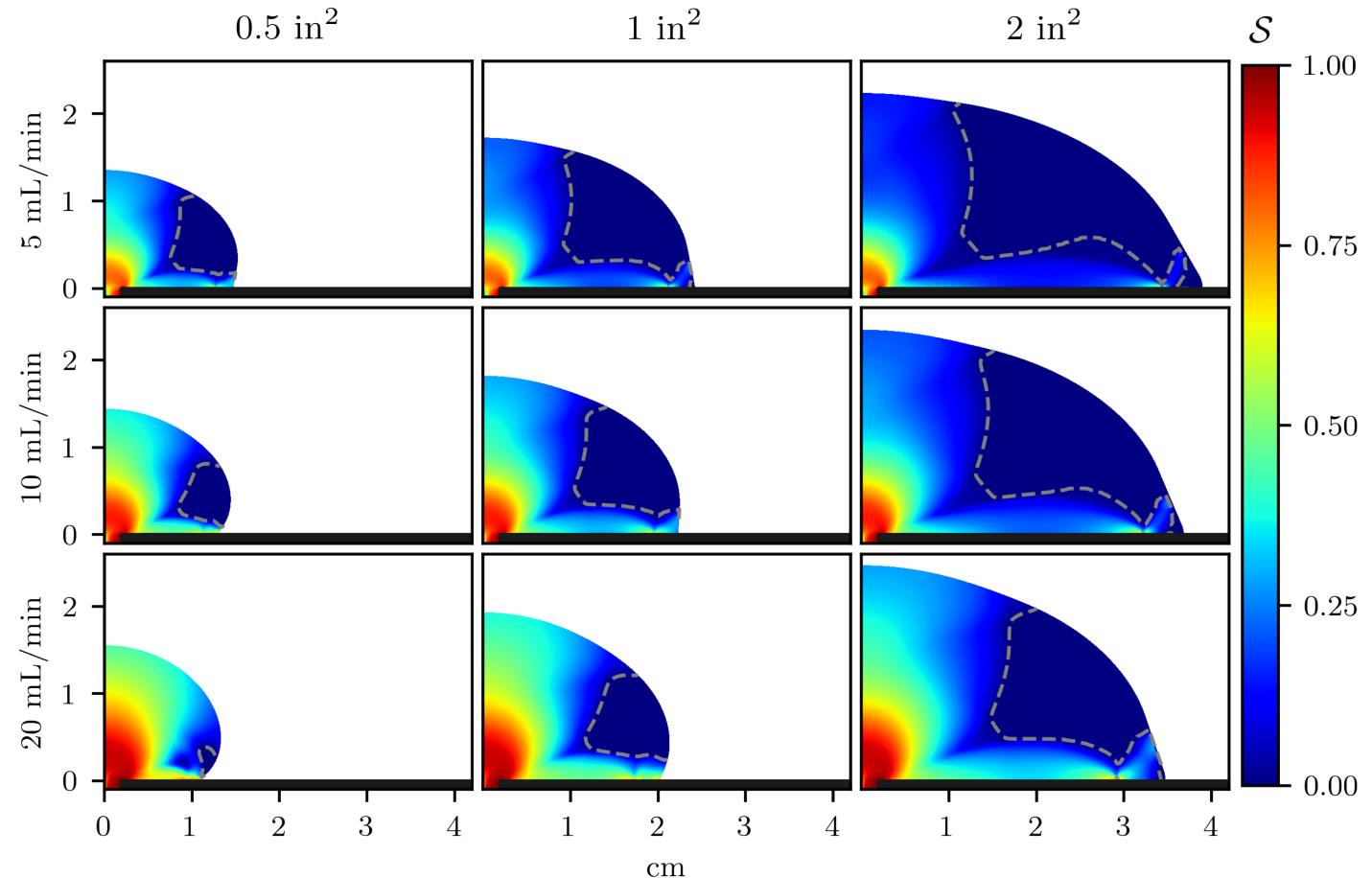
- Time is scaled by flow rate
- Gray lines indicate computed yield boundary

# Computed yield coefficient



$$\mathcal{S}(\boldsymbol{\sigma}, \tau_{\text{yield}}) = \max \left( 0, \frac{|\boldsymbol{\sigma}_d| - \tau_{\text{yield}}}{|\boldsymbol{\sigma}_d|} \right),$$

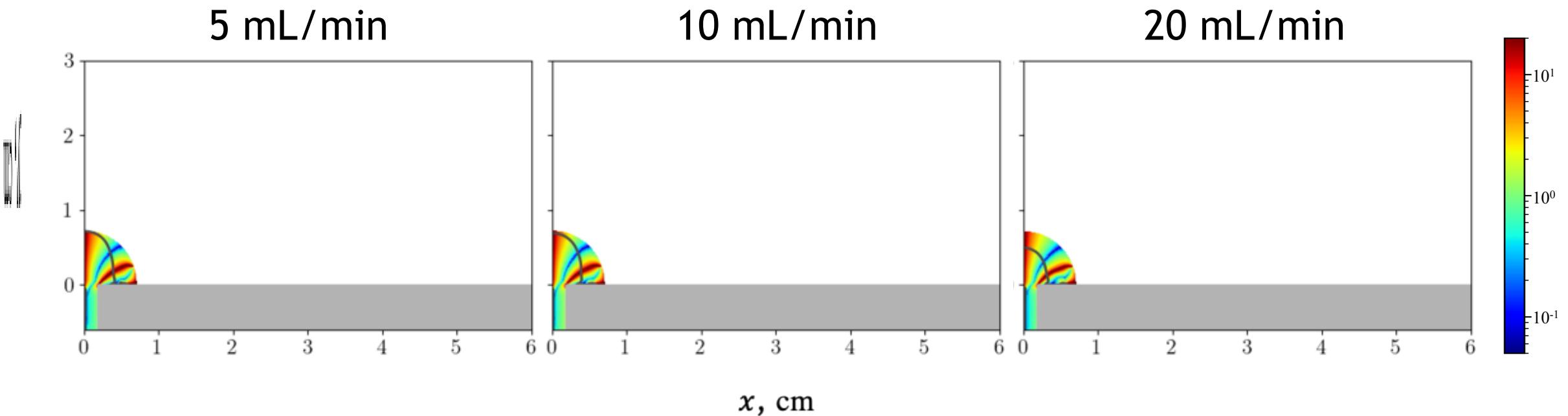
- For all scenarios, the unyielded fluid region within the droplet grows from the outer edge and upward as fluid is added to the domain
- Unyielded region remains at the outer edge of the droplet and above the high -shear region near the horizontal no-slip boundary



# Local Weissenberg number



$$Wi = \frac{|\sigma_{xx} - \sigma_{yy}|}{|\sigma_{xy}|}$$

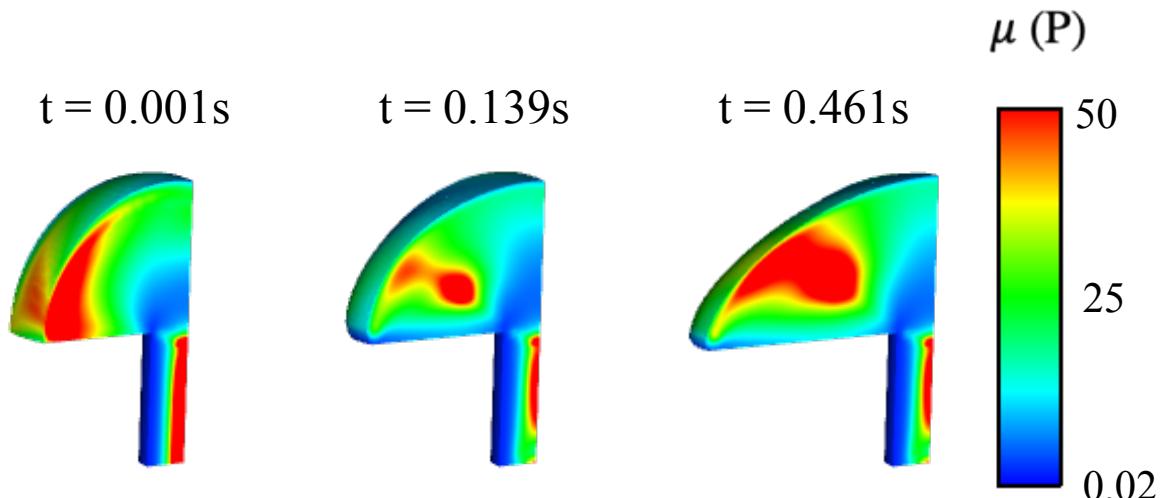
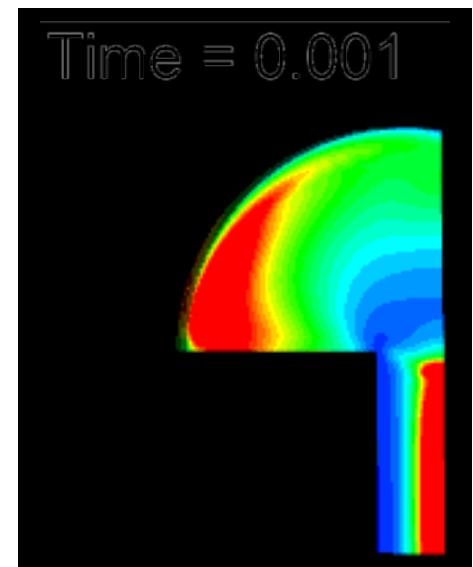


- Computations suggest that alternating regions of normal stress dominant behavior appear in growing droplets

# Work in progress: 3D level set computations



- **Shown:** BCY model for 0.08% Carbopol
- All apparatus boundaries are resolved → wall drag model not necessary
  - Can be used to determine the efficacy of the drag model used in 2D computations
- In the future:
  - 3D Level set computations with the Saramito EVP model
  - 3D ALE computations



# Conclusions and Future work



- Computations using Saramito stress model implementation agree with
  - Analytical solution to planar Poiseuille flow
  - Published experimental data
- Demonstrated capability to simulate free surface (mold filling) flows of a yielding fluid
  - Accuracy of blob shape predictions are improved overall by including an unresolved drag model
  - Drag model worsened at the lowest flow rate considered, possibly due to over predicting the viscosity
- Working on:
  - Computations over a range of fluid properties for the mold filling scenario
  - Coupling yield stress to local structure
  - Extending model to full three-dimensional analysis