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2 I Terrestrial Application: Z Power Flow

oZ power flow
o Magnetically-Insulated Transmission Line inside Z Pulsed Power Machine
> Conical geometry, ~2-4 MV, gap ~10mm = ¥ = 5 — 9 (Gomez et al., 2017)

> Electron models that don't account for relativity can possess unphysical super-luminal velocities
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Astrophysical Application: Magnetized Relativistic Jets

oActive Galactic Nuclet launch relativistic
jets (¥ = 2 — 10) out to kiloparsecs

oHow are cosmic rays from jets
accelerated?

o Relativistic non-thermal ions accelerated

from AGN

o Across shocks? Magnetized Turbulence?
Magnetic Reconnection?

oAre the AGN jets comprised of ion-

electrons or positrons-electrons?

OMulti-fluid relativistic plasma methods
are needed

Centaurus A

Credits: X-ray: NASA/CXC/SAO; optical: Rolf Olsen; infrared: NASA/JPL-Caltech; radio:
NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle
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Relativistic Hydrodynamics
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oTwo (or more) charged fluids T E-VxB
o Relativistic velocities and/or c Ot
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5 I Discontinuous Galerkin Method

oDiscontinuous Galerkin Method
o Domain decomposed into cells

o Variables approximated via polynomial basis over

each cell U(x) ~ Uh(x) _ Z Uidi(x) x €
1=1
¢i (Xj) — 5@;3'
ouh | | | |
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oSurface integrals imply Riemann Solvers to compute fluxes

oNodal basis for fluid, edge basis for electric fields, face basis for magnetic fields
o Gauss’s Law and divergence free magnetic field enforced to machine precision by polynomial bases



Implicit-Explicit (IMEX) Time Integration & stiff modes in relativistic
6 I plasmas

o IMEX methods split fast and slow modes

o Implicit terms solve for stiff modes (plasma oscillation, collisions, 3 Stage IMEX-RK Algorithm

cyclotron frequency) Implicit Solves Explicit Solves
o Explicit terms are accurately resolved (all of CoM physics) A m 8¢ (A #®) 90 = gfuts +cobt)
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7 I Non-relativistic vs. Relativistic Hydrodynamics

Non-Relativistic Conserved Variables:
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oNon-relativistic Hydrodynamics
o Density, Momentum Density, Energy Density

o Coupling between velocity and momentum is
linear

oRelativistic Hydrodynamics
o Relativistic mass density, relativistic momentum
density, Energy Density (including rest mass)

o Everything coupled though non-linear Lorentz
factor

oChallenges:

I. Conserved to Primitive conversion is error-
sensitive
o High Lorentz factors => Velocity asymptotes to speed of light

o Small errors in velocity lead to larger error in Lorentz factor
or breaking of causality

Il.  Not all conserved variables are physical
o Velocity must be subluminal, pressure and density positive
o Not all conserved states have a primitive state

oHigh Lorentz factors and relativistic temperatures
require robust methods



Pressure P

s I Conserved to Primitive: Solving Analytically vs. Iteratively
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Solution 1: Solve quartic polynomial
analytically for velocity

O Square roots, inverse trigonometry

O Machine precision can lead to
superluminal velocities

o Small errors in velocity translate into
large errors in Lorentz factor, other
primitives

Solution 2 Solve quartic polynomial iteratively

with Newton-Raphson for
2w

1+w?
o Arbitrary accuracy with enough iterations

v=~¢C

© Robust and accurate without square roots
and inverse trigonometry

o Simplicity leads to faster execution,

esheciallvy for nan-relativistie flows




Physicality Enforcing Operator

oNot all conserved states are physical:

o Second order methods and shocks can lead to non-physical conserved
states

o Conserved variables must satisfy:

E>0, D>0, E/c2—\D?+|M/c|?>0

oSet of physical conserved states is convex

o If the cell volume average is physical, unphysical nodal points can be
smoothed towards average

Physicality Enforcing Operator

1. Cells with unphysical nodal points are
flagged

2. For each unphysical nodal point, we
compute the least amount of averaging
required

2. For each flagged cell, the least amount of
oPrescBNERafifg Sestifeser teﬁsaidvp@mé&,ls applied

oDoes not affect physical cells
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Single Fluid 1D Shocks

Blast Wave
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oTransverse velocity changes Lorentz factor, density, and pressure

oConserved to Primitive solver enables high Lorentz factor

oPhysicality Enforcing Operator handles low pressures



11 I Relativistic Kelvin-Helmholtz Instability
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12 I Two Fluid Test: Two-Fluid Relativistic Warm Diode (N.D. Hamlin)

oTwo-Fluid Warm Diode Two Fluid Rel. Warm Diode Model
o 1D Electrostatic Problem wﬂh analytlc solu.tlcl)n. | | I et
o Warm beam of charged particles with relativistic velocity from one side — ] —

o More detail in presentation “Using Diode Simulations to Verify Plasma
Physics Codes,” T.M. Smith and K. L. Cartwright

o Wednesday 10:30am in Computational Plasma Physics #403 70-A-03
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13 I Current Work

oReimplementing implicit step to enable multiple ions and minimize primitive conversions
to improve accuracy

oApply relativistic two-fluid electrodynamics methods to astrophysical relativistic jets and
terrestrial power flows
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15 I Iterative method can be faster than analytical method
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16 I Synge Gas

oAdiabatic index of a perfect
gas varies from 5/3 to 4/3 for
sub-relativistic to relativistic
temperatures

oSynge gas correctly models
perfect gas

o Requires Bessel functions,
Inverse Bessel functions

o Taub-Matthews
approximates Synge Gas
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|deal

and Taub-Matthews Solver Accuracy
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Synge Gas Performance
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Kelvin Helmholtz Instability
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2D Riemann Problems

Time: 0.000000
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