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Very High Temperatures
2 | Motivation and challenges _ | __ |

Laser diagnostics are being applied to an
increasingly wider space outside
combustion
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Diagnostic applications at Sandia: Energetics and Hypersonics @ |
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Thermometry in detonation environments: fs/ps CARS and OH PLIF |

Fs/ps CARS in RP-80 detonator
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Thermometry in detonation environments: fs/ps CARS and OH PLIF

Fs/ps CARS in RP-80 detonator
(D. Richarson et al., PROCI 2021.)
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OH PLIF in an RP-80 detonator

counts

Success:
* Visualizes evolution of gas-phase reaction zones

Challenges:
 Significant UV laser sheet attenuation
* Pressure variation across field of view
« Spatial gradients in broadening, line shift,
quenching
» Spatial gradient in pressure and Doppler shift

Next Steps:

» Explore other explosives with reduced soot

* Explore different line pairs for extreme
temperature thermometry



6 | Detonation soot diagnostics present new challenges |

» Soot is the key optical emitter in
explosively generated fireballs

« Carbon generated in detonation can differ
from flame-generated soot
« Diamond peaks observed in soot Raman
spectra
« Early time: very high T/P
« Late time fireball more like air-fed
combustion

Detonation-generated (TNT) soot

Laser diagnostics depend on soot optical
properties I
« Refractive index
e Scattering
* Particle size and morphology

Flame-generated soot |

100 nm




in situ diagnostics for detonation soot imaging: LIl and diffuse
; | backlit illumination (DBI) |
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in situ diagnostics for detonation
s | backlit illumination (DBI)

Vo

100-kHz pulse-burst LIl (Alex Brown, Mateo Gomez)

soot imaging: LIl and diffuse |

Combustion Vessel

100-mm, 15° diffuser m
Ve i o .o. -

' C-MOS Camera I
< DBI imaging of
D ,”) diesel soot
"P*“" (Skeen et al. 2018)I
Bandpass &

Awnst)
" ND filters

623-nm or \

850-nm LED o1 fens

Bl 4 ms ASOI

Detonator Soot Imaging: D. Guildenbecher, Sandia

-

Emission



in situ diagnostics for detonation soot imaging: LIl and diffuse

9 | backlit illumination (DBI)

100-kHz pulse-burst LIl (Alex Brown, Mateo Gomez)
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in situ diagnostics for detonation soot imaging: LIl and diffuse

10 ¢ backlit illumination (DBI)

100-kHz pulse-burst LIl (Alex Brown, Mateo Gomez)
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Sandia Free-Piston High-Temperature Shock Tube/Shock Tunnel
(HST)

Design shock tunnel for hypersonic, reacting

flight environments —— e

T
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WT Shock*

\| Ballistig

Optical Table




Spontaneous Raman Scattering N, Thermometry in the Sandia HST @™

Collaboration with Prof. P.
Varghese and T. Haller the
University of Texas, Austin
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13 | Pulse-Burst CARS: Sandia/SE/Purdue Collaboration

BROADBAND

PROBE VOLUME

Focusing —_
Lens

|f'co

¢ " oAl Broadband Source is | il

Key Technical N, ~ 2330 cm”

Barrier for High-
Speed Picosecond OPG/OPA for 100-kHz

Measurements broadband generation (Roy et al., 2015)

| {
i Burner

Picosecond OPG
M ' enables burst-mode
W CARS detection

CARS enables detection in more challenging environments!
T > 4000 K
High background luminosity
Higher data acquisition rates

OPA section OPG crystal
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14 | 100-kHz picosecond CARS thermometry in Sandia’s HST.P Energies, i

The reflected shock state vyields very high temperature I
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100-kHz picosecond CARS results
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16 | Nanosecond pulse-burst CARS can improve our measurements @

Dominant source of CARS noise is the quality of the : C .
* Nanosecond pulses will result in significant
broadband pulse : :
averaging over Stokes pulse noise

Time-Bandwidth Product  50-60 ps = 0.5-2 Raman lifetimes
At[ps] Aw[cm‘l} > 14.67 * 10 ns = hundreds of Raman lifetimes

* Reduced CARS modeling uncertainties
* Pulse width, pulse delays, pulse shapes are
much less important

Collinear (narrow acceptance bandwidth)  Noncollinear (wide bandwidth)

pump signal »

-0.02 JLIEL idler “me
-100 -50 0
Time (ps)
* 150-fs “coherence time”
* ~450X the Fourier transform limit NOPO matches signal and idler group velocities
 Solutions? to phase match across wide bandwidth!

 Femtosecond pulses - transform limited
* Nanosecond pulses - time averaging




17 | Pulse-burst nanosecond CARS demonstration
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Laser Absorption Spectroscopy (LAS) in the Sandia HST

Quantum Cascade
Laser (QCL)
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We have measured
temperatures up to
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Data like these
inform
thermochemistry
models for air
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" Outlook: There are significant new opportunities for laser diagnostics in
reacting gas-phase systems outside of combustion!

g Our team at Sandia is presently focused on:

« High-enthalpy hypersonics
« Detonations and fireballs

* High-speed wind-tunnel testing (cold flow)

0

10 mm
[ ]

These problems present challenging measurement regimes

* Very high temperatures, T = 4000-6000 K and beyond
» High pressures

* Unknown optical properties and spectroscopic data
(linewidths!)

» Short test times--imaging and pulse-burst at a premium!

Quantum Cascade
Laser (QCL) Fiber Coupling
i ’ = -

We are applying a wide range of laser sources and
techniques to these problems

* Absorption: QCL, broadband pulse-burst NOPO '

§ >\';" e Pulse-burst imaging: LII, PLIF
R 2 | * Pulse-burst ps-CARS with ns-CARS development

« Emission/pyrometry at high-speeds



