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Overview of EAB #4
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• Audacious technical goals accomplished (Day 1)
• Established a foundation that is being taken in many directions (Day 2)
• We aren’t near critical mass. What do we do next? (Board)



Where is microelectronics headed?

R&D costs rising 
exponentially
 Unclear path forward

Opportunity for non-scalable R&D pathfinding
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Historically, shrink transistor 
  more functionality and 
declining cost

> 32 nm  22 – 7  nm 

?
5-3 nm  < 2 nm 
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Atomic Precision Advanced Manufacturing (APAM)

Far-reaching Applications, Implications, and 
Realization of Digital Electronics at the Atomic 
Limit

Our mission: To assess the opportunities presented 
by APAM-enabled devices and processing for the 
digital microelectronics of the future APAM for quantum
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How does Atomic Precision Advanced Manufacturing (APAM) work?
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STM Tip

“Chemical contrast” at Si surface
• Unterminated Si: 1 reactive bond/ atom
• H-terminated Si: unreactive

Scanning tunneling microscope (STM) 
can image and pattern the surface
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Doping using phosphine surface chemistry

Si(100)

H H H H H

PH3

Si(100)
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Phosphorus ‘donates’ an electron to silicon.
Chemical error 
correction : need 
3 open sites for 
phosphineSource

DrainGate 2

Double 
quantum dot

‘Artificial molecule’

Ward, Elec. Dev. Fail. Anal. (2020)

Fundamental opportunities 1 & 2: Chemistry-based atomic-scale processing
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https://matdata.asminternational.org/EDFA/202002/II/?_ga=2.258283778.967934754.1589735683-1134730362.1588309634


What does APAM produce that’s special? 

VB

CB

Normal doping:
Dopant donates electron to silicon

Fundamental opportunity 3: Fundamentally 
change electronic structure of silicon
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Ultra-doping: 
dopant potentials overlap significantly 
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Technological benefit of atomic-scale control

Explore new transistor technology armed with atomic precision

Tunnel field effect transistor (TFET)
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Source DrainGate

ON

holes
electrons

Gate

Source Drain

Black: 
MOSFET

Blue: efficient 
TFET

Red: high 
current TFET

TFETs 10x energy 
efficiency in theory

TFETs have not realized 
their promise in practice



How to overcome limitations to TFETs
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DrainGateSource

APAM

source drain

APAM

What work needs to be done?
• Missing device components
• Lack of complementary doping type
• Absence of modeling tools to enable design

FD Goal: Before making an APAM transistor, need to establish underlying components

APAM TFET APAM 
(2018)

APAM-enabled vertical TFET:
• Atomically abrupt doping profile & 
energy efficiency

• Vertical geometry & current density



Technological benefit of using chemistry for processing
Chemistry-based processing is very flexible – don’t 
need a thermal activation (e.g. implant or epitaxy)
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Modern supply 
chains are global. 

Need to protect the 
USG’s information. 

Atomic scale – can 
be used to 
anticipate future 
opportunities

Unusual integration 
points during 
manufacturing – 
new possibilities

Seek to develop hardware trust and security features 



APAM – CMOS integration
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Goal: Direct integration
• Anticipate future opportunities
• Split fabrication – untrusted FEOL

Goal: Post-CMOS integration
• Zero trust – untrusted FEOL & BEOL
• Add features outside of typical flow

BEOLFEOL APAM

What work needs to be done?
• Determine insertion point 
• New APAM processes
• Robustness of APAM vs. CMOS

FD Goal: Before making APAM hardware trust & security elements, 
need to establish underlying integration flows

BEOLFEOL APAM



Technological benefit of atomic-scale manufacturing
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APAM dopant density exceeds solid solubility limit 
Big change to electronic structure makes for better CMOS contacts

As transistors shrink, channel resistance goes 
down, but contact resistance goes up

Metal

Source/
Drain

Metal

Source/
Drain

Contact resistance is determined by the size 
of the speed bump – depends on doping 

Application pull: contact resistance



APAM manufacturability
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What’s missing?
• 3D doping profiles
• donors & acceptors
• Parallel lithography
• 8” (or larger) wafers

FD Goal: To pursue many applications, need to 
expand principles underlying manufacturability1019 1020 1021
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Dopant Density (cm-3)

Goal

• Applied Materials state 
of the art : ~ 4e20 cm-3

• APAM can beat that.



Digital electronics at the atomic limit (DEAL)
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APAM transistor
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Gate

APAM

Gate

APAMAPAM

Gate

APAM

Keep existing device 
structures on chip intact

Surface gate Silicide contact Room-temp 
operation

APAM CMOS 
integration prep

Add device structures while 
preserving APAM

We have established relevant device components & workflows, 
and an APAM TFET is imminent

TFET

Requirements: 

Task-level 
components:

Semiclassical and quantum modeling used throughout 
for device designs, and to understand data



APAM-CMOS Integration
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We have succeeded in integrating APAM with CMOS

Semiclassical and circuit modeling used to design CMOS 
circuits, understand impact of APAM processing and devices

NMOSAPAM cell

Brown: metal wire
Blue: nothing

Red: APAM wire

Drive gate of NMOS transistor with APAM cell

VGS

VDS?
APAM cell

NMOS



APAM toolbox
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Wafer-scale 
lithography Application pull – CMOS contacts

Path forward for manufacturability
Able to expand APAM chemistry

Acceptor precursor discovered



Other major technical accomplishments
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RESIST

SILICON

metal oxide
B. Expansion of APAM-compatible chemistry

C. Optical response of APAM 

D. Hydrogen photolithography

A. Microfab integration platform



Sandia and partners are in a leading position

Thrust 3: CMOS Integration
• 1 patent
• 1 technical advance 
• 1 published paper
• 4 papers in preparation

Thrust 2: APAM Modeling
• 3 papers published
• 2 papers in preparation

Thrust 1: APAM-enabled Devices
• 1 technical advance
• 5 published papers
• 1 book chapter
• 4 papers in preparation

Thrust 4: APAM toolbox
• 1 patent (photolitho)
• 6 published paper
• 5 submitted papers
• 6 papers in preperation
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PartnershipsOutput

IEEE, Physical Review, Journal of Material 
Research, SPIE, J. Physical Chemistry, Langmuir NYU, Columbia, BNL, APL 



APAM

April 2021 
Workshop

Fabrication

Characterization Devices/ 
Applications

Atomic Layer 
Deposition (ALD) Atomic Layer 

Etching (ALE)

Building Teams
Concept  
Application

Atomic Scale Control

FAIR
DEAL

22



Staffing accomplishments 
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Modeling: Denis Mamaluy, Juan Granado, William Lepkowski, Andrew Baczewski, Quinn Campbell, Steve 
Young

Program Leadership
PI: Shashank Misra
PM: Robert Koudelka

Deputy PM: Paul Sharps
Dir. Champion: David White

APAM-enabled devices
Lead: Shashank Misra

Surface Science: Scott Schmucker, Evan Anderson, Jeff Ivie, Ezra Bussmann, Fabian Pena, Aaron 
Katzenmeyer, Esther Frederick, David Wheeler

Microfabrication: Andrew Leenheer, DeAnna Campbell, Mark Gunter, Phillip Gamache 

Measurement: Lisa Tracy, Tzu-Ming Lu, Albert Grine, Connor Halsey, Ping Lu, Aaron Katzenmeyer, Chris 
Allemang

Modeling
Lead: Suzey Gao

Integration
Lead: David Scrymgeour

APAM toolbox
Lead: George Wang

Support Team
Financial: Jennifer Woodrome 
Logistics: Jennifer Woodrome
Web: Jennifer Woodrome

IP: Marty Finston

Underlined = new hire, or promoted
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Where do we go from here?
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Thrust 4: manufacturability
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FAIR DEAL established a 
science and technology 
foundation. TRL 13

Next: Build applications on 
that foundation & expand 
the science of APAM based 
on what we learned.



New Science
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Name Super/semi qubits Room temperature SET COINFLIPS
Blue = day 2
Brown = day 1
Gray = skip

Description Gated superconducting devices Electrometer for sensing Probabilistic computing paradigm
Agency DOE/BES & ARO ARO DOE/ SC & SNL LDRD
Dollars $250 k / $800 k $800 k $500 k / $125 k
TRL 23 23 12 (codesign)
Science goal Superconductivity in APAM &    

understanding defects
Tunneling & temperature Understand defects in tunneling 

& random number generation
Builds on Thrusts 1 & 2 Thrusts 1 & 2 Thrusts 1 & 2

SC SC

Gate

APAM
1 - 100nm

SCAPAMSC Cross-Section

Overhead view



New Science
Name APAM + ALD/ALE 2D Materials Optoelectronics
Blue = day 2
Brown = day 1
Gray = skip

Description Atomic-scale ALD & ALE APAM on 2D materials Optically active silicon
Agency USG SNL LDRD SNL LDRD
Dollars Whitepaper in progress $125 k FY 22 idea
TRL 23 1 23
Science goal Expand chemistry & understand 

non-ideal environments
Rules for what materials you 
can do APAM on

Expand chemistry & 
understand band structure

Builds on Thrusts 2 – 4  Thrust 4 Thrusts 2 – 4 

RESIST

SILICON

metal oxide
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Applications
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Name BEETS Hardware Trust BJT Amplifiers
Blue = day 2
Brown = day 1
Gray = skip

Description Energy efficient transistor Reconfigurable circuit High gain*bandwidth amp
Agency DOE/AMO SNL LDRD DOE/ AMO (Zyvex Labs)
Dollars $500 k $500 k $125 k
TRL 34 23 23
Technology 
goal

Proof-of-concept demonstration Assessment Modeling-based projection

Builds on Thrusts 1 & 2  Thrusts 1 – 3 Thrust 2



Applications
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Name Fingerprint Contact Resistance Photolithography
Blue = day 2
Brown = day 1
Gray = skip

Description Supply-chain assurance marker APAM-infused CMOS contacts Atomic resist for EUV
Agency USG Applied Materials SNL LDRD / LBNL
Dollars Whitepaper in progress (small) Proposal in progress (very small) FY 22 idea
TRL 24 Hard to tell. Perhaps 34 24
Technology 
goal

Proof-of-concept demonstration Determine impact of world-record 
dopant density

Compare to leading 
resists in EUV tool

Builds on Thrusts 1 – 3  Thrusts 1 – 4  Thrust 4



Conclusion

 The perspective from January 12, 2018.
 Science & technology risk in an application-

driven world

 We have a path forward. 
 FAIR DEAL was ~ $5 M/yr
 $4 M in proposed/funded work for FY 22.

 The future remains uncertain.
 What are we missing?

30
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