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Abstract: A systematical benchmarking between the CLT code and the M3D-C1 code 

is presented, including the nonlinear tearing mode and resistive-kink mode. CLT is an 

explicit finite difference code, while M3D-C1 is an implicit finite element code. 

Although the implementations of CLT and M3D-C1 are totally different, we find that 

the simulation results of the resistive-kink mode and the m/n=2/1 tearing mode from 

M3D-C1 and CLT are quantitatively the same, including the linear and nonlinear 

growth rates, the mode structures, the nonlinear saturation levels, the Poincare plots, 

and the scaling laws. This confirms that the simulation results of the MHD 

instabilities are only determined by the equilibrium and boundary conditions, and are 

independent of the code implementations and the initial perturbations. This, in turn, 

implies that the nonlinear results of the two codes are correct and accurate.  
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I. Introduction 

 Tearing modes are common phenomena in tokamaks. The tearing modes are the 

primary cause of the degradation of tokamak performance[1] and even disruptions.[2] 

Sawteeth, which not only flatten the plasma temperature but also may trigger 

neo-classical tearing modes in nearby resonant surfaces,[3, 4] are believed to be 

related to the nonlinear evolution of the resistive-kink mode.[5, 6] It is worthwhile to 

investigate these instabilities to increase our understanding with the goal of achieving 

high-performance operation in future fusion reactors.[7, 8]   

The resistive tearing mode was first studied by Furth et al., who found that the 

linear growth rate scales as 3/5~ Sγ − , where S  is the Lundquist number. [9] The 

first analytical theory of the resistive-kink mode was that by by Coppi et al. [6], who 

found that the linear growth rate  scales as 1/3~ Sγ − . Not only linear studies but also 

nonlinear theoretical studies have been reported in the past decades.[10-12] It should 

be noted that significant simplification of the physical model and the geometry is 

applied in these theoretical analytical studies. To confirm that these assumptions are 

reasonable and to gain more insight into those instabilities, simulation studies have 

been widely conducted. [13, 14] Since the implementation of different codes are 

different,[15-19] and the nonlinear evolution from different simulation codes 

sometimes are significantly different, it is difficult to say which simulations are 

correct.      

One way to verify the simulation results is to quantitatively benchmark between 

different codes. This method can be effective, but it is still a challenge since the 

nonlinear simulation results can be sensitive to many details of the formulation, the 

equilibrium, the boundary conditions and the initial conditions. The M3D-C1 code is 

an implicit, three-dimensional high-order finite-element code for the solution of the 

time-dependent linear or nonlinear two-fluid magnetohydrodynamic (MHD) 

equations in cylindrical or toroidal geometry.[17] The CLT code is an explicit 

three-dimensional finite-difference nonlinear MHD code for toroidal geometry.[19] 

Although they are both used to investigate MHD instabilities in tokamaks, the 
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implementations in the two codes are totally different. Quantitative benchmarking the 

two codes on several problems could demonstrate that the simulation results of both 

codes are accurate. In the present paper, the benchmarking between CLT and M3D-C1, 

including the linear and nonlinear evolution of the tearing modes and the 

resistive-kink mode, is presented. 

 

II. Model descriptions, normalizations, and code implementations. 

Before the benchmarking between CLT and M3D-C1, we have to make sure that 

the physical model used in the two codes are the same. A brief introduction of the two 

codes is presented in this subsection. It should be noted that both of the codes could 

include two-fluid MHD effects. While, in the present paper, we only use the 

single-fluid model, a benchmarking with the two-fluid MHD model will be the 

subject of future work. 

The single-fluid MHD model used in CLT[19] and M3D-C1.[20] is as follows: 
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Here ρ , p, v, B, E, and J are the mass density, the plasma pressure, the velocity, 

magnetic field, the electric field, and the current density, respectively. 0p , 0ρ , and 0J  

are the equilibrium plasma pressure, density, and current density, respectively. 
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( 5 / 3)Γ =  is the ratio of specific heat of the plasma. Note that M3D-C1 actually 

time-advances the magnetic vector potential, A, and not B, but by taking the curl of 

the A equation, we obtain Eq. (1.4). 

All variables are normalized as follows: 0/ L →x x , 0/ ( )in Mρ ρ→ , 

2
00 0/ ( / )p B pµ → , / At t t→ , / Av →v v , 00/ B →B B , 00/ ( )Av B →E E ,and 

00 0/ ( / )B aµ →J J  where 0 1 mL = is the normal length, 00 1 TB = is the normal 

strength of the magnetic field, 20 -3
0 1 10 mn = ×  is the normal particle density, iM is 

the mass of the ion, 00 0 0/A iv B n Mµ=  is the Alfvén speed, and 0 /A At L v=  is the 

Alfvén time. The resistivity η  and the diffusion coefficient D, the perpendicular and 

parallel thermal conductivity κ⊥  and ||κ , the viscosity ν  are normalized as 

follows: 2
0 0/ ( / )AL tη µ η→ ,   2

0/ ( / )AD L t D→ , 2
0/ ( / )AL tκ κ⊥ ⊥→ , 

2
|| 0 ||/ ( / )AL tκ κ→ , and 2

0/ ( / )AL tν ν→ , respectively.  

 

 
Figure 1 The schematic diagram of the cut-cell method. The grids are divided into 6 

types, i. e. regular point : 4th order central finite difference (5 points, the boundary 

points are not required); 1st type irregular points: 4th order bias finite difference (5 
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points, the values at the boundary points are required); 2nd type irregular points: 4th 

order central finite difference (5 points, the values at the boundary points and the 1st 

type irregular points are required); dropped points (inside, 0.5Z Zd h< ): not calculated 

in the specified dropped direction (because it is too close to the boundary point), but 

will be updated by linear interpolation for the requirement in another direction; 

dropped points (outside): not calculated; boundary points: fixed boundary condition is 

used at present, it will be updated to free boundary condition in the future. 

 

 Although CLT and M3D-C1 use the same physical model and cylindrical 

coordinate ( , , )R Zϕ to solve the toroidal tokamak geometry problems, the 

implementations in the codes are different. Firstly, the two codes use different 

methods for spatial discretization. The CLT code uses the fourth-order finite 

difference method in the R ,ϕ , and Z directions, while the M3D-C1 code uses 

high-order triangular elements with continuous first derivatives (C1 continuity) in the 

R  and Z directions, and Hermite cubic finite elements in the ϕ  direction.[17]  In 

CLT, the grids are usually not located at the plasma boundary, which causes a 

significant problem for the code implementation. In the early version of CLT, we 

applied an interpolation method to solve the boundary problem.[21] However, this 

method reduces the parallel efficiency of the computation. Therefore, in the new 

version of the CLT code, we employ the cut-cell method [22] that is more efficient for 

parallelization. The schematic diagram of the cut-cell method can be seen from Figure 

1. Along with the cut-cell method, we have also applied the OpenACC heterogeneous 

parallel programming model into the code, which typically makes the code 100 times 

faster.[19]  The time advance methods in the two codes are also different. In CLT, 

the fourth-order accuracy Runge-Kutta explicit scheme is used for time advancing, 

while the θ -implicit method is used in M3D-C1. [17] 



 6 / 24 

 

 

Figure 2 The initial safety factor profile used in the m/n=2/1 tearing mode 

benchmarking. 

 

III. Benchmarking results. 

In this subsection, we describe the linear and nonlinear benchmarking between 

CLT and M3D-C1 for two major tokamak instabilities: the resistive tearing mode and 

the resistive-kink mode.  

A. The m/n=2/1 tearing mode 
 The initial safety factor profile for the m/n=2/1 tearing mode benchmarking is 
shown in Figure 2. The formula used for the q-profile is given as follows:  

 1/
0 (1 ( / ) )p p

n lq q qψ= × +  (1.7) 

Where nψ is the normalized poloidal flux, 0 1.75q = , 2.5eq = , 2.0p = ,

1/
0(( / ) 1)p p

l eq q q −= − , and nr ψ= . For simplification, the plasma beta and the 

aspect ratio are set to be ~ 0β  and / 10 /1R a =  ( 1a m= ). The initial equilibrium 

is calculated by the QSOLVER code.[23] The dominant MHD instability in the 
system is the m/n=2/1 tearing mode.  
 The non-uniform mesh used in M3D-C1 is shown in Figure 3. During the 

simulation, we pack the mesh around the q=2 resonant surface to accurately simulate 
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the current sheet of the m/n=2/1 tearing mode. A total of 4800 elements in the poloidal 

plane and 16 toroidal planes are used in the nonlinear simulations. The 2D-complex 

version of M3D-C1 is used for the linear simulation, and the 3D nonlinear version is 

used for the nonlinear simulation. In CLT, the uniform grid 256 16 256× × ( , , )R Zϕ  

is used both for the linear and nonlinear simulations.  

 

Figure 3 The non-uniform mesh used in the simulation of M3D-C1. We have packed 

the mesh around the q=2 resonant surface during the simulation. 

 

We start with linear benchmarking the two codes. The diffusion parameters used 

in the linear benchmarking are 81.0 10D −= × , -8=1.0 10ν × , 81.0 10κ −
⊥ = × , || 0κ = . 

For simplification, we chose a constant resistivity and scanned from 51.0 10η −= ×  to 

71.0 10η −= × . The linear growth rates of the m/n=2/1 tearing mode with different 

resistivities are shown in Table 1. The difference between the linear growth rates from 

the two codes is about 10% for each case. 
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𝜼𝜼 = 𝟏𝟏× 𝟏𝟏𝟏𝟏−𝟓𝟓 𝜼𝜼 = 𝟑𝟑× 𝟏𝟏𝟏𝟏−𝟔𝟔 𝜼𝜼 = 𝟏𝟏× 𝟏𝟏𝟏𝟏−𝟔𝟔 𝜼𝜼 = 𝟑𝟑× 𝟏𝟏𝟏𝟏−𝟕𝟕 𝜼𝜼 = 𝟏𝟏× 𝟏𝟏𝟏𝟏−𝟕𝟕 

M3D-C1 0.00178 0. 00116 0. 000675 0. 00033 0.000178 

CLT 0.00165 0. 001044 0. 0006038 0. 000293 0.000135 

Table 1 The linear growth rates of the m/n=2/1 tearing mode with different 

resistivities. The time-steps are 3~ 8.5 10 Adt t−× in CLT and 1.0 Adt t= in M3D-C1, 

respectively. The difference between the linear growth rates from the two codes is 

about 10% for each case. 

 

Figure 4 The scaling law of the linear growth rate on the resistivity for the tearing 

mode.  
 
 As shown in Figure 4, the scaling law for the linear growth rate with the 

resistivity is 0.601~γ η  in CLT and 0.58~γ η in M3D-C1, which are both close to the 

asymptotic theoretical prediction,[9, 24] i.e., 3/5~γ η . For comparison of the 

eigenfunctions from the two codes, we use the linear toroidal electric field to 

represent the mode structure. As shown in Figure 5a and 5b, the mode structures from 
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the two codes are very similar, and both are the typical mode structures of the 

m/n=2/1 tearing mode.  

 

 

Figure 5 The toroidal electric field at the linear stage of the simulations (a) CLT and 

(b) M3D-C1, which represents the mode structure of the m/n=2/1 tearing mode.  

 

The linear benchmarking of the m/n=2/1 tearing mode indicates that both codes 

work well for linear simulations of tearing modes. To ease computational 

requirements, we chose a constant resistivity 51.0 10η −= × during the nonlinear 

simulations. 

Because the equilibrium under consideration is large aspect ratio and zero β, the 

conditions for reduced MHD to be valid are well satisfied. We therefore used the 

2-variable reduced MHD option in M3D-C1 where only the toroidal component of the 

magnetic vector potential ψ and the velocity stream function U are advanced in time.   

The vector potential and velocity at thus represented as: 

A = ψ∇φ 

V=R2∇U×∇φ 

The nonlinear evolution of the kinetic energy for the m/n=2/1 tearing mode from 

the two codes is shown in Figure 6. The dominant mode in the system is the n=1 

mode, and its amplitude is much larger than other harmonics. In the nonlinear stage, 
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the tearing mode finally saturates. The saturation level of the n=1 mode for the tearing 

mode in CLT is about -61.5 10× , while it is -61.4 10×  in M3D-C1. The saturation 

levels for other harmonics from the two codes are also very close to each other.  

 

Figure 6 The nonlinear evolutions of the kinetic energy for the m/n=2/1 tearing mode 

from the two codes. The results from M3D-C1 are artificially shifted by 4200 At  for 

the purpose of the comparison. 

 

The nonlinear evolutions of the growth rate for the m/n=2/1 tearing mode from 

the two codes are shown in Figure 7. The linear growth rates are =0.00143γ  in CLT 

and =0.00141γ  in M3D-C1, respectively. The growth rate of the n=1 mode initially 

stays almost unchanged during the long linear phase, but slowly reduces in the 

nonlinear phase, and finally becomes zero when the mode saturates.   

In CLT, the initial perturbation only contains the n=1 component, and the n=1 

mode is the dominant mode. During the linear stage, the other harmonics are solely 

driven beat modes of the n=1 mode. The growth rates of the n=2 and n=0 modes are 

twice that of the n=1 mode, and the growth rate of the n=3 mode is three times that of 

the n=1 mode. In M3D-C1, the initial perturbation is random and contains all 
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components. As a result, modes with different n are present from time zero. They 

initially decay, but eventually the beat components of the n=2 and n=3 modes become 

dominant when the n=1 mode grows to sufficient amplitude. The n=0 mode still 

independently develops, but its amplitude is much smaller than other modes (Figure 

6), and is not important.  

 

Figure 7 The nonlinear evolutions of the growth rate for the m/n=2/1 tearing mode 

from the two codes. The results from M3D-C1 are artificially shifted by 4200 At for 

the purpose of the comparison. 

 

 As shown in Figure 8, the Poincare plots of the magnetic field at the saturation 

stage from the two codes are almost the same. The mode structures at the saturation 

stage are shown in Figure 9 (a) CLT and (b) M3D-C1, and are very similar.  

Although the implementations in CLT and M3D-C1 are different and the tearing 

mode starts from different initial perturbations, the linear and nonlinear behavior and 

the saturation levels of the tearing mode from the two codes agree well each other. It 

indicates that the development of the tearing mode is independent of the code 

implementation and only determined by the initial equilibrium and the plasma 

parameters. This confirms that CLT and M3D-C1 are both excellent codes for tearing 
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mode studies.  It also indicates that 2-variable reduced MHD provides an adequate 

description of this phenomena for these parameters. 

 
Figure 8 The Poincare plots of the magnetic field at the saturation stage from the two 

codes (a) CLT and (b) M3D-C1. 

 

 

Figure 9 The mode structures at the saturation stage from the two codes (a) CLT and 

(b) M3D-C1. 

 

 B. The m/n=1/1 resistive-kink mode 

The initial safety factor profile for the m/n=1/1 resistive-kink mode 

benchmarking is shown in Figure 10. The formula used in the QSOLVER code is 
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given as follows:  

 0 0 0[ ( ' )(1 )( 1) / ( )]n e e e s n n sq q q q q q qψ ψ ψ ψ ψ= + − + − + − − −  (1.8) 

Where 0 0 0( ' ) / ( ' ' 2 2 )s e e e eq q q q q q qψ = − + + − + , 0 0.7q = , 3.6eq = , 0' 2.0q = , and 

' 5.0eq = . For simplification, the plasma beta and the aspect ratio are set to be ~ 0β  

and / 10 /1R a =  ( 1a m= ). The initial equilibrium is calculated by the QSOLVER 

code.[23] The m/n=1/1 resistive-kink mode is the dominant mode in the system. 

 

Figure 10 The initial safety factor profile used in the m/n=1/1 resistive-kink mode 

benchmarking. 

 

 The non-uniform mesh used in M3D-C1 is shown in Figure 11. We packed the 

mesh around the q=1 resonant surface to accurately simulate the current sheet of the 

m/n=1/1 resistive-kink mode. A total of 3816 elements in the poloidal plane and 12 

toroidal planes were used in the nonlinear simulations. The 2D-complex version of 

M3D-C1 is used for the linear simulation, and the 3D nonlinear version is used for the 

nonlinear simulation. We again used the 2-variable reduced MHD model in M3D-C1 

for the nonlinear calculation.  In CLT, the uniform grid 256 12 256× × ( , , )R Zϕ  are 

used both for the linear and nonlinear simulations. 
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Figure 11 The non-uniform mesh used in the simulation of M3D-C1. We have dense 

the mesh around the q=1 resonant surface during the simulation. 
 

Before the nonlinear benchmarking, a systematical linear scan with the two codes 

is carried out. The diffusion parameters used in the linear simulations are 

81.0 10D −= × , -8=1.0 10ν × , 81.0 10κ −
⊥ = × , || 0κ = . For simplification, we chose a 

constant resistivity and scanned from 51.0 10η −= ×  to 83.0 10η −= × . The linear 

growth rates of the m/n=1/1 resistive-kink mode with different resistivities are shown 

in Table 2. The difference between the linear growth rates from the two codes is about 

5% for each case. 
 

𝜼𝜼 = 𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟓𝟓 𝜼𝜼 = 𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟔𝟔 𝜼𝜼 = 𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟔𝟔 𝜼𝜼 = 𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟕𝟕 𝜼𝜼 = 𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟕𝟕 𝜼𝜼 = 𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟖𝟖 

M3D-C1 0. 0115 0. 0087 0. 0064 0. 0044 0.0032 0. 0025 

CLT 0. 01105 0. 008368 0. 006168 0. 004276 0.003 0. 002071 

Table 2 The linear growth rates of the m/n=1/1 resistive-kink mode with different 



 15 / 24 

 

resistivities. The time-steps are 3~ 8.5 10 Adt t−× in CLT and 1.0 Adt t= in M3D-C1, 

respectively. The difference between the linear growth rates from the two codes is 

about 5% for each case. 

 

As shown in Figure 12, the scaling laws for the linear growth rate with the 

resistivity are 0.31~γ η  in CLT and 0.30~γ η in M3D-C1, respectively, which are 

both close to the asymptotic theoretical prediction,[6] i.e., 1/3~γ η . A qualitative 

comparison of the linear mode structures is shown in Figure 13. The mode structures 

in the two codes are both very similar to the typical mode structure of the m/n=1/1 

resistive-kink mode. 

 

Figure 12 The scaling law of the linear growth rate on the resistivity for the 

resistive-kink mode. 
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Figure 13 The toroidal electric field at the linear stage of the simulations (a) CLT and 

(b) M3D-C1, which represents the mode structure of the m/n=1/1 resistive-kink mode. 

To again ease computing requirements we chose a constant resistivity 

51.0 10η −= ×  in the nonlinear simulations. The dominant mode is the n=1 mode, and 

its amplitude is much larger than other harmonics. As shown in Figure 14, the 

nonlinear evolution of the kinetic energy for the m/n=1/1 resistive-kink mode from the 

two codes is almost the same. During the nonlinear stage, the kinetic energy increases, 

saturates, and then decreases. The maximum value of the kinetic energy of the n=1 

mode for the resistive-kink mode is -54.4 10× in CLT, while it is -54.2 10×  in 

M3D-C1. The behavior of the other harmonics in the two codes is also very similar.  
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Figure 14 The nonlinear evolutions of the kinetic energy for the m/n=1/1 

resistive-kink mode from the two codes. The results from M3D-C1 are artificially 

shifted by 270 At  for the purpose of the comparison. 

 

As shown in Figure 15, the linear growth rates of the n=1 mode are =0.0107γ  in 

CLT and =0.011γ  in M3D-C1. In both codes, the growth rates of the n=1 mode 

initially stays almost unchanged during the long linear phase, then slowly reduces in 

the early nonlinear phase, and then suddenly reduces to a negative value. It should be 

pointed out that the evolution of the growth rates are still qualitatively the same even 

after the crash.  
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Figure 15 The nonlinear evolutions of the growth rate for the m/n=1/1 resistive-kink 

mode from the two codes. The results from M3D-C1 are artificially shifted by 270 At  

for the purpose of the comparison. 

 

 The Poincare plots of the magnetic field during the nonlinear stage from the two 

codes are shown in Figure 16 (a) CLT and (b) M3D-C1. They are almost the same. 

The corresponding mode structures are shown in Figure 17 (a) CLT and (b) M3D-C1.   

 

Figure 16 The Poincare plots of the magnetic field at the nonlinear stage from the two 
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codes (a) CLT and (b) M3D-C1. 

 

Figure 17 The toroidal electric field at the nonlinear stage from the two codes (a) CLT 

and (b) M3D-C1. 

 

Thus while implementations in CLT and M3D-C1 are very different, the linear 

and nonlinear behaviors and the maximum kinetic energy of the resistive-kink mode 

from the two codes are almost the same. This gives confidence in the simulation 

results of the resistive-kink mode. It also indicates that 2-variable reduced MHD is an 

adequate model for this class of problems and these parameters. 

 

IV. Summary and discussion 

 In the present paper, we presented a systematic benchmarking between the CLT 

code and the M3D-C1 code for the linear and nonlinear tearing mode and 

resistive-kink mode. We find that very similar simulation results for the resistive-kink 

mode and the m/n=2/1 tearing mode are obtained from the two codes. We compared 

the linear and nonlinear growth rates, the mode structures, the nonlinear saturation 

levels, the Poincare plots, and the scaling laws.  

CLT is an explicit finite difference code, while M3D-C1 is an implicit finite 

element code. Although they are both used to investigate MHD instabilities in 

tokamaks, they are totally different in the code implementations. As presented in the 
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present paper, the simulation results from the two codes are quantitatively similar. It 

confirms that the simulation results of the MHD instabilities are only determined by 

the initial conditions of the system, and are independent of the code implementations 

and initial perturbations. This gives us confidence in the nonlinear results of the two 

codes for this class of problems.  

It should be noted that the simulation results from the two codes are not exactly 

the same. There are two possible reasons for the slight difference between the 

simulation results. The first reason is the different initial perturbations. In CLT, the 

initial perturbation only contains the n=1 component, while, in M3D-C1, random 

perturbations (including all the components) are applied. This is why the development 

of the harmonics is significantly different at the beginning of the simulations. 

However, there is very little qualitative influence of the initial conditions on the 

nonlinear evolution of the resistive-kink mode and the m/n=2/1 tearing mode. The 

second reason is that, due to the different implementations of the two codes, the initial 

profiles are slightly different.  M3D-C1 first reads the initial profiles from the 

QSOLVER code, solves the Grad-Shafranov equation, and then generates an 

equilibrium consistent with its finite element representation before the simulation. 

However, the CLT code does not resolve the Grad-Shafranov equation. CLT reads the 

equilibrium data from the QSOLVER code,[23] and interpolates the data into its mesh. 

This means that the initial equilibria used in the two codes are slightly different, 

which could be a reason why the nonlinear evolution is not exactly the same.     
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