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Abstract: A systematical benchmarking between the CLT code and the M3D-C1 code
is presented, including the nonlinear tearing mode and resistive-kink mode. CLT is an
explicit finite difference code, while M3D-C1 is an implicit finite element code.
Although the implementations of CLT and M3D-C1 are totally different, we find that
the simulation results of the resistive-kink mode and the m/n=2/1 tearing mode from
M3D-C1 and CLT are quantitatively the same, including the linear and nonlinear
growth rates, the mode structures, the nonlinear saturation levels, the Poincare plots,
and the scaling laws. This confirms that the simulation results of the MHD
instabilities are only determined by the equilibrium and boundary conditions, and are
independent of the code implementations and the initial perturbations. This, in turn,

implies that the nonlinear results of the two codes are correct and accurate.

3 Corresponding Author: zwma@zju.edu.cn
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I. Introduction

Tearing modes are common phenomena in tokamaks. The tearing modes are the
primary cause of the degradation of tokamak performance[1] and even disruptions.|[2]
Sawteeth, which not only flatten the plasma temperature but also may trigger
neo-classical tearing modes in nearby resonant surfaces,[3, 4] are believed to be
related to the nonlinear evolution of the resistive-kink mode.[5, 6] It is worthwhile to
investigate these instabilities to increase our understanding with the goal of achieving
high-performance operation in future fusion reactors.[7, 8]

The resistive tearing mode was first studied by Furth et al., who found that the
linear growth rate scales as y ~S—”°, where S is the Lundquist number. [9] The
first analytical theory of the resistive-kink mode was that by by Coppi et al. [6], who
found that the linear growth rate scales as y ~ S~ . Not only linear studies but also

nonlinear theoretical studies have been reported in the past decades.[10-12] It should
be noted that significant simplification of the physical model and the geometry is
applied in these theoretical analytical studies. To confirm that these assumptions are
reasonable and to gain more insight into those instabilities, simulation studies have
been widely conducted. [13, 14] Since the implementation of different codes are
different,[15-19] and the nonlinear evolution from different simulation codes
sometimes are significantly different, it is difficult to say which simulations are
correct.

One way to verify the simulation results is to quantitatively benchmark between
different codes. This method can be effective, but it is still a challenge since the
nonlinear simulation results can be sensitive to many details of the formulation, the
equilibrium, the boundary conditions and the initial conditions. The M3D-C1 code is
an implicit, three-dimensional high-order finite-element code for the solution of the
time-dependent linear or nonlinear two-fluid magnetohydrodynamic (MHD)
equations in cylindrical or toroidal geometry.[17] The CLT code is an explicit
three-dimensional finite-difference nonlinear MHD code for toroidal geometry.[19]

Although they are both used to investigate MHD instabilities in tokamaks, the
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implementations in the two codes are totally different. Quantitative benchmarking the
two codes on several problems could demonstrate that the simulation results of both
codes are accurate. In the present paper, the benchmarking between CLT and M3D-Cl,
including the linear and nonlinear evolution of the tearing modes and the

resistive-kink mode, is presented.

II. Model descriptions, normalizations, and code implementations.

Before the benchmarking between CLT and M3D-C1, we have to make sure that
the physical model used in the two codes are the same. A brief introduction of the two
codes is presented in this subsection. It should be noted that both of the codes could
include two-fluid MHD eftfects. While, in the present paper, we only use the
single-fluid model, a benchmarking with the two-fluid MHD model will be the
subject of future work.

The single-fluid MHD model used in CLT[19] and M3D-C1.[20] is as follows:

0
a—f=—V-(pv)+V-[DV(p—po>] (1.1)
a A A
a—lz:—V-Vp—FpV-V+V-[KLVL(p—pO)]+V-[KbeDVp] (1.2)
o (1.3)
5:—V-Vv+(J><B—Vp)/p+V-[vV(v)]
B _v«E (1.4)
ot
E=-vxB+nJ-J,) (1.5)
1
J=—VxB. (1.6)
Hy

Here p, p, v, B, E, and J are the mass density, the plasma pressure, the velocity,
magnetic field, the electric field, and the current density, respectively. p,, p,, and J,
are the equilibrium plasma pressure, density, and current density, respectively.
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I'(=5/3) is the ratio of specific heat of the plasma. Note that M3D-C1 actually

time-advances the magnetic vector potential, A, and not B, but by taking the curl of

the A equation, we obtain Eq. (1.4).

All variables are normalized as follows: X/ L, > x, p/(n,M,)— p,
pl (Bl u)—>p.tlt,>t,v/iv,>v,B/B,—>B,E/(v,B,)—E,and
J/(By, ! pya) > J where L,=1mis the normal length, B, =1 T is the normal

strength of the magnetic field, n,=1x10"m"

is the normal particle density, M. is
the mass of the ion, v, = B, /[ #n,M, isthe Alfvén speed, and ¢, =L;/v, isthe
Alfvén time. The resistivity 7 and the diffusion coefficient D, the perpendicular and
parallel thermal conductivity &, and &, the viscosity v are normalized as

follows: n/(u,L,’/t)—>n, D/} /t)—>D, x /(L /t)—>xK,,

K /(LO2 /t,)— K,and v/ (L, /t,)— v, respectively.
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Figure 1 The schematic diagram of the cut-cell method. The grids are divided into 6
types, i. €. regular point : 4th order central finite difference (5 points, the boundary

points are not required); 1st type irregular points: 4th order bias finite difference (5
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points, the values at the boundary points are required); 2nd type irregular points: 4th

order central finite difference (5 points, the values at the boundary points and the 1st

type irregular points are required); dropped points (inside, d, <0.54,): not calculated

in the specified dropped direction (because it is too close to the boundary point), but
will be updated by linear interpolation for the requirement in another direction;
dropped points (outside): not calculated; boundary points: fixed boundary condition is

used at present, it will be updated to free boundary condition in the future.

Although CLT and M3D-C1 use the same physical model and cylindrical

coordinate (R,p,Z) to solve the toroidal tokamak geometry problems, the

implementations in the codes are different. Firstly, the two codes use different

methods for spatial discretization. The CLT code uses the fourth-order finite

difference method in the R,p, and Z directions, while the M3D-C1 code uses

high-order triangular elements with continuous first derivatives (C! continuity) in the

R and Z directions, and Hermite cubic finite elements in the ¢ direction.[17] In

CLT, the grids are usually not located at the plasma boundary, which causes a
significant problem for the code implementation. In the early version of CLT, we
applied an interpolation method to solve the boundary problem.[21] However, this
method reduces the parallel efficiency of the computation. Therefore, in the new
version of the CLT code, we employ the cut-cell method [22] that is more efficient for
parallelization. The schematic diagram of the cut-cell method can be seen from Figure
1. Along with the cut-cell method, we have also applied the OpenACC heterogeneous
parallel programming model into the code, which typically makes the code 100 times
faster.[19] The time advance methods in the two codes are also different. In CLT,
the fourth-order accuracy Runge-Kutta explicit scheme is used for time advancing,

while the & -implicit method is used in M3D-C1. [17]
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Figure 2 The initial safety factor profile used in the m/n=2/1 tearing mode

benchmarking.

II1. Benchmarking results.

In this subsection, we describe the linear and nonlinear benchmarking between
CLT and M3D-C1 for two major tokamak instabilities: the resistive tearing mode and
the resistive-kink mode.

A. The m/n=2/1 tearing mode

The initial safety factor profile for the m/n=2/1 tearing mode benchmarking is
shown in Figure 2. The formula used for the g-profile is given as follows:

q=q,x(1+(y,/q)")" (1.7)
Where y, is the normalized poloidal flux, ¢,=1.75, ¢,=2.5,p=2.0,

q,=((q,/q,)" =1)""",and r=.Jw, . For simplification, the plasma beta and the

aspect ratio are settobe f~0 and R/a=10/1 (a=1m). The initial equilibrium

is calculated by the QSOLVER code.[23] The dominant MHD instability in the
system is the m/n=2/1 tearing mode.

The non-uniform mesh used in M3D-CI1 is shown in Figure 3. During the

simulation, we pack the mesh around the g=2 resonant surface to accurately simulate
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the current sheet of the m/n=2/1 tearing mode. A total of 4800 elements in the poloidal
plane and 16 toroidal planes are used in the nonlinear simulations. The 2D-complex

version of M3D-C1 is used for the linear simulation, and the 3D nonlinear version is

used for the nonlinear simulation. In CLT, the uniform grid 256x16x256 (R, ¢, Z)

1s used both for the linear and nonlinear simulations.

9.0 3.5

R (1)
Figure 3 The non-uniform mesh used in the simulation of M3D-C1. We have packed

the mesh around the g=2 resonant surface during the simulation.

We start with linear benchmarking the two codes. The diffusion parameters used

in the linear benchmarking are D = 1.0x107%, v=1.0x10*, K = 1.0x107%, K = 0.
For simplification, we chose a constant resistivity and scanned from 7=1.0x10" to

n=1.0x10"". The linear growth rates of the m/n=2/1 tearing mode with different

resistivities are shown in Table 1. The difference between the linear growth rates from

the two codes is about 10% for each case.
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n=1x10-5 7=3%x10"°% | p=1%x10"% | »=3%x10"7 | p=1%x10""7

M3D-C1 0.00178 0. 00116 0. 000675 0. 00033 0.000178

CLT 0.00165 0. 001044 0. 0006038 0. 000293 0.000135
Table 1 The linear growth rates of the m/n=2/1 tearing mode with different

resistivities. The time-steps are df ~8.5x107¢,in CLT and df=1.0¢,in M3D-C1,

respectively. The difference between the linear growth rates from the two codes is

about 10% for each case.

107° v T —

=107 F

Figure 4 The scaling law of the linear growth rate on the resistivity for the tearing

mode.

As shown in Figure 4, the scaling law for the linear growth rate with the

resistivity is y ~n*®" in CLT and y ~75"**in M3D-C1, which are both close to the

asymptotic theoretical prediction,[9, 24] i.e., y~n"°. For comparison of the

eigenfunctions from the two codes, we use the linear toroidal electric field to

represent the mode structure. As shown in Figure 5a and 5b, the mode structures from
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the two codes are very similar, and both are the typical mode structures of the

m/n=2/1 tearing mode.

(a) CLT %107 (b) M3D-C1 x10-9
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Figure 5 The toroidal electric field at the linear stage of the simulations (a) CLT and

(b) M3D-C1, which represents the mode structure of the m/n=2/1 tearing mode.

The linear benchmarking of the m/n=2/1 tearing mode indicates that both codes

work well for linear simulations of tearing modes. To ease computational
requirements, we chose a constant resistivity 7=1.0x10"" during the nonlinear

simulations.

Because the equilibrium under consideration is large aspect ratio and zero f3, the
conditions for reduced MHD to be valid are well satisfied. We therefore used the
2-variable reduced MHD option in M3D-C1 where only the toroidal component of the
magnetic vector potential y and the velocity stream function U are advanced in time.
The vector potential and velocity at thus represented as:

A=yVo
V=R?>VUxV¢

The nonlinear evolution of the kinetic energy for the m/n=2/1 tearing mode from

the two codes is shown in Figure 6. The dominant mode in the system is the n=1

mode, and its amplitude is much larger than other harmonics. In the nonlinear stage,

9/ 24



the tearing mode finally saturates. The saturation level of the n=1 mode for the tearing
mode in CLT is about 1.5x10°, while it is 1.4x10° in M3D-C1. The saturation

levels for other harmonics from the two codes are also very close to each other.

the evolution of Kinetic energy
] ] I | ]

0.6 0.8 1 1.2 1.4 1.6 1.8 2
t/t A %10

Figure 6 The nonlinear evolutions of the kinetic energy for the m/n=2/1 tearing mode

from the two codes. The results from M3D-C1 are artificially shifted by 4200¢, for

the purpose of the comparison.

The nonlinear evolutions of the growth rate for the m/n=2/1 tearing mode from

the two codes are shown in Figure 7. The linear growth rates are y=0.00143 in CLT

and y=0.00141 in M3D-C1, respectively. The growth rate of the n=1 mode initially

stays almost unchanged during the long linear phase, but slowly reduces in the
nonlinear phase, and finally becomes zero when the mode saturates.

In CLT, the initial perturbation only contains the n=1 component, and the n=1
mode is the dominant mode. During the linear stage, the other harmonics are solely
driven beat modes of the n=1 mode. The growth rates of the n=2 and n=0 modes are
twice that of the n=1 mode, and the growth rate of the =3 mode is three times that of

the n=1 mode. In M3D-Cl1, the initial perturbation is random and contains all
10 / 24



components. As a result, modes with different » are present from time zero. They
initially decay, but eventually the beat components of the =2 and »=3 modes become
dominant when the n=1 mode grows to sufficient amplitude. The »=0 mode still
independently develops, but its amplitude is much smaller than other modes (Figure

6), and is not important.

5 X 1073 the evolution of the growth rate
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Figure 7 The nonlinear evolutions of the growth rate for the m/n=2/1 tearing mode

from the two codes. The results from M3D-C1 are artificially shifted by 4200¢, for

the purpose of the comparison.

As shown in Figure 8, the Poincare plots of the magnetic field at the saturation
stage from the two codes are almost the same. The mode structures at the saturation
stage are shown in Figure 9 (a) CLT and (b) M3D-C1, and are very similar.

Although the implementations in CLT and M3D-C1 are different and the tearing
mode starts from different initial perturbations, the linear and nonlinear behavior and
the saturation levels of the tearing mode from the two codes agree well each other. It
indicates that the development of the tearing mode is independent of the code
implementation and only determined by the initial equilibrium and the plasma

parameters. This confirms that CLT and M3D-C1 are both excellent codes for tearing
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mode studies. It also indicates that 2-variable reduced MHD provides an adequate

description of this phenomena for these parameters.

(a) CLT .. (yM3D-CI

Figure 8 The Poincare plots of the magnetic field at the saturation stage from the two

codes (a) CLT and (b) M3D-C1.
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Figure 9 The mode structures at the saturation stage from the two codes (a) CLT and

(b) M3D-C.

B. The m/n=1/1 resistive-kink mode
The initial safety factor profile for the m/m=1/1 resistive-kink mode

benchmarking is shown in Figure 10. The formula used in the QSOLVER code is
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given as follows:

q=4+¥,[4. =9+ (@'~ q. +q) A=y )y, =D/ (¥, —y,)] (1.8)
Wherey . =(q¢',—q,+94,)/(q',+q',—29,+2q,) . ¢,=0.7,9,=3.6,4q',=2.0, and
q',=5.0. For simplification, the plasma beta and the aspect ratio are set to be S ~0

and R/a=10/1 (a=1m). The initial equilibrium is calculated by the QSOLVER

code.[23] The m/n=1/1 resistive-kink mode is the dominant mode in the system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r/a

Figure 10 The initial safety factor profile used in the m/n=1/1 resistive-kink mode

benchmarking.

The non-uniform mesh used in M3D-C1 is shown in Figure 11. We packed the
mesh around the g=1 resonant surface to accurately simulate the current sheet of the
m/n=1/1 resistive-kink mode. A total of 3816 elements in the poloidal plane and 12
toroidal planes were used in the nonlinear simulations. The 2D-complex version of
M3D-CI1 is used for the linear simulation, and the 3D nonlinear version is used for the

nonlinear simulation. We again used the 2-variable reduced MHD model in M3D-Cl1

for the nonlinear calculation. In CLT, the uniform grid 256x12x256 (R,¢p,Z) are

used both for the linear and nonlinear simulations.
13/ 24



i {Lg)

Figure 11 The non-uniform mesh used in the simulation of M3D-C1. We have dense

the mesh around the g=1 resonant surface during the simulation.

Before the nonlinear benchmarking, a systematical linear scan with the two codes

is carried out. The diffusion parameters used in the linear simulations are

1.0x10%, K, =1.0x107%, K =0. For simplification, we chose a

D=1.0x10"%, v

The linear

3.0x107%.

constant resistivity and scanned from 7=1.0x10" to 7

1/1 resistive-kink mode with different resistivities are shown

growth rates of the m/n

in Table 2. The difference between the linear growth rates from the two codes is about

5% for each case.
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CLT
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Table 2 The linear growth rates of the m/n

14 / 24



resistivities. The time-steps are df ~8.5x107¢,in CLT and dt=1.0¢,in M3D-CI,

respectively. The difference between the linear growth rates from the two codes is

about 5% for each case.

As shown in Figure 12, the scaling laws for the linear growth rate with the

1

resistivity are y ~n*’' in CLT and y ~n°”'in M3D-C1, respectively, which are

both close to the asymptotic theoretical prediction,[6] i.e., y ~7"°. A qualitative

comparison of the linear mode structures is shown in Figure 13. The mode structures
in the two codes are both very similar to the typical mode structure of the m/n=1/1

resistive-kink mode.

10

Figure 12 The scaling law of the linear growth rate on the resistivity for the

resistive-kink mode.
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(a) CLT «10° (b) M3D-C1 %10-°

1 ' ' 1H2 L.04 0.020

15 0.015

05} 4 1 0.5 0.010

- 0.5 0.005

E 0 1| 10 S 001 0.000

N N

- -0.5 —0.005
-05F {1 —0.51 —0.010
-15 —0.015

—0.020
-1t 1 -2 —1.0 ).020

9 95 10 10.5 11 9.0 9.5 10.0 10.5 11.0
R/m R/m

Figure 13 The toroidal electric field at the linear stage of the simulations (a) CLT and
(b) M3D-C1, which represents the mode structure of the m/n=1/1 resistive-kink mode.

To again ease computing requirements we chose a constant resistivity
n=1.0x10" in the nonlinear simulations. The dominant mode is the n=1 mode, and

its amplitude is much larger than other harmonics. As shown in Figure 14, the
nonlinear evolution of the kinetic energy for the m/n=1/1 resistive-kink mode from the
two codes is almost the same. During the nonlinear stage, the kinetic energy increases,
saturates, and then decreases. The maximum value of the kinetic energy of the n=1
mode for the resistive-kink mode is 4.4x10” in CLT, while it is 4.2x10” in

M3D-C1. The behavior of the other harmonics in the two codes is also very similar.

16 / 24



4 the evolution of kinetilc energly

10° T T T T T T T T T
oL —CLT: n=0
10 —CLT: n=1
—CLT: n=2
3 — -M3D-C1: n=0
107 |- -M3D-C1: n=1
= -M3D-C1: n=2
m—‘t
107!°
10-12
107" ~
~
1 ﬁg L 1 L
600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

t/tA

Figure 14 The nonlinear evolutions of the kinetic energy for the m/n=1/1

resistive-kink mode from the two codes. The results from M3D-C1 are artificially

shifted by 2707, for the purpose of the comparison.

As shown in Figure 15, the linear growth rates of the n=1 mode are »=0.0107 in

CLT and »=0.011 in M3D-C1. In both codes, the growth rates of the n=1 mode

initially stays almost unchanged during the long linear phase, then slowly reduces in
the early nonlinear phase, and then suddenly reduces to a negative value. It should be
pointed out that the evolution of the growth rates are still qualitatively the same even

after the crash.
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the evolution of the growth rate
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Figure 15 The nonlinear evolutions of the growth rate for the m/n=1/1 resistive-kink

mode from the two codes. The results from M3D-C1 are artificially shifted by 270¢,

for the purpose of the comparison.

The Poincare plots of the magnetic field during the nonlinear stage from the two
codes are shown in Figure 16 (a) CLT and (b) M3D-CI1. They are almost the same.

The corresponding mode structures are shown in Figure 17 (a) CLT and (b) M3D-C1.

(b) -Cl

11

Figure 16 The Poincare plots of the magnetic field at the nonlinear stage from the two
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codes (a) CLT and (b) M3D-CI.
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Figure 17 The toroidal electric field at the nonlinear stage from the two codes (a) CLT

and (b) M3D-CI.

Thus while implementations in CLT and M3D-C1 are very different, the linear
and nonlinear behaviors and the maximum kinetic energy of the resistive-kink mode
from the two codes are almost the same. This gives confidence in the simulation
results of the resistive-kink mode. It also indicates that 2-variable reduced MHD is an

adequate model for this class of problems and these parameters.

IV. Summary and discussion

In the present paper, we presented a systematic benchmarking between the CLT
code and the M3D-Cl code for the linear and nonlinear tearing mode and
resistive-kink mode. We find that very similar simulation results for the resistive-kink
mode and the m/n=2/1 tearing mode are obtained from the two codes. We compared
the linear and nonlinear growth rates, the mode structures, the nonlinear saturation
levels, the Poincare plots, and the scaling laws.

CLT is an explicit finite difference code, while M3D-C1 is an implicit finite
element code. Although they are both used to investigate MHD instabilities in

tokamaks, they are totally different in the code implementations. As presented in the
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present paper, the simulation results from the two codes are quantitatively similar. It
confirms that the simulation results of the MHD instabilities are only determined by
the initial conditions of the system, and are independent of the code implementations
and initial perturbations. This gives us confidence in the nonlinear results of the two
codes for this class of problems.

It should be noted that the simulation results from the two codes are not exactly
the same. There are two possible reasons for the slight difference between the
simulation results. The first reason is the different initial perturbations. In CLT, the
initial perturbation only contains the n=1 component, while, in M3D-C1, random
perturbations (including all the components) are applied. This is why the development
of the harmonics is significantly different at the beginning of the simulations.
However, there is very little qualitative influence of the initial conditions on the
nonlinear evolution of the resistive-kink mode and the m/n=2/1 tearing mode. The
second reason is that, due to the different implementations of the two codes, the initial
profiles are slightly different. M3D-C1 first reads the initial profiles from the
QSOLVER code, solves the Grad-Shafranov equation, and then generates an
equilibrium consistent with its finite element representation before the simulation.
However, the CLT code does not resolve the Grad-Shafranov equation. CLT reads the
equilibrium data from the QSOLVER code,[23] and interpolates the data into its mesh.
This means that the initial equilibria used in the two codes are slightly different,

which could be a reason why the nonlinear evolution is not exactly the same.
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