
Case Studies in Experiment Design on a
minimega-based Network Emulation Testbed
Brian

Kocoloski
USC ISI

Alefiya
Hussain
USC ISI

Matthew
Troglia

Sandia National
Laboratories

Calvin Ardi
USC ISI

Steven Cheng
Sandia National
Laboratories

Dave
Deangelis

USC ISI

Christopher
Symonds

Sandia National
Laboratories

Michael
Collins
USC ISI

Ryan
Goodfellow

USC ISI

Stephen
Schwab
USC ISI

ABSTRACT
Testbeds are useful platforms for deploying realistic cyber-
security experiments in controlled environments. Our team
recently used minimega, a network emulation system us-
ing node and network virtualization, to support evaluation
of a set of networked and distributed systems for topology
discovery, traffic classification and engineering. This paper
presents our approach to enable rapid and rigorous evalua-
tions for these systems and captures our experience, lessons
learned and takeaways from the experimentation on our
minimega based network emulation testbed. We present the
methodology we adopted to encode network and traffic defi-
nitions into an experiment description model, and how our
tools compile this model onto the underlying minimega API.
We then present three cases studies which highlight our
solution’s ability to support network topological diversity,
diverse traffic mixes, and networks with specialized layer-2
connectivity requirements. We conclude with takeaways and
lessons learned during our evaluation process.

ACM Reference Format:
Brian Kocoloski, Alefiya Hussain, Matthew Troglia, Calvin Ardi,
Steven Cheng, Dave Deangelis, Christopher Symonds, Michael
Collins, Ryan Goodfellow, and Stephen Schwab. 2021. Case Studies
in Experiment Design on a minimega-based Network Emulation
Testbed. In Proceedings of ACM Conference (Conference’17). ACM,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Network emulation testbeds [7, 15, 26, 32, 34] have been
widely used for the last two decades to evaluate systems
as they allow users to deploy experiments in realistic and
controlled environments. Testbeds allow users to deploy
networks and nodes capable of running real unmodified
software, including operating systems, routing/switching
libraries, VPN and firewall programs, etc., as well as end-host
traffic from real applications. The ability to run unmodified
code provides fidelity and allows researchers to generalize
systematic results to the real world.
In recent years, node and network virtualization tech-

niques have further improved the utility of testbed based
systems, as they allow users to deploy arbitrary layer-2 net-
work topologies and run experiments at large scales that
are not as constrained by the availability of physical nodes
and networks. The minimega [21] system from Sandia Na-
tional Laboratories exemplifies the use of virtualization tech-
niques, allowing it to emulate large and complex networks on
physical systems ranging from a single laptop to large-scale
clusters and supercomputers. Recent work has demonstrated
that while minimega’s use of virtualization does lead to some
variance in low level network behavior (e.g., packet jitter),
most core application and OS behaviors are generally similar
in virtual and physical environments [8].

We needed to evaluate novel network analysis and traffic
engineering research projects for the DARPA SearchLight
program [18]. Due to its flexibility and high fidelity, we se-
lected minimega deployed on the DETER testbed [34] to
support our evaluation. Though minimega proved to be a
very useful tool, we found the process of rapidly defining

1

SAND2021-8495CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA
Brian Kocoloski, Alefiya Hussain, Matthew Troglia, Calvin Ardi, Steven Cheng, Dave Deangelis, Christopher Symonds, Michael Collins, Ryan Goodfellow,

and Stephen Schwab

and automating experiments to be challenging on our min-
imega enabled testbed. Generally, we found that our chal-
lenges stemmed fromminimega’s approach to be both highly
configurable and able to emulate many different network
elements with high fidelity. In order to meet these goals,
minimega’s API is low level; it gives users control to emu-
late specific processor models/ISAs, network interface cards
(NICs), and many other device and architectural features that
could be needed to achieve various timing and behavioral
characteristics. For example, some DPDK [24] applications
may desire virtio [28] or vfio [33] rather than minimega’s
default e1000 NICs, or advanced device features such as mul-
tiqueue RX/TX ports. minimega also gives users extensive
control over the experiment runtime environment with its
command-and-control interface, miniccc [19], which uses
per-VM virtio serial ports to allow users to copy files, man-
age process lifecycles, and generally issue any commands
that a typical shell supports. The low level of control makes
minimega usable for a wide variety of experimental needs,
but for repeatedly defining and automating complex tasks,
we found it challenging to use these interfaces directly.

This paper presents our work in developing an experiment
description model (EDM) that provides convenient abstrac-
tions with which to rapidly define and automate experiments
on minimega. The model consists of a network abstraction
and a traffic abstraction. The network abstraction is largely
inspired by existing work in the network emulation commu-
nity, such as the tcl based definition in ns-2 [14] that allows
intuitive ways to define topology, while the traffic abstrac-
tion uses a structural format to generate complex mixes of
real-world application traffic through a single JSON file. We
discuss how these abstractions are encoded by users and
how we compile them to the minimega API.

Finally, we showcase the utility of our EDMs by focusing
on three case studies in the context of the DARPA Searchlight
program [18]. In the first case study, we configure a wide
range of topologies to enable evaluation of a distributed net-
work discovery system (Section 4.1). In the second case study,
we configure a large number of diverse mixes of application
traffic types to enable expansive combinatorial evaluation
of a real-time traffic characterization system (Section 4.2).
Lastly, in the third case study, we configure a system with
complex layer-2 connectivity requirements to enable evalua-
tion of a distributed flowmanagement and traffic engineering
system (Section 4.3). In total, we conducted nearly 800 exper-
iment runs to evaluate these three systems during a period
of about three weeks.
This paper attempts to capture the lessons learned and

key takeaways from our experience of defining and running
these experiments on our minimega based network emula-
tion testbed. The minimega framework, albeit with initial
challenges, enabled scaling the experiments even when we

were restricted by the available physical nodes in the testbed,
and provided a set of traffic generators that we augmented
with additional tools, as discussed in this paper. We hope
that capturing our experience in this paper will make it eas-
ier for other experimenters to perform similar experimental
evaluations.

2 RELATEDWORK
Network Emulation and Simulation. Network emulation

testbeds have been fundamental enablers of network and
cybersecurity research over the past several decades. Ini-
tially created in the earlier 2000s, the Emulab software [32]
provides network emulation services on variety of differ-
ent compute and network devices, and has supported net-
work emulation on a large number of platforms including
DeterLAB [34], CloudLab [26], and many others. Part of Em-
ulab’s success is based on its flexibility and familiarity to
networking and cybersecurity researchers. For example, Em-
ulab users encode network topologies, traffic generators, and
other network elements using a tcl based language derived
from the well known ns-2 discrete event simulator [14], mak-
ing it relatively easy to operate Emulab systems for users
familiar with simulators. While such simulators, including
ns-2, ns-3 [6] and OMNET++ [30] are useful for understand-
ing fundamental network properties, they lack the ability
to execute real software, and thus emulation based testbeds
have emerged as a popular alternative to enable higher fi-
delity experimentation that is more generalizable to real
world systems.

Network Emulation with Virtualization. In order to further
improve scale and flexibility, some testbeds use hardware
virtualization to map multiple network elements (including
those that require root privileges, such as the Linux kernel
network stack), to the same physical nodes. This consolida-
tion of network elements leads to better system utilization,
and allows systems to support network topologies with or-
ders of magnitudemore virtual nodes than physical ones [22].
This consolidation can be a substantial boon to testbed users
as most experiments on emulation-based testbeds use fewer
than 3 nodes, a result primarily of resource limitations [12].
The minimega [21] project, on which our work is based, uses
Qemu/KVM [3, 16] to emulate nodes and Open vSwitch [23]
to emulate network links.

Various other testbeds, includingDistem [5], DETERLab [34],
Mininet [11], VINI [2], and EmuEdge [35] have used operating-
system virtualization techniques, usually called “contain-
ers,” to functionally isolate emulated network entities on
the same node. While these techniques have been shown to
reduce latency/jitter that hardware virtualization sometimes

2

Case Studies in Experiment Design on a minimega-based Network Emulation Testbed Conference’17, July 2017, Washington, DC, USA

CompilerJSON-based
traffic specification Minimega

cmd file

Link-based
network specification

Qemu &
network

configuration

Testbed
Deployment

Execution
Engine

Command &
control

operations

Traffic
binaries and

data

“web-browse” : {
 “server” : [
 “params” :
 { … }
]

Figure 1: Experiment definition and execution

induces [8], privileged code generally cannot run in contain-
ers, which precludes multiple network elements running cus-
tom networking stacks (e.g., the Linux kernel or DPDK [24])
from being mapped to the same physical machine. CPU ad-
vances have made hardware virtualization overhead small
for most operations [17], and in situations where even minor
packet jitter impacts an experiment, device passthrough tech-
niques [33] can give VMs direct access to network hardware
without sacrificing the functional isolation and privileged
environments that VMs provide.

Experiment Description Models and Orchestration. This pa-
per describes our experience using minimega on the DETER
testbed [4]. Specifically focusing on howwe handled the com-
plexity associated with building varied network and traffic
configurations with limited resources on the testbed. Simi-
lar efforts have been made to address experimentation chal-
lenges on other testbed systems; examples includeMAGI [13]
for the DETER testbed, OEDL [25] for OMF based testbeds,
and Rumba [31] for experiments in GENI and FIRE+ sys-
tems. In addition to defining experiment topologies and link
emulation criteria, these systems also often seek to enable
better experiment orchestration, for example by enabling
more graceful handling of errors and providing more control
over fine-grained timing and ordering of events. While our
experience lead us to focus initially on better support for net-
work and traffic configuration, a possible future extension of
our work is to target such an orchestration system in order
to provide greater control over runtime behavior.

3 EXPERIMENT DESCRIPTION MODEL
At the outset of the DARPA Searchlight project, our team
began the task of evaluating a set of network analysis and
traffic engineering projects on a minimega deployed on the

DETER testbed. In the early stage of developing basic exper-
iments, we used minimega’s mechanisms to manage images,
construct simple topologies, control address allocation and
routing behavior, and manage the experiment runtime envi-
ronment, which usually entailed deploying a small number of
traffic generators and verifying basic network functionality.
For these purposes, we found minemega to be intuitive and
mature, and we developed confidence that it could support
our experimental requirements. However, as our experimen-
tal needs became more complex, we felt a need to develop
new mechanisms to enhance and augment minimega. Specif-
ically, we desired new mechanisms to more rapidly define
network topologies and application deployment scripts, as
well as to emulate a certain class of layer-2 links for which
minimega’s default link emulation mechanism was insuffi-
cient.
This section discusses our experience with addressing

these challenges with a structured interface called the experi-
ment descriptionmodel (EDM). Figure 1 illustrates a high level
overview of how our system uses EDMs to define and run ex-
periments. The two boxes on the left hand side illustrate the
two fundamental pieces of an EDM: a network specification
and a traffic specification. A network specification describes
the topological properties and other network characteristics
of the experiment, while a traffic specification describes the
types of applications to deploy on a given network. As shown
in Figure 1, the experiment compiler translates a given EDM
into a set of command files that configure the testbed’s vir-
tualization and command-and-control systems. Sections 3.1
and 3.2 discuss the network and traffic models, respectively,
showing how users define them and how the experiment
compiler translates them to minimega configurations.

3.1 Network Specification Model
Our network specification model extend’s the minimega API
by (1) providing a convenient link-centric interface to control
the fundamental topological properties of an experiment, and
(2) adding a “VM-to-VM” link abstraction which addresses a
limitation in minimega’s default link emulation strategy.

Link-centric API. Our model extends the minimega API to
express topological characteristics through a link-centric API,
in a fashion similar to the ns-2 [14] tcl based format common
in emulation testbeds. Figure 2 shows an example of how a
relatively simple network topology would be programmed
in minimega and with our extensions. Figure 2b illustrates
the node-centric nature of the minimega API, as each VM
encodes a full list of network interface cards (vm config
net) attached to it. In cases where each link should be con-
sidered a point-to-point unicast link, each network name
(foo[0-9]) must be unique to properly emulate the de-
sired connectivity. We frequently found it difficult to encode

3

Conference’17, July 2017, Washington, DC, USA
Brian Kocoloski, Alefiya Hussain, Matthew Troglia, Calvin Ardi, Steven Cheng, Dave Deangelis, Christopher Symonds, Michael Collins, Ryan Goodfellow,

and Stephen Schwab

c0

h1

h0

h2

h3

c2

h4

h7

h5

h6

c1

(a) Example topology
for i in $(seq 0 7); do

vm config net foo$i
vm start h$i

done
vm config net foo0,foo1,foo2,foo3,foo8
vm start c0
vm config net foo4,foo5,foo6,foo7,foo9
vm start c2
vm config net foo8,foo9
vm start c1

(b) minimega API
for i in $(seq 0 3); do

connect_vms h$i c0
done
for i in $(seq 4 7); do

connect_vms h$i c2
done
connect_vms c0 c1
connect_vms c2 c1

(c) Extended link based API

Figure 2: Topology specification examples

lists of link names, particularly for complex topologies with
large numbers of links on some nodes (e.g., switches and hub
routers). Figure 2c shows how we extended the API with a
link abstraction that more naturally supports common link
definitions. In this way, we felt our API more naturally al-
lowed users to convey topological characteristics, which lead
to a less error prone configuration process.

Link types. In addition to standard unicast and multicast
links, our model supports a new unicast link type which
we call a direct VM-to-VM link. VM-to-VM links have the
property that traffic sent over them will not pass over any
intermediate layer-2 entities, such as switches or bridges,
a property that is needed for properly emulating topolo-
gies consisting of network elements that may perform their
own custom layer-2 forwarding mechanisms (e.g., guest con-
trolled switches). The following section shows how we im-
plement these links, and Section 4.3 demonstrates topologies
in which they are required for proper forwarding behavior.

Compilation. The network compilation process translates
a network specification to a set of commands to configure
minimega and the underlying physical testbed. Our system
maintains a list of links for every node in a topology, which
is encoded through calls to connect_vms in the topol-
ogy model. At compilation time, the compiler generates a
unique VLAN ID for each link and a virtual NIC for each
link endpoint, as required by the minimega API. Each virtual
NIC has an underlying TAP device configured as a VLAN
access port, tagged with the VLAN ID representing that link,
and is bridged to an Open vSwitch appliance on the host
that transmits packets between the link’s endpoints. In situ-
ations where the endpoint VMs of a link are mapped to sep-
arate physical nodes, we configure virtual tunnel endpoints
(VTEPs) with a VXLAN based overlay to transit minimega’s
traffic across nodes. This is the default minimega approach
to link emulation.

Experiments that involve custom layer-2 forwardingmech-
anisms require a different link emulation strategy. The de-
fault approach relies on a MAC address learning strategy to
forward packets between the bridge ports, which we found
lead to packet loss in at least two situations. The first chal-
lenge occurs when packets are forwarded asymmetrically
between a source and destination MAC address. For example,
if the path from source address X to destination Y passes
through the host switch, and the “reverse” path from Y to X
does not pass through the switch, then the switch will never
actually learn the route to the destination, instead having
to broadcast all packets destined to Y through each of its
ports, potentially wasting significant memory and network
bandwidth in the process. The second challenge arises due
to MAC address migration, where a given MAC address X is
both the source address and the destination address on sepa-
rate packets that arrive on a given port of the switch. Address
migration typically occurs when VMs are migrated to differ-
ent hosts, but in one of our use case studies in Section 4.3,
a virtualized guest switch is able to generate this behavior
through its own custom layer-2 forwarding mechanisms.

We designed direct VM-to-VM links to solve these issues.
For these links, we program the switch forwarding databases
(FDB) apriori with the specific TAP/VTEP device IDs associ-
ated with the link endpoints, thereby allowing packets to be
forwarded directly between the two NICs without relying
on MAC address learning.

3.2 Traffic Specification Model
The second component of the EDM is a traffic specification,
which allows users to define a set of applications to run on
the network, where applications range from simple file trans-
fers to more complex flows representing common real world
applications such as video streaming and web browsing. Our

4

Case Studies in Experiment Design on a minimega-based Network Emulation Testbed Conference’17, July 2017, Washington, DC, USA

{
"video-streaming" : {
"h0" : [{

"target" : "h4",
"params" : {

"client" : {
"resolution" : "720",
"protocol" : "hls"

},
"server" : {}

}}]}
}

Figure 3: Example traffic model for Video Streaming

Table 1: Application types in the traffic specification

Supported Application Description

File Transfer File retrieval via FTP(S), HTTP(S), or SCP
IRC Simple chat messages posted to a common dis-

cussion board
Email Generated email (SMTP) traffic betweenmany

hosts
Web Browsing Randomly generated or specified web pages

for website navigation via HTTP(S)
Multi-Client Text Editing Text editing interaction over SSH
Video Streaming “One-way” video traffic from a server end-

point to a client endpoint

model is designed to make it easy to define applications by
providing a well-defined structural interface that abstracts
away details associated with configuring binaries andmanag-
ing process lifecycles. Furthermore, we sought to allow users
to rapidly iterate over diverse sets of applications and to
scale to large topologies, without a commensurate increase
in the complexity of deploying traffic.

An example of a traffic specification is shown in Figure 3.
The user defines a JSON file consisting of a set of applica-
tions, where each application has a set of end-hosts on which
it will be deployed. This example shows a single “video-
streaming” application with a single client host “h0” and a
single server host “h4”. The client/server names are human-
readable strings that map directly to node names in the net-
work specification. While this example only shows a single
client and server, the specification allows the user to encode
multiple clients, and each client can target one or multi-
ple servers. Furthermore, the JSON file can encode as many
applications as the user desires. The example also shows
that parameters (“params”) can be encoded in the specifica-
tion. Parameters are specific to each application type and
are passed through to the traffic type’s corresponding binary
program when it is deployed on the client/server end-hosts.

The compilation process has default settings of these param-
eters for each application type, but parameters give users
the opportunity to customize traffic behaviors.
A subset of the applications supported by our system is

shown in Table 1. Several of the applications are implemented
via protonuke [20], a traffic generator developed as part of
the minimega project. This includes the various file transfer
variants (FTP(S), SCP, HTTP(S)), email, web browsing and
IRC applications. To support two additional real world appli-
cation types, we developed a multi-client text-editing over
SSH application and a video streaming application.

Text editing over SSH. The text editing over SSH applica-
tion emulates a typical SSH session running a text editing
workload. To develop the session, we used minimega’s VNC
record and replay functionality to record a sample text edit-
ing session. The VNC recording can then be played back us-
ing six different typing variations to model different speeds
and levels of burstiness.

For each SSH application encoded in the traffic model, we
first script a command to create an SSH connection between
the specified client and server. The VNC session is then
replayed on the client from the pre-built recording, using
parameters to select speed and burst levels.

Video streaming. The video streaming application serves
one-way traffic from the server to the client. The client uses
the Google chrome web browser to connect to the server,
which hosts a set of video files and supporting website code
(HTML, JavaScript). The server runs a Caddy web server [9]
with a configuration to serve a static website. The server
is currently configured to serve the open source “Big Buck
Bunny” video content [27].

To provide a diverse set of video traffic, the server supports
multiple video streaming protocols, including dynamic adap-
tive streaming over HTTP (DASH) [29], HTTP live streaming
(HLS) [10], and native HTML5 streaming [1], as well as multi-
ple video resolutions, including 576p, 720p, and 1080p, which
can be selected by clients in the traffic specification.

Compilation. The compilation process translates an exper-
iment specification to a set of shell scripts, one for each end-
host (traffic generating node) in the network topology. Each
end-host thus runs a possibly unique set of programs and ar-
guments for those programs depending on the specification.
Compilation entails parsing the JSON file and maintaining,
for each unique host, two set of applications, one for which
it acts as a client and one as a server, as well as maintaining
the parameters passed to the application. Once the file has
been parsed, the compiler serializes the startup process for
each application by generating a shell script that starts and
backgrounds the binaries, as well as a separate script to stop
each binary. These scripts are then issued to the minimega

5

Conference’17, July 2017, Washington, DC, USA
Brian Kocoloski, Alefiya Hussain, Matthew Troglia, Calvin Ardi, Steven Cheng, Dave Deangelis, Christopher Symonds, Michael Collins, Ryan Goodfellow,

and Stephen Schwab

command-and-control system, miniccc [19] at runtime to
control the starting and stopping of traffic.

4 CASE STUDIES: DARPA SEARCHLIGHT
This section showcases our experience on evaluating three re-
search technologies developed as part of the DARPA Search-
light program [18]. The Searchlight program seeks novel
approaches to analysis and management of an enterprise’s
distributed applications overlaid on the Internet, with the
goal of enabling an enterprise to temporarily decrease the
quality of service (QoS) for low-priority application traffic
internal to that organization, resulting in sufficient QoS for
the organization’s high-priority traffic.
The technologies address different components of the

Searchlight program goals. Section 4.1 discusses APROPOS,
a system for distributed topology discovery; Section 4.2 dis-
cusses Fresnel, a system for real-time traffic classification;
and Section 4.3 discusses DQM, a traffic engineering sys-
tem to manage quality-of-service among competing network
flows. These following sections specifically capture our ex-
perience on the complexities involved in evaluating these
technologies, and collectively showcase the technologies re-
quired to (1) support a wide range of topologies to evaluate
APROPOS, (2) to generate a large variety of network applica-
tion traffic to evaluate Fresnel, and (3) to support networks
with complex layer-2 topological requirements to evaluate
DQM.

4.1 Distributed Topology Discovery
APROPOS is a system that attempts to identify network state
in real-time. APROPOS uses distributed sensing mechanisms
to discover network entities (applications and flows), topo-
logical characteristics (location of routers, switches, paths,
etc.), and performance characteristics (latency/bandwidth).

Our evaluation of APROPOS focused on its ability to infer
topological characteristics on a variety of network topolo-
gies. We constructed a set of twelve topologies with sufficient
diversity to evaluate APROPOS’ different node and path in-
ference mechanisms. Figure 4 shows the four of those twelve
that were specifically developed for the task of evaluating
the inter-node path sensing mechanism, which infers char-
acteristics of the path(s) between any two APROPOS nodes.
Each Figure 4 topology shows three types of nodes: router
nodes running APROPOS software (named a* and shown
in blue); generic router nodes (named b*, c*, and r*); and
end-hosts at the edges of the network (named h*). The four
topologies in Figure 4 represents tests different functionality:
Figure 4a – core with two routers c[0,1]; Figure 4b – core
with unique central hub router c; Figure 4c – core c[0-4]
with symmetric and/or asymmetric routing; Figure 4d – core
c[0-3] with equal cost multipath (ECMP) routing.

In each experiment, APROPOS generated a DOT graph
showing the topological structure it inferred during the ex-
periment. By comparing these graphs with ground truth
information, we determined that APROPOS correctly mea-
sured paths for the double dumbbell and star topologies
(Figure 4a and 4b). We determined that APROPOS could cor-
rectly infer paths when all of the core routers c[0-4] in the
5-node loop topology (Figure 4c) were configured to route
packets in both directions (symmetric) as well as only in the
“clockwise” direction along the loop (asymmetric), but was
not yet capable of detecting multi-path ECMP routes in the
4-node loop topology (Figure 4d).

We were able to rapidly conduct this evaluation because
these experiments differed only in their respective network
definition files. Furthermore, we evaluated several additional
inference mechanisms which entailed generating eight addi-
tional topologies and routing configurations using our net-
work specification model. We omit detailed discussions of
these due to space constraints.

4.2 Real-time Traffic Classification
The Fresnel system identifies traffic flows on the network
in real-time. While flow classification is a well addressed
problem, Fresnel’s goal is to be able to identify flows even in
VPN/tunnel encapsulated traffic and also estimate the path(s)
that flows are taking. The system has two main processes: a
packet handling process and an analysis process. The packet
handling process ingests packets captured on the network
using DPDK [24] and creates signatures for the flows it sees
based on first-order statistics. The analysis then preprocesses
signatures, calculates flow attributes moments, and then bins
the observed moments to create tensors subsequently used
by a clustering algorithm for flow classification.
Fresnel was evaluated on its ability to identify many dif-

ferent application flows and classes in the context of an 18
node dumbbell-like topology, similar to the topology in Fig-
ure 4a. There were three types of nodes in the topology:
traffic generating end-hosts h(0-7), border routers b(0-3), ad-
ditional hops in the network a(0-3), and core routers c(0-1).
Fresnel was deployed as a layer-2 “bump in the wire” on
intermediary layer-2 nodes that sat between each pair of a
and b nodes (not shown in Figure 4a). The system is fully
distributed, as the four Fresnel instances in the topology do
not communicate with each other.
We developed a range of scenarios to collectively stress

Fresnel in a variety of ways, including scaling up the number
of concurrent flows to be captured, tagged and clustered. Ta-
ble 2 lists types of application trafficwe used for the scenarios.
The first five scenarios evaluate the file transfer classifica-
tion capability of the system, covering a range of protocols
including FTP, FTPS, HTTP, HTTPS, and SCP. The next five

6

Case Studies in Experiment Design on a minimega-based Network Emulation Testbed Conference’17, July 2017, Washington, DC, USA

h0

b0 a0 c0 a1 b1

h2

h3h1

h4

b2 a2 c1 a3 b3

h6

h7h5

(a) Double dumbbell

h0

b0 a0 r0

h1

c

r1

a1

b1h2 h3

r2 a2 b2

h4

h5r3

a3

r3h6 h7

(b) Star

h0 b0 a0 c0

c1

a1

b1

h1

c2

a2

b2

h2

c3 a3 b3 h3

c4

a4

b4

c4

(c) 5-node loop

h0

b0

a0

c0

c1

a1

b1

h1

c2

a2

b2

h2

c3

h3

b3

a3

(d) 4-node loop

Figure 4: Subset of the topologies developed for the System A evaluation

Table 2: Applications used to evaluate Fresnel

Traffic Type Description

FTP 200MB file transfer using the FTP protocol
FTPS 200MB file transfer using the FTPS protocol
HTTP 1GB image transfer using the HTTP protocol
HTTPS 1GB image transfer using the HTTPS protocol
SCP 1GB image transfer using the SCP protocol
text edit slow emulated user typing at 60 characters/min
text edit medium emulated user typing at 200 characters/min
text edit fast emulated user typing at 400 characters/min

text edit bursty emulated user typing with page up and page down
every 100 characters and delay of 1-10 seconds

text edit continuous emulated user without any delays
video DASH streaming video over the DASH protocol
video HLS streaming video over the HLS protocol
video HTML5 streaming video via native HTML5
video hi-res steaming with a high resolution of 1080p
video medium-res steaming with a medium resolution of 720p
video low-res steaming with a low resolution of 576p

scenarios evaluate how effective Fresnel is in classifying text
editing over SSH and include a range of speeds and user be-
haviors, namely slow, medium, and fast speeds with bursty
or continuous behaviors. Finally, the last six scenarios evalu-
ate Fresnel’s classification of video streams over a range of
protocols including DASH [29], HLS [10], and HTML5 [1]
and resolutions of 1080p, 720p and 576p.
We combined these traffic types to create a total of 26

different combinations of applications to evaluate Fresnel’s
ability to simultaneously classify multiple distinct traffic
classes. In total, we conducted over 500 individual experi-
ment runs for the above 26 different combinations to develop
a complete capability and performance characterization. Our
traffic specification model was fundamental to enabling the
rapid construction of these scenarios, as it internalized the
process of managing process lifecycles, constructing and de-
ploying shell scripts for each end-host, and interfacing with
the miniccc [19] command-and-control system.

4.3 Distributed Traffic Engineering
DQM is a distributed traffic engineering system that manages
how network resources are allocated amongst potentially
competing flows in network. DQM interfaces between two
separate entities: (1) a high-level operator that specifies ap-
plication classes and desired QoS metrics for those classes,
and (2) a flow identification system, such as APROPOS or
Fresnel, that monitors a network and informs DQM about
the flows on it. As DQM monitors a network, if it discovers
that a Gold flow (highest priority) is not receiving its target
bandwidth rate, it determines if any lower priority Bronze
flows are competing with it, and if so, reduces the Bronze
flows’ bandwidth. It does this through a technique called ac-
tuation, which involves programming an OpenFlow switch
to redirect relevant flows through a DQM-controlled node
called an actuator which then drops a certain percentage of
packets to control the flows’ bitrates.
Figure 5 shows a topology that was used for one of our

DQM evaluation scenarios. In this example, a set of four
end-hosts h{0,1,2,3} send traffic across a network connected
by two border routers b{0,1} and one core router c0. Two
OpenFlow switches (Open vSwitch appliances in minimega
VMs) s[0,1] connect the border routers and core router, and
also have DQC actuator components d[0,1] connected via
two VM-to-VM links each. DQM programs the flow tables on
these switches based on information in the Operator Intent
so that, when flows that are Gold/Bronze flow through at
runtime and need to have their bitrates adjusted, they can be
redirected to d[0,1]. Due to the way in which DQM manages
these OpenFlow switches, behaviors such as MAC address
migration and asymmetric routing may occur, which neces-
sitated the development of VM-to-VM layer 2 link support
in minimega, as discussed in Section 3.1.

To evaluate DQM required generating topology and traffic
specifications via our EDM framework as well as an Operator

7

Conference’17, July 2017, Washington, DC, USA
Brian Kocoloski, Alefiya Hussain, Matthew Troglia, Calvin Ardi, Steven Cheng, Dave Deangelis, Christopher Symonds, Michael Collins, Ryan Goodfellow,

and Stephen Schwab

h0

b0

d0

c0 s1

d1

b1

h2

h3

s0

h1

End-host/Router

OpenFlow Switch

DQM Actuator

Figure 5: Example evaluation topology for DQM

Figure 6: Effects of DQM on competing traffic

Intent to associate each traffic type with an application class
and desired bandwidth allocation. An example experiment
is illustrated in Figure 6, in which a total of four flows (one
Gold, one Bronze, and two Silver) compete for 50 Mbps of
bandwidth (all flows have a source in h[0,1] and destination
in h[2,3]. The figure shows 10 second smooth moving aver-
age (SMA) of bandwidth utilized by Gold, Bronze, and Silver
(S1, S2) flows over the 10 minutes of experiment activity. The
figure shows two distinct periods of activity: the first five
minutes in which DQM’s QoS mechanisms are disabled, and
five subsequent minutes starting near the 14:28 mark during
which DQM is running. The graph shows that the Bronze
and Gold flows, each of which use TCP, initially compete for
about 32 Mbps of bandwidth (the remaining 18 Mbps is uti-
lized by the two fixed-rate Silver flows, which each consume
9 Mbps). After actuation, the Bronze flows have their aggre-
gate utilization dropped to a total of about 5 Mbps, while the
Gold flows achieve around 25 Mbps, which was the behavior
specified by the Operator Intent. This experiment illustrated
DQM’s successful operation, and showcased our model’s abil-
ity to support experiments with relatively complex layer-2
topological requirements in the form of VM-to-VM links.

5 TAKEAWAYS
Nuances in link emulation. Minimega’s link emulation

mechanism entails connecting virtual NICs to a host switch,
which uses MAC address learning to forward traffic between
the VMs. While this mechanism worked for the majority
of our use cases, we encountered situations in our system

C evaluation in which more advanced mechanisms were
needed, due to the presence of asymmetric routing and MAC
address migration. To address these issues, we developed
“VM-to-VM” links as discussed in Section 3.1.We suspect that
other users would need similar functionality in situations
where custom layer-2 forwarding mechanisms are occurring
in the VMs. More generally, we found that our link-based net-
work model enabled us to more easily and rapidly generate
topologies than the existing VM-based minimega API.

Traffic generation challenges. Creating representative traf-
fic typically requires supporting a wide range of protocols
and applications, as well as providing ground-truth and
tractability over the traffic generation capabilities. minimega’s
protonuke provided a good starting point for us, but we
needed to augment it in several ways in order to improve
traffic usability and realism on our testbed.

We initially struggled to use some protonuke applications
that serve content, due to the fact that they required the
ability to reach the Internet, which VMs did not have access
to by default in our testbed. To address this issue, we config-
ured protonuke to serve from pre-generated content directly.
This exemplifies how intended usage models that architects
envision may not always match the way in which users use
the system, and often occurs when adapting off-the-shelf
technologies to new environments.

We developed new applications in order to test more real-
istic real world traffic such as multi-client text editing and
video streaming. This improved our coverage of realistic
scenarios and helped improve confidence that the results
of our evaluations had some applicability to the real world.
Finally, in order to make our experimentation more rapid, we
developed a traffic model as part of our EDM that provided
a single interface through which to encode desired traffic
types, as discussed in Section 3.2. We continue to enhance
our traffic generation capabilities, and we believe that having
a standardized, centralized interface through which to select
and deploy applications will increase adoption.

Managing evaluation process. While the EDM allowed us
to more rapidly iterate through experimental scenarios when
evaluating the three research prototypes, minimega has sev-
eral other features that proved useful by themselves. One
of the most useful for us was image snapshots. By default,
minimega boots VMs on read-only snapshots of their image.
This makes it possible to both use the same image for a large
number of hosts that should run the same software (e.g.,
routers), and to prevent accidental image corruption when
large numbers of team members are running experiments. In
situations where the image needed to be modified, we gave
one team member the responsibility to boot the image in
read/write mode to make changes.

8

Case Studies in Experiment Design on a minimega-based Network Emulation Testbed Conference’17, July 2017, Washington, DC, USA

We made use of several additional minimega features, in-
cluding its DNS and DHCP servers, traffic shapers for setting
link performance constraints, and minirouter for configuring
routing protocols in an experiment. We found these features
to be able to capture most of our requirements, which obvi-
ated the need to make frequent changes to our images.

6 CONCLUSION
This paper captures our experience using minimega [21],
an off-the-shelf network emulation system, to support the
process of defining and running a large set of complex exper-
iments on the DETER testbed [34] for the DARPA Searrch-
Light program. We discussed our approach to enable rapid
and less error prone experiment design through an abstrac-
tion called the experiment description model. We then illus-
trated three case studies for network traffic and topology
analysis and traffic engineering prototypes. These case stud-
ies encompassed several hundred experiments with signifi-
cant topological and application complexity. We concluded
with takeaways describing our experience with minimega
more generally, a discussion we believe can generalize to
other minimega-based testbeds. We hope our experience
will help to enable evaluations of large scale and complex
systems using virtualization technologies in the future.
The models, tools and data developed for this paper can

be found online at https://mergetb.org/projects/searchlight.

ACKNOWLEDGMENTS
Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

This paper describes objective technical results and analy-
sis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.

REFERENCES
[1] Gary Anthes. HTML5 leads a web revolution. Communications of the

ACM, 55(7):16–17, 2012.
[2] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jen-

nifer Rexford. In VINI Veritas: Realistic and Controlled Network Ex-
perimentation. In Proceedings of the 2006 Conference on Applications,
Technologies, Architectures and Protocols for Computer Communications,
(SIGCOMM), 2006.

[3] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In
Proceedings of the Usenix Annual Technical Conference, (ATC), 2005.

[4] Terry Benzel. The science of cyber security experimentation: The
deter project. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC ’11, page 137–148, New York, NY,
USA, 2011. Association for Computing Machinery.

[5] Tomasz Buchert, Emmanuel Jeanvoine, and Lucas Hussbaum. Em-
ulation at Very Large Scale with Distem. In Proceedings of the 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, (CCGRID), 2014.

[6] Lelio Campanile, Marco Gribaudo, Mauro Iacono, Fiammetta Marulli,
and Michele Mastroianni. Computer network simulation with ns-3: A
systematic literature review. Electronics, 9(2), 2020.

[7] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Pe-
terson, Mike Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay
Testbed for Broad-Coverage Services. ACM SIGCOMM Computer Com-
munications Review, 33(3), 2003.

[8] Jonathan Crussell, Thomas M. Kroeger, Aaron Brown, and Cythnia
Phillips. Virtually the Same: Comparing Physical and Virtual Testbeds.
In Proceedings of the 2019 International Conference on Computing, Net-
working and Communications, (ICNC), pages 847–853, 2019.

[9] Caddy developers. Caddy - The Ultimate Server. https://caddyserver.
com, 2021. [Online: accessed 2020-06-30].

[10] Andrew Fecheyr-Lippens. A Review of HTTP Live Streaming. http://
files.andrewsblog.org/http_live_streaming.pdf, 2010. [Online: accessed
2021-02-17].

[11] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,
and Nick McKeown. Reproducible Network Experiments Using
Container-Based Emulation. In Proceedings of the 8th International
Conference on emerging Networking EXperiments and Technologies,
(CoNext), 2012.

[12] Fabien Hermenier and Robert Ricci. How to Build a Better Testbed:
Lessons from a Decade of Network Experiments on Emulab. In Thana-
sis Korakis, Michael Zink, and Maximilian Ott, editors, Testbeds and
Research Infrastructure: Development of Networks and Communities,
pages 287–304. Springer, 2012.

[13] Alefiya Hussain, Prateek Jaipuria, Geoff Lawler, Stephen Schwab, and
Terry Benzel. Toward Orchestration of Complex Networking Experi-
ments. In Proceedings of the 13th USENIX Workshop on Cyber Security
Experimentation and Test, (CSET ’20), 2020.

[14] Teerawat Issariyakul and Ekram Hossain. Introduction to network
simulator NS2. Springer, 2012.

[15] Kate Keahey, JoeMambretti, Paul Ruth, andDan Stanzione. Chameleon:
A Large-Scale, Deeply Reconfigurable Testbed for Computer Science
Research. In Proceedings of the 27th IEEE International Conference on
Network Protocols, (ICNP), 2019.

[16] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
kvm: the Linux Virtual Machine Monitor. In The 2007 Ottawa Linux
Symposium, (OLS), 2007.

[17] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My
VM Is Lighter (and Safer) than your Container. In Proceedings of the
26th ACM Symposium on Operating System Principles, (SOSP), 2017.

[18] Mr. John-Francis Mergen. Searchlight. https://www.darpa.mil/
program/searchlight, 2018. [Online: accessed 2020-06-30].

[19] minimega authors. Command and Control API. https://tip.minimega.
org/articles/tutorials/cc.article, 2016. [Online: accessed 2021-02-17].

[20] minimega authors. protonuke simple traffic generation. https://tip.
minimega.org/articles/protonuke.article, 2016. [Online: accessed 2021-
02-17].

[21] minimega authors. minimega: a distributed vm management tool.
https://tip.minimega.org/, 2019. [Online: accessed 2021-02-17].

[22] Ronald Minnich and Don Rudish. Ten Million and One Penguins,
or, Lessons Learned from booting millions of virtual machines on
HPC systems. In Proceedings of the 4th Workshop on System-level
Virtualization for High Performance Computing, (HPCVirt), 2010.

[23] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,

9

https://mergetb.org/projects/searchlight
https://caddyserver.com
https://caddyserver.com
http://files.andrewsblog.org/http_live_streaming.pdf
http://files.andrewsblog.org/http_live_streaming.pdf
https://www.darpa.mil/program/searchlight
https://www.darpa.mil/program/searchlight
https://tip.minimega.org/articles/tutorials/cc.article
https://tip.minimega.org/articles/tutorials/cc.article
https://tip.minimega.org/articles/protonuke.article
https://tip.minimega.org/articles/protonuke.article
https://tip.minimega.org/

Conference’17, July 2017, Washington, DC, USA
Brian Kocoloski, Alefiya Hussain, Matthew Troglia, Calvin Ardi, Steven Cheng, Dave Deangelis, Christopher Symonds, Michael Collins, Ryan Goodfellow,

and Stephen Schwab

Keith Amidon, and Martin Casado. The Design and Implementation
of Open vSwitch. In Proceedings of the 12th USENIX Symposium on
Networked Systems Design and Implementation, (NSDI), 2015.

[24] The Linux Foundation Projects. DPDK: Data Plane Development Kit.
https://dpdk.org, 2021. [Online: accessed 2021-05-05].

[25] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan
Seskar. OMF: A Control and Management Framework for Networking
Testbeds. SIGOPS Oper. Syst. Rev., 43(4):54–59, 2010.

[26] Robert Ricci and Eric Eide. Introducing CloudLab: Scientific Infras-
tructure for Advancing Cloud Architectures and Applications. ;login:
the magazine of USENIX, 39(6):36–38, 2014.

[27] Ton Roosendaal. Big Buck Bunny. In Proceedings of the ACMSIGGRAPH
ASIA 2008 Computer Animation Festival, (SIGGRAPH Asia ’08), page 62,
2008.

[28] Rusty Russell. Virtio: Towards a de-Facto Standard for Virtual I/O
Devices. SIGOPS Oper. Syst. Rev., 42(5):95–103, 2008.

[29] Thomas Stockhammer. Dynamic Adaptive Streaming over HTTP –:
Standards and Design Principles. In Proceedings of the Second Annual
ACM Conference on Multimedia Systems, (MMSys ’11), 2011.

[30] Andras Varga. A Practical Introduction to the OMNeT++ Simulation
Framework. In Antonio Virdis and Michael Kirsche, editors, Recent
Advances in Network Simulation: The OMNeT++ Environment and its

Ecosystem, volume 1, pages 3–51. Springer International Publishing,
2019.

[31] Sander Vrijders, Dimitri Staessens, Marco Capitani, and Vincenzo
Maffione. Rumba: a Python Framework for Automating Large-Scale
Recursive Internet Experiments on GENI and FIRE+. In Proceedings
of the Workshop on Computer and Networking Experimental Research
Using Testbeds, (CNERT ’18), 2018.

[32] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An Integrated Experimental Environment for Distributed Systems and
Networks. SIGOPS Oper. Syst. Rev., 36(SI):255–270, 2003.

[33] Alex Williamson. VFIO: A user’s perspective. In Proceedings of the
KVM Forum, 2012. [Online: accessed 2021-05-05].

[34] JohnWroclawski, Terry Benzel, Jim Blythe, Ted Faber, Alefiya Hussain,
Jelena Mirkovic, and Stephen Schwab. DETERLab and the DETER
Project. In Rick McGeer, Mark Berman, Chip Elliott, and Robert Ricci,
editors, The GENI Book, pages 35–62. Springer International Publishing,
2016.

[35] Yukun Zeng, Mengyuan Chao, and Radu Stoleru. EmuEdge: A Hybrid
Emulator for Reproducible and Realistic Edge Computing Environ-
ments. In Proceedings of the 2019 IEEE Conference on Fog Computing,
(ICFC), 2019.

10

https://dpdk.org

	Abstract
	1 Introduction
	2 Related Work
	3 Experiment Description Model
	3.1 Network Specification Model
	3.2 Traffic Specification Model

	4 Case Studies: DARPA Searchlight
	4.1 Distributed Topology Discovery
	4.2 Real-time Traffic Classification
	4.3 Distributed Traffic Engineering

	5 Takeaways
	6 Conclusion
	Acknowledgments
	References

