SAND2021-11248PE|

Sandia

.-—_:; -
(I i\ 1) Exceptional service in the national interest National
= Laboratories

Unclassified Unlimited Release

da ’ao? l‘glJ:Eﬂ:zﬂ
(1)

I I'(x)- ; fx,0)dx =M

Kokkos An Overview

Christian R. Trott, - Center for Computing Research
Sandia National Laboratories/NM

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

~ Cost of Porting Code =

10 LOC / hour ~ 20k LOC / year

= Optimistic estimate: 10% of an application is modified to adopt an on-node
Parallel Programming Model

= Typical Apps: 300k — 600k Lines

= 500k x 10% => Typical App Port 2.5 Man-Years
= lLarge Scientific Libraries

= E3SM: 1,000k Lines x 10% => 5 Man-Years

= Trilinos: 4,000k Lines x 10% => 20 Man-Years

—
S

Frameworks

4 s

4 Applications | Libraries

A

PR R

Molecular Dynamics

Electro Magnetics

Computational
Fluid Dynamics

Climate Simulation

HBRASC

\ Perlmutter.
p A

ORNL Frontier
AMD GPUs LANL/SNL Trinity ANL Aurora Riken Fugaku "'ﬁgf,ﬁ E";L‘;ger

Intel CPUs Intel GPUs ARM CPUs

~ What is Kokkos?)

Laboratories

= A C++ Programming Model for Performance Portability
" |mplemented as a template library on top of CUDA, OpenMP, HPX, ...
= Aims to be descriptive not prescriptive
= Aligns with developments in the C++ standard
= Expanding solution for common needs of modern science/engineering codes
= Math libraries based on Kokkos
= Tools which enable insight into Kokkos
= |tis Open Source
= Maintained and developed at https://github.com/kokkos
= |t has many users at wide range of institutions.

—
S

https://github.com/kokkos

-~ Kokkos EcoSystem
-

4 2 Science and Engineering Applications
Kokkos

Tools

Trilinos

Kokkos EcoSystem
Kokkos Kernels

/III
\.

Kokkos Core
f Kokkos Remote SpacesW ,L ‘l _ : '} . v
e A 2y
O
~
Kokkos Interop ~
J

-
(o) (88T | muscore Manycore | apu

4 Transitioning To Community Project h) i,

= Kokkos Core: 15 Developers (8 SNL) @ ﬁg?igi:al %OAK RIDGE

= More code contributions from non-SNL Laboratories National Laboratory

= >50% of commits from non-Sandians ,
= Sandia leads API design Argonne & :LosAlamos

NATIONAL LABORATORY NATIONAL LABORATORY
EST.1943

= Other labs lead backend implementations

22| BERKELEY LAB

= QOther subprojects largely by Sandia so far

Papers:

The Kokkos EcoSystem: Comprehensive Performance Portability For High Performance Computing
C.R. Trott et al., Computing in Science & Engineering, 2021

Kokkos 3: Programming Model Extensions for the Exascale Era

C.R. Trott et al., IEEE Transactions on Parallel and Distributed Systems, 2021

Kokkos: Enabling manycore performance portability through polymorphic memory access patterns

H.C. Edwards et al., Journal of Parallel and Distributed Computing, 2014

https://ieeexplore.ieee.org/abstract/document/9502936/
https://ieeexplore.ieee.org/abstract/document/9485033/
https://www.sciencedirect.com/science/article/pii/S0743731514001257

= Kokkos Uptake h) i,

ECP Critical Dependencies Kokkos Slack Users
MPI 60| |hypre 111 ¢ 660 registered users 400
LLVM 571 |DAV-SDK 11 * 90 Institutions
C++ 411 VTK-m 11 * Every continent 300
OpenMP 34| |[Trilinos 10 . (-Antarctica)200
LAPACK 24 ADIOS 8
CUDA 22| [SPACK 8
100
Fortran 211 |SCALAPACK | 8
HDF5 21 FFT 7 0
BLAS 21] |openACC 7 DOE 17 18 19 20 21
Kokkos 18| [MPI-IO 6 (not .
C 14| ProtcDF 5 SNL) * Total membership
* Weekl ti
ALPINE 12l Tau 6 eekly active members

” Kokkos Core Abstractions)
Parallel Execution

Vlemory Spaces (“Where Execution Spaces (“Where”)

- HBM, DDR, Non-Volatile, Scratch - CPU, GPU, Executor Mechanism
- Row/Column-Major, Tiled, Strided - parallel_for/reduce/scan, task-spawn

- Streaming, Atomic, Restrict - Range, Team, Task-Graph
#

~ Kokkos Core Capabilities)

Laboratories

oot e

Parallel Loops

Parallel Reduction

Tightly Nested
Loops

Non-Tightly Nested
Loops

Task Dag

Data Allocation
Data Transfer
Atomics

Exec Spaces

parallel_for(N, KOKKOS_LAMBDA (inti){...BODY... });

parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...
upd += ...

}, Sum<>(result));

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (inti, intj, int k) {...BODY...});

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (int]) { ... INNER BODY... });
... COMMON CODE 2 ...

b;

task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });
View<double**, Layout, MemSpace> a(“A”,N,M);

deep_copy(a,b);

atomic_add(&ali],5.0); View<double*, MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), HIP (experimental), OpenMPTarget (experimentag

_ More Kokkos Capabilities

MemoryPool

LayoutRight StaticWorkGraph

w kokkos_malloc cokkos free

m « LayoutStrided
UniqueToken ScratchSpace ProfilingHooks

= Example: Conjugent Gradient Solver)

= Simple Iterative Linear Solver
= For example used in MiniFE
= Uses only three math operations:
= Vector addition (AXPBY)
= Dot product (DOT)
= Sparse Matrix Vector multiply (SPMV)
= Data management with Kokkos Views:

View<double*,HostSpace,MemoryTraits<Unmanaged> > h_x(x_in, nrows);
View<double*> x("x",nrows);
deep_copy(x,h_x);

ﬁ
S

” CG Solve: The AXPBY)

= Simple data parallel loop: Kokkos::parallel for

= Easy to express in most programming models
= Bandwidth bound
= Serial Implementation:

void axpby(int n, double* z, double alpha, const double* x,
double beta, const double* y){
for(int i=0; i<n; i++)
z[i] = alpha*x[i] + beta*y[il;

String Label: Profiling/Debugging]
Execution Policy: do n iterations]
Loop Body]

Iteration handle: integer index J

[Parallel Pattern: for loop]
= —
= Kokkos Implementation:

Y Y

void axpby(int n, View<double*> z, double alpha, View<const doublq*> X,

View<const double*> y) {
arallel_for("AXpEY", n, KOKKOS_ (8N st ifit i) {)
i) = alpha*x(i) + beta*y(i);

N;

}

~ CG Solve: The Dot Product rh)

= Simple data parallel loop with reduction: Kokkos::parallel_reduce

= Non trivial in CUDA due to lack of built-in reduction support
= Bandwidth bound
= Serial Implementation:

double dot(int n, const double* x, const double* y) {
double sum = 0.0;

for(int i=0; i<n; i _ :

oerrr; L: XEEPy[;;+) { Parallel Pattern: loop with reduction]

return sum;
} [Iteration Index + Thread-Local Red. Varible J

—==

= Kokkos Implementation:

double dot(int n, View<const double*> x, View<const double*> y) {

double x_dot y = 0.0;) -

barallel_reduce("Dot"jn, KOKKOS_LAMBDA (const intli.double& sum) {)
sum += X[i]"y[i];

}, x_dot_y);

return x_dot_y;

#
S

= CG Solve: Sparse Matrix Vector Multiply @),

= Loop over rows
= Dot product of matrix row with a vector
= Example of Non-Tightly nested loops

= Random access on the vector (Texture fetch on GPUs)
{ Outer loop over matrix rows]

void SPMV(int nrows, canstint* A_row_offsets, const int* A_cols,
const double* AfWals. double* y, const double* x) {
for(int row=0; row<nrows; ++row) {
double sum = 0.0;

Int row_start=A_row_offsets[row]; { Inner dot product row x vector]

y[row] = sum;

” CG Solve: Sparse Matrix Vector Multiply

void SPMV(int nrows, View<const int*> A_row_offsets,
View<const int*> A_cols, View<const double*> A_vals,
View<double*> y
View{const double*, MemoryTraits< RandomAccess>> x) {]

/I Performance heuristic to figure out how many rows to give to a team
int rows_per_team = get_row_chunking(A_row_offsets);

arallel_for("SPMV:Hierarchy", TeamPolicy< Schedule< Static > >
((nrows+rows_per_team-1)/rows_per_team,AUTO,8),
KOKKOS_LAMBDA (const TeamPolicy<>:‘member_type& team) {

const int first_row = team.league_rank()*rows_per_team;
const int last_row = first_row+rows_per_team<nrows? first_row+rows_per_team : nrows;

pa{rallel_for(TeamThreadRange(team,ﬁrst_row,last_row),[&] (corw
COTSCINT FOW_Start=A_row_OTSets[row];
const int row_length=A_row_offsets[row+1]-row_start;

double y_row;

Sandia
National
laboratories
) [Enable Texture Fetch on x]
[Row x Vector dot product

—

parallel_reduce(ThreadVectorRange(team,row. length),[&] (const int i, double& sum) {
sum += A_vals(i+row_start)*x(A_cols(i+row_start));

} \

}, Y _row):
y(row) =y_row;
»

1; .
} [Distribute rows in workset over team-threads J [

Team Parallelism over Row Worksets

” CG Solve Performance) i

CG-Solve Effective Bandwidth
= CG-Solve as discussed above 1000

= Also try replacing SPMV with TPL

= Running 100x100x100 heat
conduction problem

800

600
= “MiniFE” Proxyapp setup

= Measure effective Bandwidth 400

GB/s

= Algorithmical memory ops per 200

time N
= Why is this beating vendor libs? 0 I I I

SkyLake A64FX Power9 V100 MI100

= |ts complicated, but a real effect
B Kokkos B CuSparse/RocSparse/MKL

= Tracking New Capabilities: Graphs)

Build static graphs of kernels

= Can use CUDAGraphs as
backend

= Allows repeated dispatch
Helps with Latency Limited codes
= Cuts down on launch latency

= Can leverage streams to overlap
work

= |nfers overlapping from
dependencies

Prototype release part of Kokkos 3.3

const auto graph = Kokkos::Experimental::create_graph(

[=](auto root) {
auto f1 = root.then_parallel_ for(

Kokkos: :RangePolicy<>(9, 1), KOKKOS LAMBDA(long) {..});
auto f2a = fl.then_parallel_ for(

Kokkos: :RangePolicy<>(®, 1), KOKKOS LAMBDA(long) {..});
auto f2b = fl.then_parallel_for(

Kokkos: :RangePolicy<>(9, 1), KOKKOS LAMBDA(long) {..});
when_all(f2a, f2b).then_parallel_reduce(

Kokkos: :RangePolicy<>(©®, 1), KOKKOS LAMBDA(long) {..}

result);

1)

while(result()>threshold {
graph.submit();
graph.get_execution_space().fence();

}

” Benchmark the Example) i,

Solid: Graphs
Dashed: Simple Dispatch

Can reuse graph:

- In solver iterations

- Between solves if matrix
structure unchanged

>100 reuses could be realistic

(@)
o

(&)
o

N
o

Throughput Improvement:
- 50K 78%
- 200k 49%
- 1M 15%

Time per kernel in us
N w
o o

N
o

o

1 4 16 64 128 256 512
Repetitions

Next: look at reducing

—@—50k-Graph =0=50k —@—200k-Graph . .
P P graph creation time

=[3=200k =& 1M-Graph -tx=1M

AMD Support Status S) i,

Frontier/El Capitan: HIP and OpenMP 5

* Primary development of HIP at ORNL
* Most Capabilities ready bR

O Fine grained tasking is missing AV T
* PR testing for Kokkos on AMD GPUs in place
* ArborX, Cabana, LAMMPS working with HIP

* Trilinos (4,000k lines HPC library) works. HACC ArborX Component Testing

B Construction [l Query+Cluster [PostProcess

Vector Add
® V100 @ Mo 2.0
é 800 15
9 enp w
£ £ 10
I w £
a F 05
s
% 0.0
D1{JOD 10000 100000 1000000 10000000 V100 Mlaﬂ
We are largely using our own machines (not ECP EAS), with the public software stack from Intel and AMD.
Kokkos 3.3 (Dec 2020):

- HIP is largely feature complete
Kokkos 3.4 (April2021):
- SYCL Support Largely Complete

Kokkos Core functionality porting to Frontier nearly complete

Aurora Support Status) Retoos

Laboratories

Programming Models: DPC++/SYCL + OpenMP 5

* Primary work for DPC++ at ANL and ORNL
* Shifted ORNL team members from HIP to DPC++ since
HIP is in much better shape

AUNOL e

* DPC++/SYCL was long blocked by compiler issues
* Worked with Intel to get those fixed
* Now primary capabilities are merged to develop branch

* PR testing DPC++/SYCL in place
* Intel DPC++/SYCL testing is done on NVIDIA GPUs ...
* Leverages clang capability to target different backend

We are largely using our own machines (not ECP EAS), with the public software stack from Intel and AMD.

Kokkos 3.3 (Dec 2020):

- OpenMPTarget and DPC++ have most primary capabilities working
Kokkos 3.4 (April 2021):

- DPC++/SYCL is largely feature complete

Initial Kokkos Core functionality porting to Aurora done.

~ Kokkos Support

Sandia
i) frs

https://kokkos.link/the-lectures

= The Kokkos Lectures

= 8 lectures covering most

aspects of Kokkos .
= 15 hours of recordings .
= >500slides

= >20 exercises
= Extensive Wiki
= API| Reference
" Programming Guide

= Slack as primary direct support

Module 1: Introduction

* Introduction, Basic Parallelism, Build System
Module 2: Views and Spaces

* Execution and Memory Spaces, Data Layout
Module 3: Data Structures and MDRangePolicy

* Tightly Nested Loops, Subviews, ScatterView,...
Module 4: Hierarchical Parallelism

* Nested Parallelism, Scratch Pads, Unique Token
Module 5: Advanced Optimizations

* Streams, Tasking and SIMD
Module 6: Language Interoperability

* Fortran, Python, MPIl and PGAS
Module 7: Tools

* Profiling, Tuning , Debugging, Static Analysis
Module 8: Kokkos Kernels

* Dense LA, Sparse LA, Solvers, Graph Kernels

https://kokkos.link/the-lectures

Fa

Kokkos Kernels rh) s

= BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction
= Scalar type agnostic, e.g. works for any types with math operators
= Layout and Memory Space aware

= Can call vendor libraries when available

= Views contain size and stride information => Interface is simpler

/I BLAS Il Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C; double alpha, beta; View<double**> A B,C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N','N',alpha,A,B,beta,C);

= Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
/I Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
/I Call BLAS using parallelism in this team (e.g. CUDA block)
gemv(team_handle,'N',alpha,A,x,beta,y)

;

#
S

~ Kokkos Tools) ek
= Profiling

= New tools are coming out

= Worked with NVIDIA to get naming info into their system
= Auto Tuning (Under Development)

= Internal variables such as CUDA block sizes etc.

= User provided variables

= Same as profiling: will use dlopen to load external tools
= Debugging (Under Development)

= Extensions to enable clang debugger to use Kokkos naming information
= Static Analysis (Under Development)

= Discover Kokkos anti patterns via clang-tidy

#
S

_Kokkos-Tools Profiling & Debugging

QL

Sandia
Laboratories

= Performance tuning requires insight, but tools are different on each platform

= KokkosTools: Provide common set of basic tools + hooks for 3rd party tools

= Common issue: abstraction layers obfuscate profiler output
= Kokkos hooks for passing names on

[Provide Kernel’ Allocation and Region % Basic Hotspots Hotspots by CPU Usage viewpoint (change)
@ Analysis Target Analysls Typs Collection Lo = SUMmmany 'ﬂEDIIDm-UP
= NO need to recomplle Grouping: | Frame Domain / Frame § Function / Call Stack

. CPU Tir

- . . _
Uses runtime hooks Frame Domatn /Frame fRunction £l 1o o .
. . Widie [Foor @ Ok [ideai [Over | IMbal3
= Set via env variable “ParallelFor AXPE arees [S o
k1 1.615s [T 0.17
k3 1593 [T .18
b2 1.560: [N 0.21
F[No frame domain - Outside any frame] 0.079s | 1.34
b ParalielReduce. Dot 1952 [N 0.53
b ParallelFor.Z4malnEUIRKIE z.1s8: I 0.17

#
S

- Kokkos Tools Integration with 3" Party (@),

= Profiling Hooks can be subscribed to by tools, and currently have support for TAU,
Caliper, Timemory, NVVP, Vtune, PAPI, and SystemTAP, with planned CrayPat support

= HPCToolkit also has special functionality for models like Kokkos, operating outside of
this callback system

TAU Example:

ENRIRRERRRARET IENIRERRNINNNNRNANERRNNANINNNNRNIENID CCOENNNNENNNNNNDERR
Mame = Exclusive TIME Inclusive TIME Calls Child Calls

= B.TAU application 0.143 96.743 1 B32

= BComm:exchange 0.001 0.967 & 142

= BComm:exchange_halo 0.001 4.702 [184

m 0.004 31.347 as 1,330
B Eokkos::parallel_for CommMPI::halo_update_pack [device=10] 0.002 0.506 190 190
B Kokkos:parallel_for CommMPI:halo_update_self [device=10] 0.003 0.597 380 380
B Kokkos:parallel_for CommMPI::halo_update_unpack [device=0] 0.002 0.97 1940 1940
WMPI_Irecvl} 0.001 0.001 190]
B MPI_Send(} 259.268 259.268 130 0
W MPI_Wait() 0.001 0.001 130 0
W OpenMP_implicit_Task 0.041 1.985 Tan Ta0
BOpenMP_Parallel_Region parallel_for<Kokkos:-RangePolicy <CommMP::Ta 0 0.504 190 190
BOpenMP_Parallel_Region parallel_for<Kokkos:-RangePolicy<CammMP:Ta 0.08 0.968 190 190
BOpenMP_Parallel_Region void Kokkad:parallel_for< Kokkos: RangePalicy-<i 0.001 0.504 380 380
W OpenMP_Syn¢_Region_Barrier parallel_for <Kokkeos:: RangePolicy < Commbf 0489 0.4E9 190]
W OpenMP_Sync_Region_Barrier parallel_for <Kokkeos: RangePolicy <Commbf 0.875 0.875 190]

B OpenMP_Sync_Region_Barrier void Kokkos: parallel_for<Kokkos: :RangePol 0.58 0.58 380]

ﬁ
S

Kokkos Tools Static Analysis .

Laboratories

= clang-tidy passes for Kokkos semantics

= Under active development, requests welcome
= |DE integration

Kokkos :: parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& t) {
int a = @;

Kokkos :: parallel_for(TTR(t, 1), [&1(int 1) { Lambda capture modifies reference capture variable 'a' that is a local
d +=

cvl() += 1;

t);

il

Kokkos :: parallel _for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& t) {
int b = 0;
auto lambda = [&](int i) { Lambda capture modifies reference capture variable 'b' that is a local
h +=

Kokkos :: parallel_for(TTR(t, 1), lambda);
i

"?' LAM MPS Questions: Stan Moore) Retoos

Laboratories

Widely used Molecular Dynamics Architecture Comparison

Simulations package Example in.reaxc.tatb /
= Focused on Material Physics 196k atoms / 100 steps
= QOver 500 physics modules 200
= Kokkos covers growing subset of those 0
= REAX s an important but very complex £100
potential - i . I
= USER-REAXC (Vanilla) more than 0 I I
10,000 LOC \\2\6$ O&@ q)/\.\ilz v{_@ Q,\QQ A,\QQ
= Kokkos version ~6,000 LOC & N © Y
ce:;\~ +® +?~ __é @ @
= LJin comparison: 200LOC R S

. . B\Vanila m
%

~ Sparta: Production Simulation at Scale

= Stochastic PArallel Rarefied-gas Time-
accurate Analyzer

= A direct simulation Monte Carlo code

= Developers: Steve Plimpton, Stan Moore,
Michael Gallis

= Only code to have run on all of Trinity

= 3 Trillion particle simulation using both
HSW and KNL partition in a single MPI
run (~20k nodes, ~1M cores)

= Benchmarked on 16k GPUs on Sierra
= Production runs now at 5k GPUs
= Co-Designed Kokkos::ScatterView

Sandia
| National
Laboratories
SPARTA Weak Scaling

500
— 450 g— il —
&400
5350
<300
(0]
8250
%200 A y — —
%150 00— —— —9
[0]
o

4 8 16 32 64 128 256

== Haswell =hr=KNL ==l=\/100

#

~ Uintah)

Laboratories

= System wide many task framework from Reverse Monte Carlo
University of Utah led by Martin Berzins Ray Tracing 643 cells

= Multiple applications for combustion/radiation 16

simulation w14

, 212

= Structured AMR Mesh calculations %10

= Prior code existed for CPUs and GPUs S s

= Kokkos unifies implementation :)i i
" |mproved performance due to constraints in E 5 I I

Kokkos which encourage better coding practices 0
CPU GPU KNL

. B Original ®Kokkos
Questions: Dan Sunderland

#
S

_ Kokkos - C++ Standard integration cycle

Port accepted features
to legacy versions

Kokkos Legaoy C++ Standard

Implemented legacy
capabilities in terms of
new C++ features

QL

Propose new features
for C++ Standard

Back port to current compilers
C++ Backport P P

_ C++ Features in the Works) B

= First success: atomic_ref<T> in C++20
= Provides atomics with all capabilities of atomics in Kokkos
= atomic_ref(a[i])+=5.0; instead of atomic_add(&aJi],5.0);
= Next thing: Kokkos::View => std::mdspan
= Provides customization points which allow all things we can do with
Kokkos::View
= Better design of internals though! => Easier to write custom layouts.

= Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks
= We hope will land early in the cycle for C++23 (i.e. early in 2020)
= Production reference implementation: https://github.com/kokkos/mdspan

= Also C++23: Executors and Basic Linear Algebra: https://github.com/kokkos/stdblas

ﬁ
S

https://github.com/kokkos/mdspan
https://github.com/kokkos/stdblas

Sandia
@ National
Laboratories

OpenMPTarget Status OpenMP Vector Add) Retoos
struct Foo { Laboratories

* Most capabilities are now working ntN;
* Until earlier in 2020 limited by compiler bugs oy
* Using primarily main line Clang/IIvm /I Need temporaries here for 4x performance gain
* Are also working with Intel and NVIDIA i;t “:)TiN:_ .
* Started Working with AMD and HPE #Slrjag?nai(zr;:,ta?/ge;tﬁ’arﬁz aigt’ribute parallel for \
* Next phase: concentrating on performance simd is_ r(xp.yp,zp) data map(to: N_)
* C++ performance very fragile for(int 1=0; 1SN i) {
* We are ramping up collaboration with compiler }zp['] = *Pl+ ypll:
engineers }
|3
Vector Add Performance lllustration glg\;(gl\?)/\e(rggé Z
* Simple problem, should clearly be bandwidth limited kokkos Vector
* Using clang/llvm 11, CUDA 10.1, NVIDIA V100 -Addoo 600
* Kokkos/CUDA (kk-c), Kokkos/OMPT (kk-0), Native View<double*> x,y,z; 400
H H H _ int N;
OMPT (omp), Native OMPT with temporaries (omp-t) e a,’fplb¥() (- 200 I I
DAXPBY Bandwidth GB/s ROKKOS LAMBOAL) { 0
- = 00,000 z(i) = x(i) + y(i); NN
ST }}); B kk-0 lomp -t
som }: 1 e B,

Y

0 200 400 600 800 Takeawaz: Performance is still very fragile!

A more comprehensive Frontend/Compiler comparison kS

* Comparing simple vector add and dot product
— Also implemented straight forward native implementation
— No hoops jumped through to optimize
— 1M length, not huge, but also not trivial, i.e. latency impact expected but not dominant?
* If purely bandwidth bound this would be 24us for axpby@1TB/s and 16us for dot
— clxx denotes clang/llvm version

Vector ADD N = 1M Dot Product N = 1M
W cio W cd11 W headidpc++ W ciio W ci1 B headidpo++

800 500

0 w

C: @

6 600 B 400

= c

§ £ 300
400 =

=

= ,% 200

m o

2 2 £ 100

o 8

5, 2

o

kk-cuda kk-omp omp amp-t kk-sycl sycl kk-cuda Kk-omp omp omp-t kk-sycl syl

