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Cost of Porting Code

 Optimistic estimate: 10% of an application is modified to adopt an on-node 
Parallel Programming Model

 Typical Apps: 300k – 600k Lines 
 500k x 10% => Typical App Port 2.5 Man-Years

 Large Scientific Libraries
 E3SM: 1,000k Lines x 10% => 5 Man-Years 
 Trilinos: 4,000k Lines x 10% => 20 Man-Years 

10 LOC / hour ~ 20k LOC / year
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What is Kokkos?
 A C++ Programming Model for Performance Portability

 Implemented as a template library on top of CUDA, OpenMP, HPX, …
 Aims to be descriptive not prescriptive
 Aligns with developments in the C++ standard

 Expanding solution for common needs of modern science/engineering codes 
 Math libraries based on Kokkos
 Tools which enable insight into Kokkos

 It is Open Source
 Maintained and developed at https://github.com/kokkos

 It has many users at wide range of institutions.
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Kokkos EcoSystem
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Transitioning To Community Project
 Kokkos Core: 15 Developers (8 SNL)
 More code contributions from non-SNL

 >50% of commits from non-Sandians
 Sandia leads API design
 Other labs lead backend implementations
 Other subprojects largely by Sandia so far

Papers: 
The Kokkos EcoSystem: Comprehensive Performance Portability For High Performance Computing
C.R. Trott et al., Computing in Science & Engineering, 2021
Kokkos 3: Programming Model Extensions for the Exascale Era
C.R. Trott et al., IEEE Transactions on Parallel and Distributed Systems, 2021
Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
H.C. Edwards et al., Journal of Parallel and Distributed Computing, 2014

https://ieeexplore.ieee.org/abstract/document/9502936/
https://ieeexplore.ieee.org/abstract/document/9485033/
https://www.sciencedirect.com/science/article/pii/S0743731514001257


Kokkos Uptake
ECP Critical Dependencies
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Kokkos Core Abstractions
Kokkos

Execution Spaces (“Where”)

Execution Patterns

Execution Policies (“How”)

Memory Spaces (“Where”)

Memory Layouts

Memory Traits (“How”)

Parallel ExecutionData Structures

- CPU, GPU, Executor Mechanism

- parallel_for/reduce/scan, task-spawn

- Range, Team, Task-Graph

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

- Streaming, Atomic, Restrict
8



Kokkos Core Capabilities
Concept Example

Parallel Loops parallel_for( N, KOKKOS_LAMBDA (int i) { ...BODY… });

Parallel Reduction parallel_reduce( RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
   …BODY...
   upd += ...
}, Sum<>(result));

Tightly Nested 
Loops

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3}, 
  KOKKOS_LAMBDA (int i, int j, int k) {…BODY...});

Non-Tightly Nested 
Loops

parallel_for( TeamPolicy<Schedule<Dynamic>>( N, TS ), KOKKOS_LAMBDA (Team team) { 
   … COMMON CODE 1 ...
   parallel_for(TeamThreadRange( team, M(N)), [&] (int j)  { ... INNER BODY... });
   … COMMON CODE 2 ...
});

Task Dag task_spawn( TaskTeam( scheduler , priority), KOKKOS_LAMBDA (Team team) { … BODY });

Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M); 

Data Transfer deep_copy(a,b);

Atomics atomic_add(&a[i],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0; 

Exec Spaces Serial, Threads, OpenMP, Cuda, HPX (experimental), HIP (experimental), OpenMPTarget (experimental)9



More Kokkos Capabilities

parallel_scan
DualView

ScatterView
OffsetView

StaticWorkGraph

UnorderedMap RandomPool
sort

kokkos_malloc kokkos_free

BitsetVector

LayoutLeft

LayoutRight

LayoutStrided

ReducersMemoryPool

UniqueToken ScratchSpace ProfilingHooks
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Example: Conjugent Gradient Solver
 Simple Iterative Linear Solver
 For example used in MiniFE
 Uses only three math operations:

 Vector addition (AXPBY)
 Dot product (DOT)
 Sparse Matrix Vector multiply (SPMV)

 Data management with Kokkos Views:
View<double*,HostSpace,MemoryTraits<Unmanaged> > h_x(x_in, nrows);
View<double*> x("x",nrows);
deep_copy(x,h_x); 
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CG Solve: The AXPBY

void axpby(int n, View<double*> z, double alpha, View<const double*> x,
                                   double beta,  View<const double*> y) {
  parallel_for("AXpBY", n, KOKKOS_LAMBDA ( const int i) {
    z(i) = alpha*x(i) + beta*y(i);
  });
}

 Simple data parallel loop: Kokkos::parallel_for
 Easy to express in most programming models
 Bandwidth bound
 Serial Implementation: 

 Kokkos Implementation:

void axpby(int n, double* z, double alpha, const double* x, 
                             double beta,  const double* y) {
  for(int i=0; i<n; i++)
    z[i] = alpha*x[i] + beta*y[i];
}

Parallel Pattern: for loop

String Label: Profiling/Debugging
Execution Policy: do n iterations

Iteration handle: integer index
Loop Body
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CG Solve: The Dot Product

double dot(int n, View<const double*> x, View<const double*> y) {
  double x_dot_y = 0.0;
  parallel_reduce("Dot",n, KOKKOS_LAMBDA (const int i,double& sum) { 
    sum += x[i]*y[i];
  }, x_dot_y);
  return x_dot_y;
}

 Simple data parallel loop with reduction: Kokkos::parallel_reduce
 Non trivial in CUDA due to lack of built-in reduction support
 Bandwidth bound
 Serial Implementation: 

 Kokkos Implementation:

double dot(int n, const double* x, const double* y) {
  double sum = 0.0;
  for(int i=0; i<n; i++)
    sum += x[i]*y[i];
  return sum;
}

Parallel Pattern: loop with reduction

Iteration Index + Thread-Local Red. Varible
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CG Solve: Sparse Matrix Vector Multiply
 Loop over rows
 Dot product of matrix row with a vector
 Example of Non-Tightly nested loops
 Random access on the vector (Texture fetch on GPUs)

void SPMV(int nrows, const int* A_row_offsets, const int* A_cols, 
            const double* A_vals, double* y, const double* x) {
  for(int row=0; row<nrows; ++row) {
    double sum = 0.0;
    int row_start=A_row_offsets[row];
    int row_end=A_row_offsets[row+1];
    for(int i=row_start; i<row_end; ++i) {
      sum += A_vals[i]*x[A_cols[i]];
    }
    y[row] = sum;
  }
}

Outer loop over matrix rows

Inner dot product row x vector

14



CG Solve: Sparse Matrix Vector Multiply
void SPMV(int nrows, View<const int*> A_row_offsets, 
            View<const int*> A_cols, View<const double*> A_vals, 
            View<double*> y,
            View<const double*, MemoryTraits< RandomAccess>> x) {

  // Performance heuristic to figure out how many rows to give to a team
  int rows_per_team = get_row_chunking(A_row_offsets);  

 
  parallel_for("SPMV:Hierarchy", TeamPolicy< Schedule< Static > >
       ((nrows+rows_per_team-1)/rows_per_team,AUTO,8),
    KOKKOS_LAMBDA (const TeamPolicy<>::member_type& team) { 

    const int first_row = team.league_rank()*rows_per_team;
    const int last_row = first_row+rows_per_team<nrows? first_row+rows_per_team : nrows;

    parallel_for(TeamThreadRange(team,first_row,last_row),[&] (const int row) {
      const int row_start=A_row_offsets[row];
      const int row_length=A_row_offsets[row+1]-row_start;
 
      double y_row;
      parallel_reduce(ThreadVectorRange(team,row_length),[&] (const int i, double& sum) {
        sum += A_vals(i+row_start)*x(A_cols(i+row_start));
      } , y_row);
      y(row) = y_row;
    });
  });
} Team Parallelism over Row WorksetsDistribute rows in workset over team-threads

Row x Vector dot product 

Enable Texture Fetch on x 
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CG Solve Performance
 CG-Solve as discussed above
 Also try replacing SPMV with TPL
 Running 100x100x100 heat 

conduction problem
 ”MiniFE” Proxyapp setup

 Measure effective Bandwidth
 Algorithmical memory ops per 

time
 Why is this beating vendor libs?

 Its complicated, but a real effect
G
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Tracking New Capabilities: Graphs
 Build static graphs of kernels

 Can use CUDAGraphs as 
backend

 Allows repeated dispatch
 Helps with Latency Limited codes

 Cuts down on launch latency
 Can leverage streams to overlap 

work
 Infers overlapping from 

dependencies
 Prototype release part of Kokkos 3.3

const auto graph = Kokkos::Experimental::create_graph(
  [=](auto root) {
  auto f1 = root.then_parallel_for(
    Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long) {…});
  auto f2a = f1.then_parallel_for(
    Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long) {…});
  auto f2b = f1.then_parallel_for(
    Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long) {…});
  when_all(f2a, f2b).then_parallel_reduce(
    Kokkos::RangePolicy<>(0, 1), KOKKOS_LAMBDA(long) {…}
    result);
});

while(result()>threshold {
  graph.submit();
  graph.get_execution_space().fence();
}



Repetitions
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AMD Support Status

• Primary development of HIP at ORNL
• Most Capabilities ready

○ Fine grained tasking is missing
• PR testing for Kokkos on AMD GPUs in place
• ArborX, Cabana, LAMMPS working with HIP
• Trilinos (4,000k lines HPC library) works. 

Frontier/El Capitan: HIP and OpenMP 5

Kokkos 3.3 (Dec 2020): 
- HIP is largely feature complete
Kokkos 3.4 (April2021): 
- SYCL Support Largely Complete

We are largely using our own machines (not ECP EAS), with the public software stack from Intel and AMD.

Kokkos Core functionality porting to Frontier nearly complete



Aurora Support Status

• Primary work for DPC++ at ANL and ORNL
• Shifted ORNL team members from HIP to DPC++ since 

HIP is in much better shape

• DPC++/SYCL was long blocked by compiler issues
• Worked with Intel to get those fixed
• Now primary capabilities are merged to develop branch

• PR testing DPC++/SYCL in place
• Intel DPC++/SYCL testing is done on NVIDIA GPUs …
• Leverages clang capability to target different backend 

Kokkos 3.3 (Dec 2020): 
- OpenMPTarget and DPC++ have most primary capabilities working
Kokkos 3.4 (April 2021): 
- DPC++/SYCL is largely feature complete

Programming Models: DPC++/SYCL + OpenMP 5

We are largely using our own machines (not ECP EAS), with the public software stack from Intel and AMD.

Initial Kokkos Core functionality porting to Aurora done.



Kokkos Support
 The Kokkos Lectures

 8 lectures covering most 
aspects of Kokkos

 15 hours of recordings
 > 500 slides
 >20 exercises

 Extensive Wiki
 API Reference
 Programming Guide

 Slack as primary direct support

• Module 1: Introduction
• Introduction, Basic Parallelism, Build System

• Module 2: Views and Spaces 
• Execution and Memory Spaces, Data Layout

• Module 3: Data Structures and MDRangePolicy
• Tightly Nested Loops, Subviews, ScatterView,…

• Module 4: Hierarchical Parallelism
• Nested Parallelism, Scratch Pads, Unique Token

• Module 5: Advanced Optimizations
• Streams, Tasking and SIMD 

• Module 6: Language Interoperability
• Fortran, Python, MPI and PGAS

• Module 7: Tools
• Profiling, Tuning , Debugging, Static Analysis

• Module 8: Kokkos Kernels
• Dense LA, Sparse LA, Solvers, Graph Kernels

https://kokkos.link/the-lectures 

https://kokkos.link/the-lectures


Kokkos Kernels
 BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction

 Scalar type agnostic, e.g. works for any types with math operators
 Layout and Memory Space aware

 Can call vendor libraries when available
 Views contain size and stride information => Interface is simpler

 Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

// BLAS
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC);

// Kokkos Kernels
double alpha, beta; View<double**> A,B,C;
gemm('N','N',alpha,A,B,beta,C);

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
  // Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
  // Call BLAS using parallelism in this team (e.g. CUDA block)
  gemv(team_handle,'N',alpha,A,x,beta,y)
});
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Kokkos Tools
 Profiling

 New tools are coming out
 Worked with NVIDIA to get naming info into their system

 Auto Tuning (Under Development)
 Internal variables such as CUDA block sizes etc.
 User provided variables
 Same as profiling: will use dlopen to load external tools

 Debugging (Under Development)
 Extensions to enable clang debugger to use Kokkos naming information

 Static Analysis (Under Development)
 Discover Kokkos anti patterns via clang-tidy
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Kokkos-Tools Profiling & Debugging
 Performance tuning requires insight, but tools are different on each platform
 KokkosTools: Provide common set of basic tools + hooks for 3rd party tools
 Common issue: abstraction layers obfuscate profiler output

 Kokkos hooks for passing names on
 Provide Kernel, Allocation and Region

 No need to recompile
 Uses runtime hooks
 Set via env variable 
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Kokkos Tools Integration with 3rd Party
 Profiling Hooks can be subscribed to by tools, and currently have support for TAU, 

Caliper, Timemory, NVVP, Vtune, PAPI, and SystemTAP, with planned CrayPat support
 HPCToolkit also has special functionality for models like Kokkos, operating outside of 

this callback system

TAU Example:
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Kokkos Tools Static Analysis
 clang-tidy passes for Kokkos semantics
 Under active development, requests welcome
 IDE integration

27



LAMMPS
 Widely used Molecular Dynamics 

Simulations package
 Focused on Material Physics
 Over 500 physics modules
 Kokkos covers growing subset of those
 REAX is an important but very complex 

potential 
 USER-REAXC (Vanilla) more than 

10,000 LOC
 Kokkos version ~6,000 LOC
 LJ in comparison: 200LOC
 Used for shock simulations
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Sparta: Production Simulation at Scale
 Stochastic PArallel Rarefied-gas Time-

accurate Analyzer 
 A direct simulation Monte Carlo code
 Developers: Steve Plimpton, Stan Moore, 

Michael Gallis 
 Only code to have run on all of Trinity

 3 Trillion particle simulation using both 
HSW and KNL partition in a single MPI 
run (~20k nodes, ~1M cores)

 Benchmarked on 16k GPUs on Sierra
 Production runs now at 5k GPUs

 Co-Designed Kokkos::ScatterView
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 System wide many task framework from 
University of Utah led by Martin Berzins

 Multiple applications for combustion/radiation 
simulation

 Structured AMR Mesh calculations
 Prior code existed for CPUs and GPUs
 Kokkos unifies implementation
 Improved performance due to constraints in 

Kokkos which encourage better coding practices 

Questions: Dan Sunderland
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Kokkos - C++ Standard integration cycle

Kokkos

C++ Standard

C++ Backport

Kokkos Legacy

Propose new features 
for C++ Standard

Back port to current compilers

Port accepted features 
to legacy versions

Implemented legacy 
capabilities in terms of 
new C++ features
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C++ Features in the Works
 First success: atomic_ref<T> in C++20

 Provides atomics with all capabilities of atomics in Kokkos
 atomic_ref(a[i])+=5.0; instead of atomic_add(&a[i],5.0);

 Next thing: Kokkos::View => std::mdspan
 Provides customization points which allow all things we can do with 

Kokkos::View
 Better design of internals though! => Easier to write custom layouts.
 Also: arbitrary rank (until compiler crashes) and mixed compile/runtime ranks 
 We hope will land early in the cycle for C++23 (i.e. early in 2020)
 Production reference implementation: https://github.com/kokkos/mdspan 

 Also C++23: Executors and Basic Linear Algebra: https://github.com/kokkos/stdblas 
35
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OpenMPTarget Status
struct Foo {
  int N;
  double *x, *y, *z;
  void axpby() {
    // Need temporaries here for 4x performance gain
    int N_ = N;
    double *xp = x, *yp = y, *zp = z;
    #pragma omp target teams distribute parallel for \
      simd is_device_ptr(xp,yp,zp) data map(to: N_)
    for(int i=0; i<N_; i++) {
      zp[i] = xp[i] + yp[i];
    }
  }
};

  struct Foo {
    View<double*> x,y,z;
    int N;
    void axpby() {
      parallel_for("axpby", N, 
        KOKKOS_LAMBDA(int i) {
        z(i) = x(i) + y(i);
      });
    }
  };

Kokkos Vector 
Add

OpenMP Vector Add

• Most capabilities are now working
• Until earlier in 2020 limited by compiler bugs

• Using primarily main line clang/llvm
• Are also working with Intel and NVIDIA 
• Started working with AMD and HPE

• Next phase: concentrating on performance
• C++ performance very fragile
• We are ramping up collaboration with compiler 

engineers
Vector Add Performance Illustration
• Simple problem, should clearly be bandwidth limited
• Using clang/llvm 11, CUDA 10.1, NVIDIA V100
• Kokkos/CUDA (kk-c), Kokkos/OMPT (kk-o), Native 

OMPT (omp), Native OMPT with temporaries (omp-t)
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Takeaway: Performance is still very fragile!
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10.0: released March 2020
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A more comprehensive Frontend/Compiler comparison
• Comparing simple vector add and dot product

– Also implemented straight forward native implementation
– No hoops jumped through to optimize
– 1M length, not huge, but also not trivial, i.e. latency impact expected but not dominant?

• If purely bandwidth bound this would be 24us for axpby@1TB/s and 16us for dot
– clxx denotes clang/llvm version


