

Energy and Transport Sciences Laboratory

Uncertainty in 3D Image-Based Effective Property Simulations using Bayesian Convolutional Neural Networks

Chance Norris^{1*}, Tyler LaBonte², Carianne Martinez², Scott A. Roberts³, and Partha P. Mukherjee¹

¹School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

²Applied Machine Intel & App Engineering, Sandia National Laboratories, Albuquerque, NM 87185

³Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185

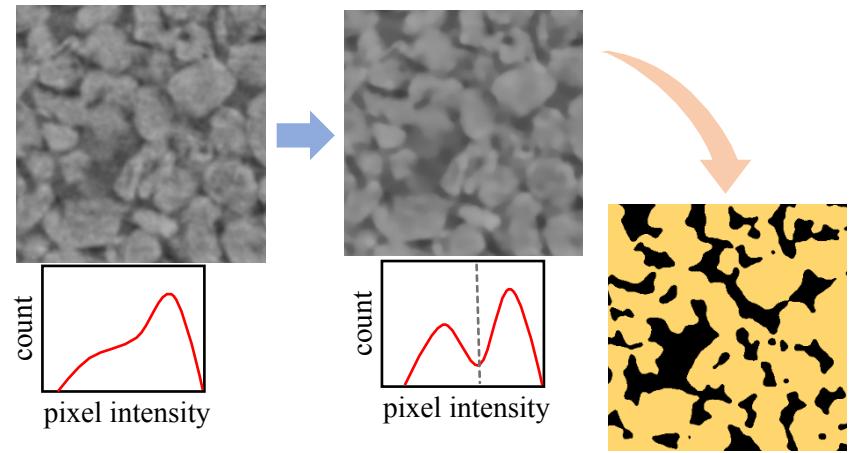
July 28, 2021

USNCCM 2021

Motivation

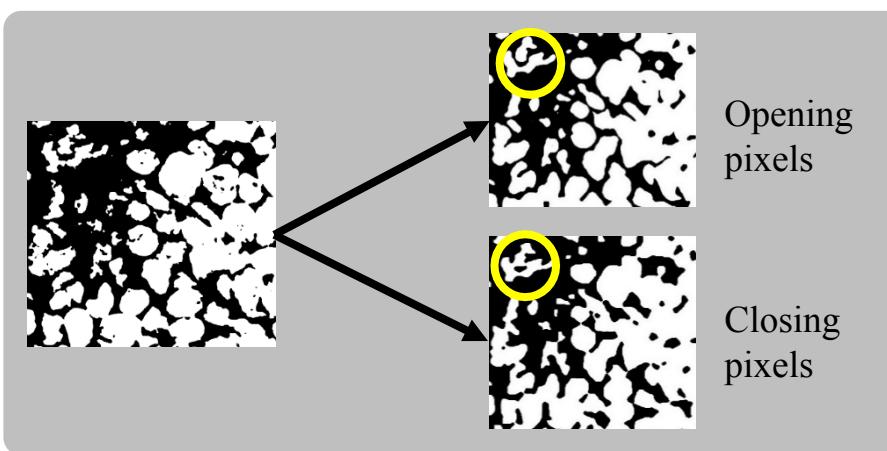
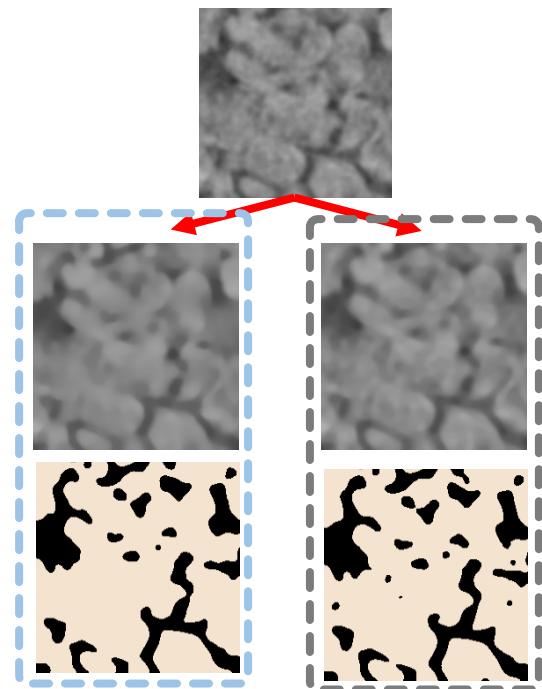
Thresholding/Segmentation

- Greyscale to binary images
- Image processing is used to gain bimodal pixel distribution prior to segmentation.



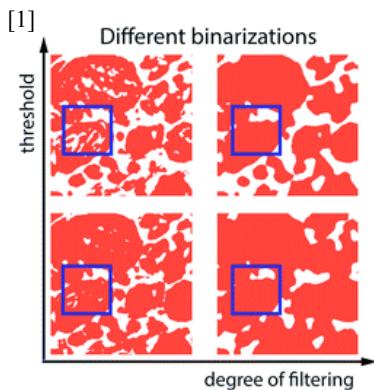
Subjectiveness of Segmentation

- Segmentation is fraught with subjectiveness.
- This process is also time consuming.



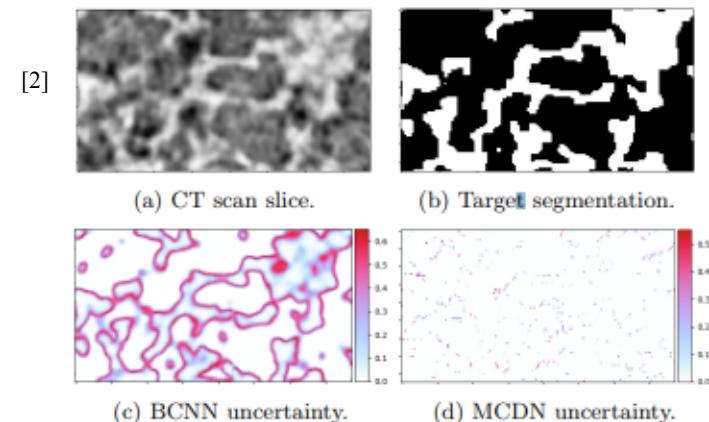
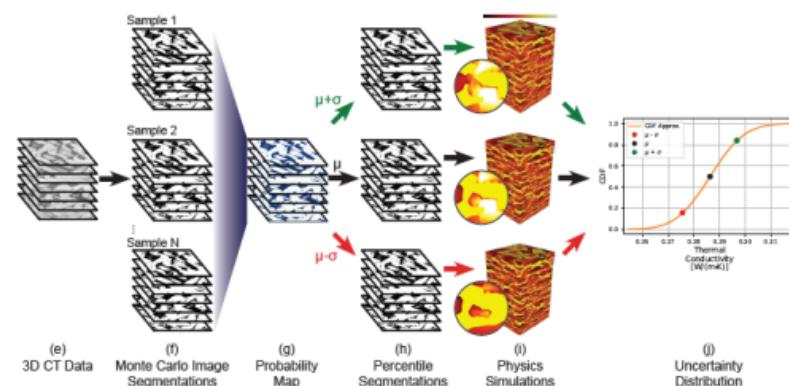
Background

- Wood et. al. varied thresholding and filtering parameters.
- Looked at effective property changes.



- Krygier et al. used percentile segmentations to propagate segmentation uncertainty to physical quantities.

- LaBonte et al. probed uncertainty via BCNN and MCDN.

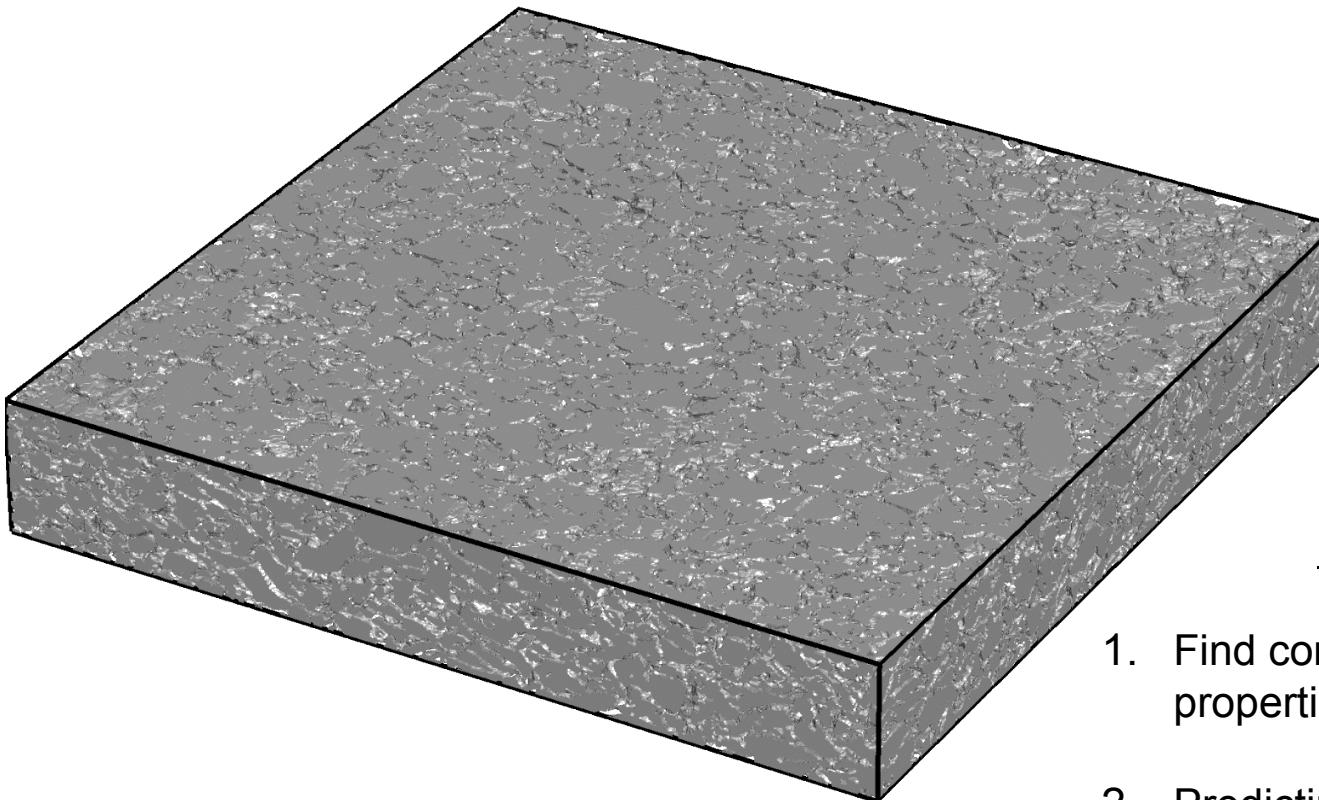


[1] Pietsch, P., Ebner, M., Marone, F., ... M. S.-S. E. & & 2018, Determining the uncertainty in microstructural parameters extracted from tomographic data. [pubs.rsc.org](https://pubs.rsc.org/en/content/article/2018/DM000102A).

[2] LaBonte, ... , 'We Know Where We Don't Know: #D Bayesian CNNs for Credible Geometric Uncertainty', 2020, <https://arxiv.org/abs/1910.10793>

[3] Krygier, Michael, ... , 'Quantifying the Unknown: Impact of Segmentation Uncertainty on Image-Based Simulations', Nature Communications, 2021, <https://arxiv.org/abs/2012.09913>

Objective



Research Questions

1. Find correlations between effective properties/image quality.
2. Predicting uncertainty through image quality
3. Uncertainty propagation through geometric uncertainties
4. Microstructural influences on uncertainty propagation.

Electrode Images

Numbered Electrodes			
Ia	IIa	IIIa	IVa
Ib	IIb	IIIb	IVb
Ic	IIc	IIIc	IVc

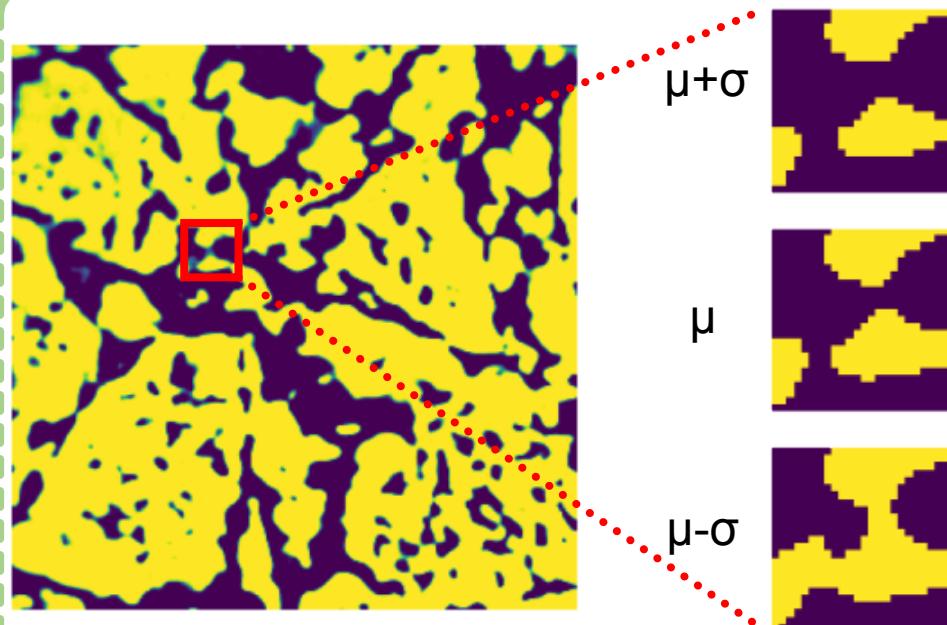
Where a, b and c denotes three samples taken from one commercial sheet

Named Electrodes					
Litarion	Tesla	SamsungE35	Samsung 25R6	GCA400	GCA2000

Named electrodes have 2x the resolution per voxel than the numbered.

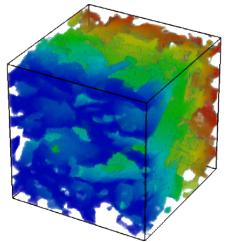
All electrode data is open source provided by Vanessa Wood's group from
ETH Zurich

Structural Acquisition and Physics Quantities



Percentile segmentations were created through probability maps via the BCNN.

A total of 11 percentile segmentations were used.



Tortuosity/Conductivity

Tells how the pore/particle phase is interconnected, respectively.

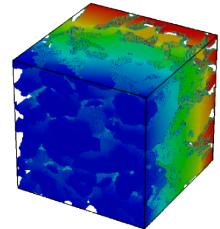
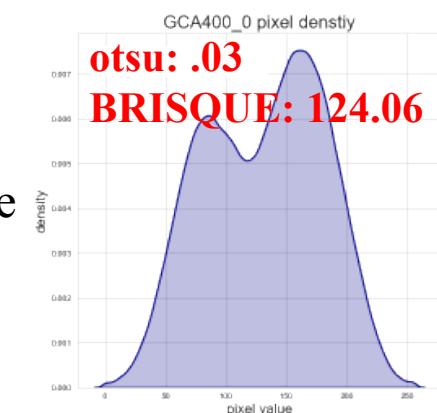
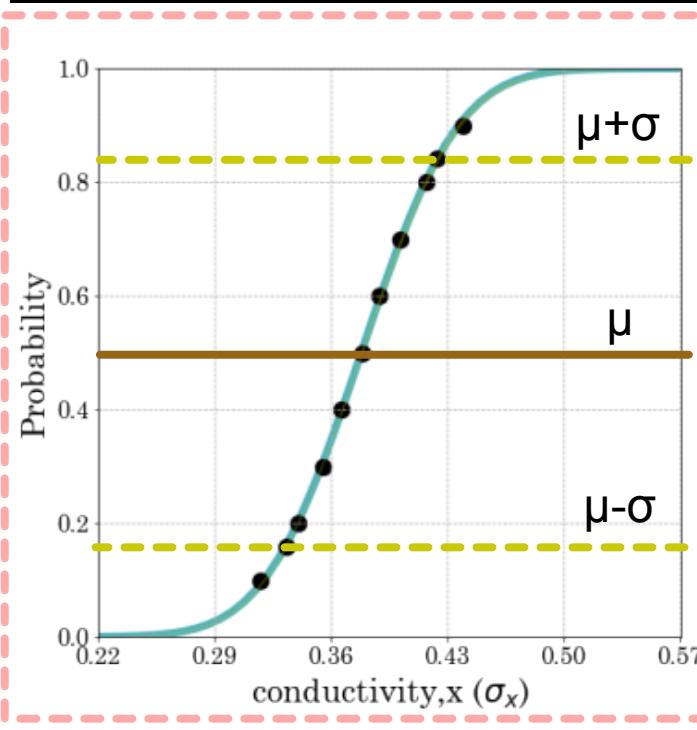


Image Quality

OTSU intervariance and BRISQUE scores were used.



Property Correlations



- Higher correlations between conductivity.
- Tortuosity is more dependent on structural morphology.

- All effective properties show a gaussian distribution
- By evaluation we can get the mean and standard deviation

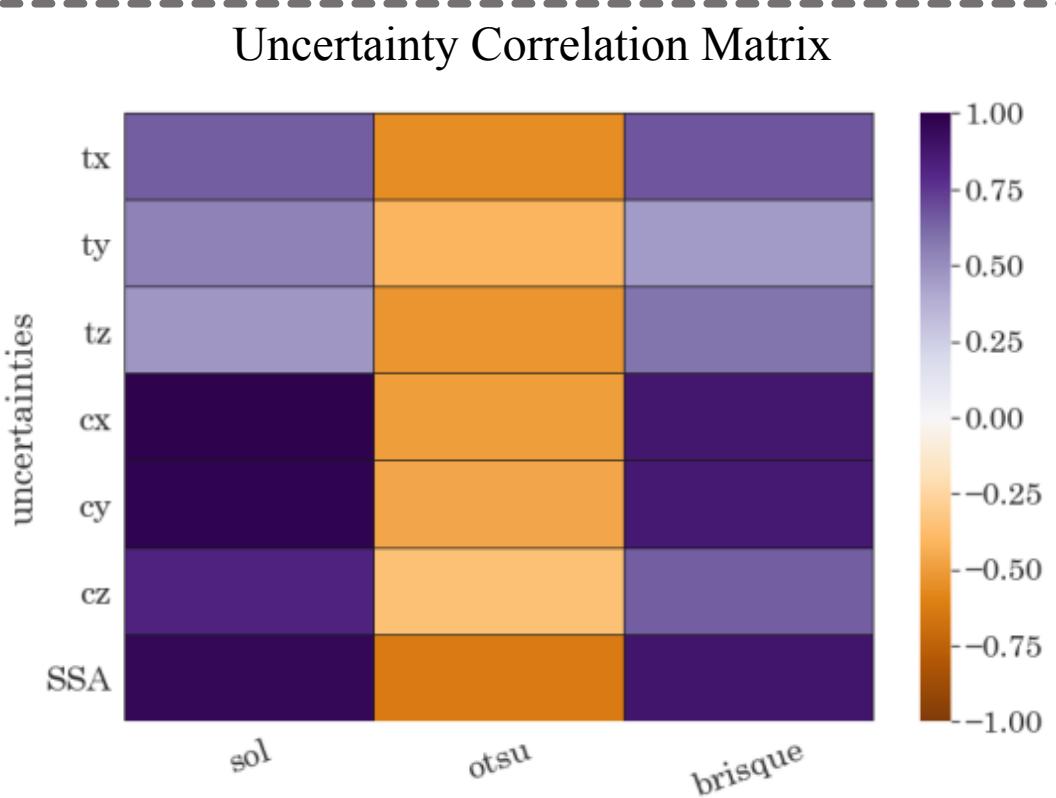
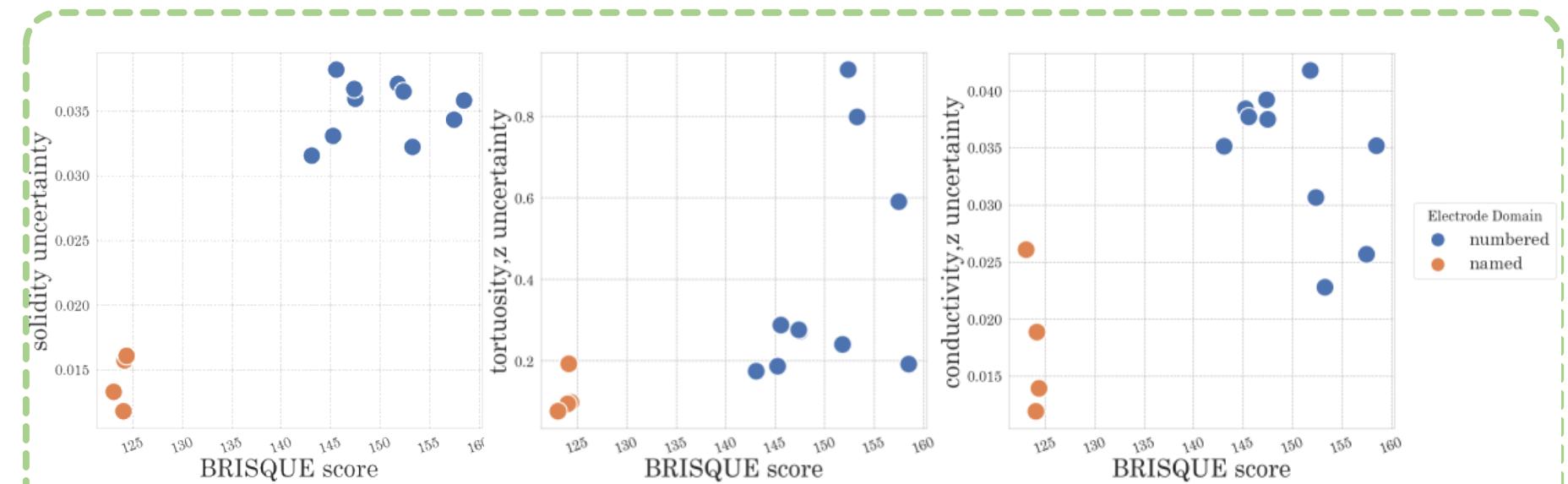
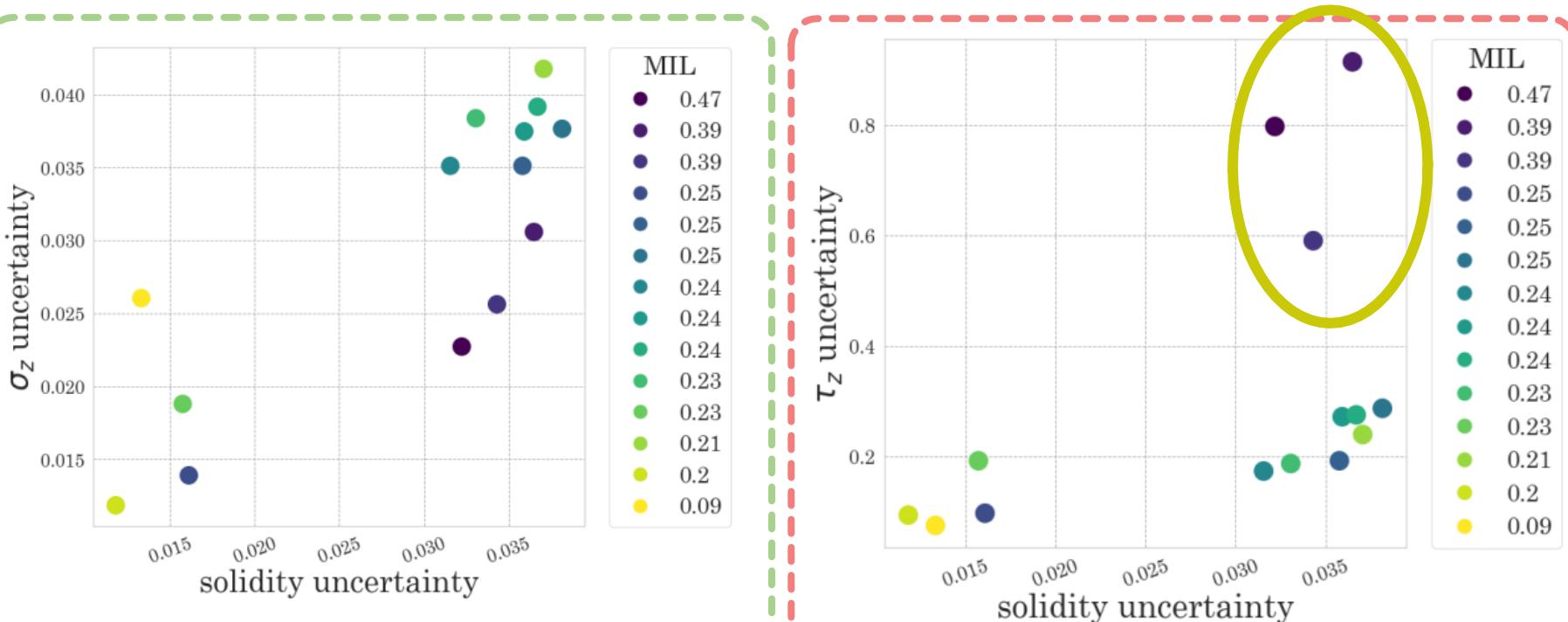


Image-Quality Correlation



- Lower BRISQUE score the clearer the image.
- Named and numbered electrodes are grouped.
- Based on resolution or other factors dependent on imaging process.

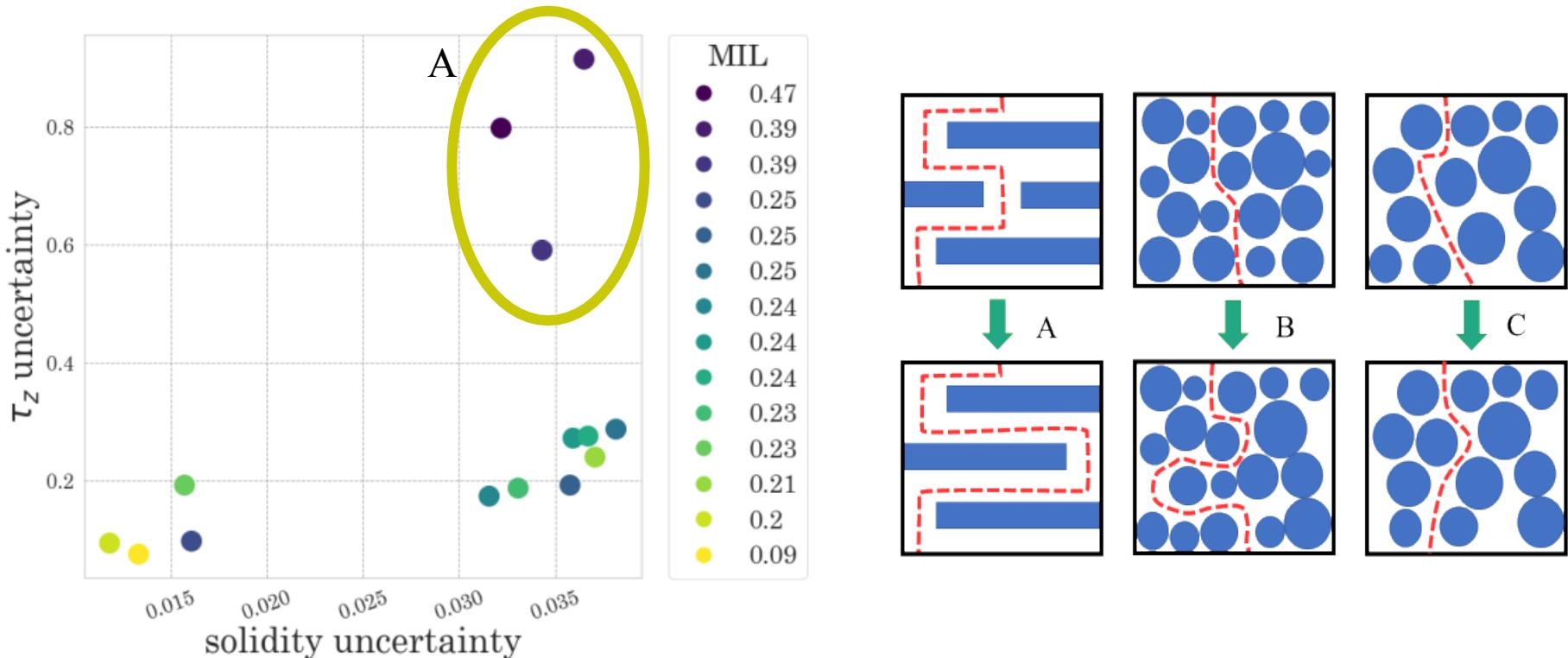
Geometric Uncertainty Correlations



- Larger solidity uncertainties result in larger conductivity uncertainties.
- Independent of structural anisotropy
- Highly anisotropic structures resulting in higher uncertainties.

Microstructural Influences

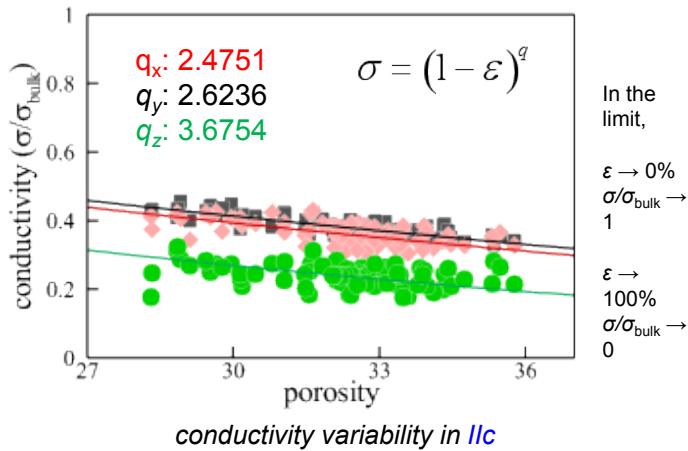
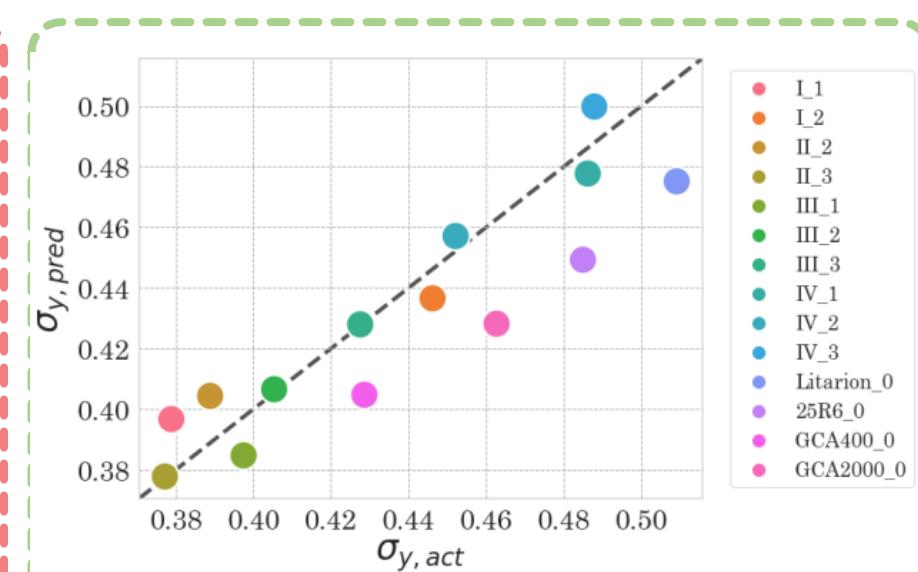
- Tortuosity is more sensitive to morphology changes than solidity changes.
- Conductivity is less sensitive to morphology changes compared to solidity changes.



Geometric Uncertainty Propagation in Conductivity

Bruggeman Approximation

Conductivity can be fit to a Bruggeman approximation.

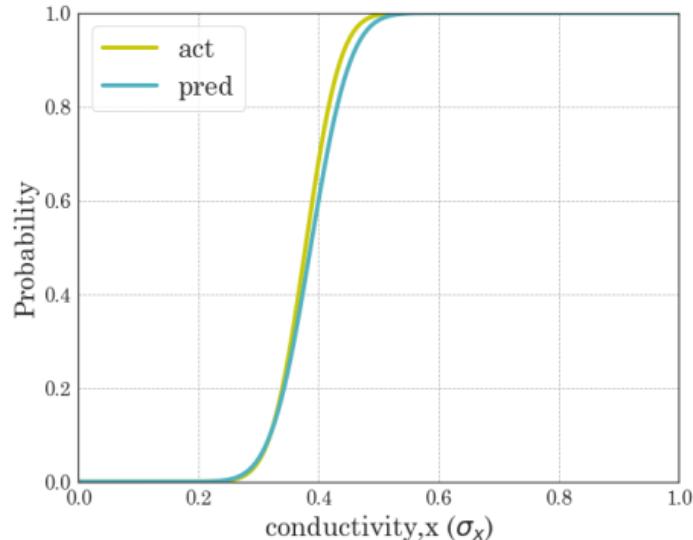


Uncertainty Propagation

Using the following identity of uncertainty propagation:

$$\delta F = |F'(x)|\delta x$$

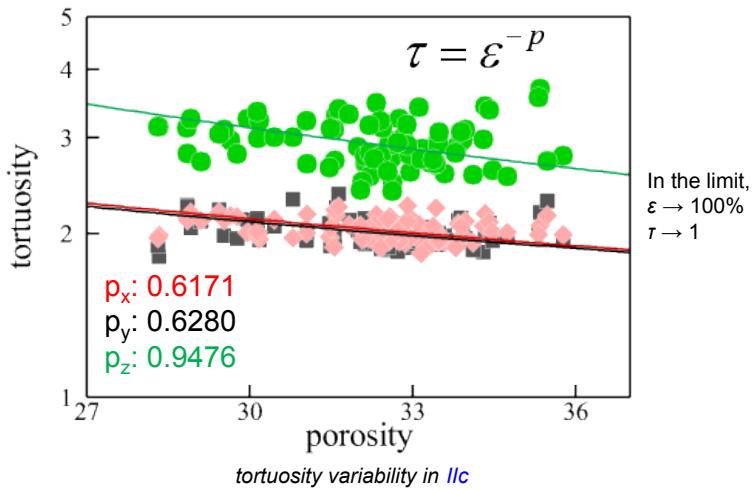
$$\delta\sigma = |-qs^{q-1}|\delta s$$



Geometric Uncertainty Propagation in Tortuosity

Bruggeman Approximation

Tortuosity can be fit to a Bruggeman approximation.

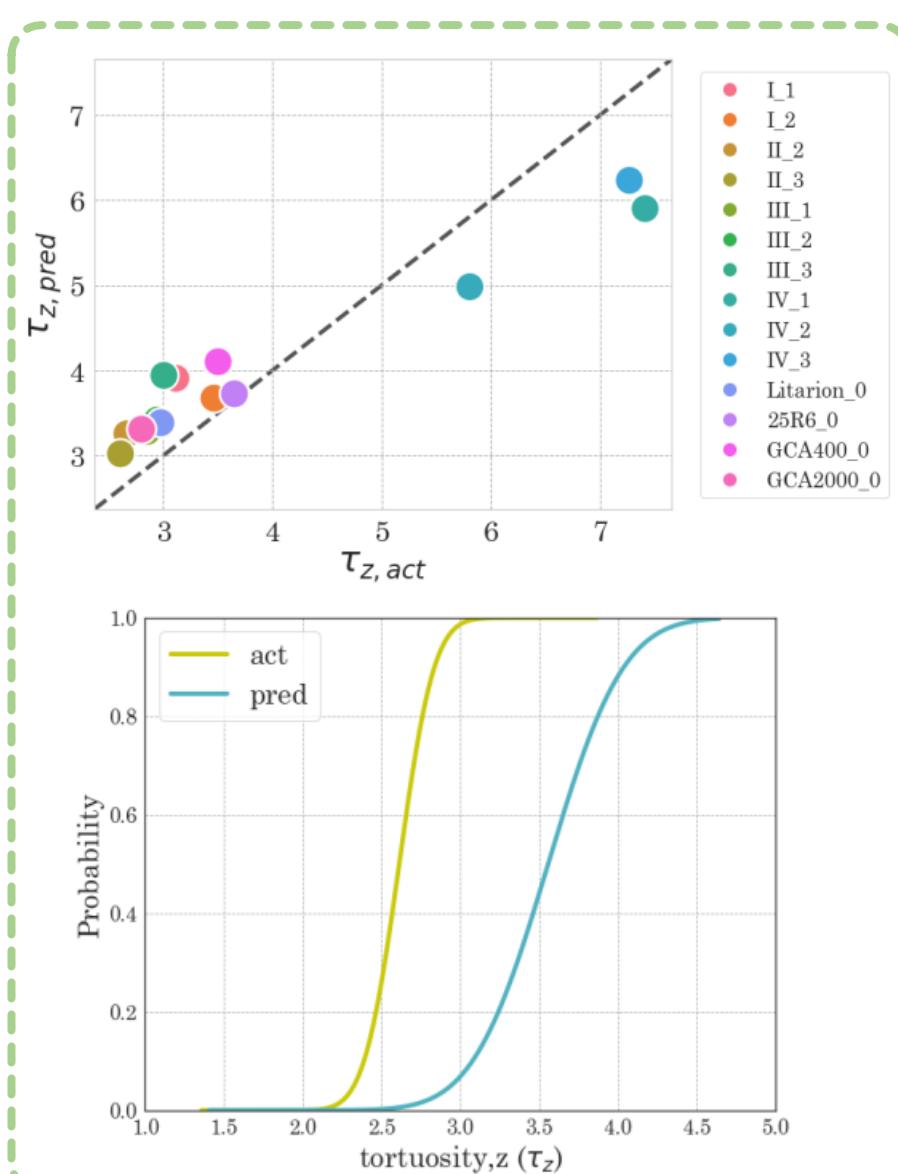


Uncertainty Propagation

Using the following identity of uncertainty propagation:

$$\delta F = |F'(x)|\delta x$$

$$\delta\tau = |-p(1-s)^{-p-1}|\delta s$$



Conclusion

- Correlations were found in image-quality- geometric, and physics quantity uncertainties.
- Image-quality was not able to be used for uncertainty propagation.
- Structural morphology impacted geometric uncertainty propagation to physics quantities.
- Using Bruggeman approximation, physics quantity uncertainties were predicted to a successful degree.

Acknowledgements

Funding from Sandia National Lab

Scott Roberts and team

**Sandia
National
Laboratories**