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Motivation

Thresholding/Segmentation

* Greyscale to binary images
* Image processing is used to gain bimodal pixel
distribution prior to segmentation.

Subjectiveness of Segmentation
* Segmentation is fraught with subjectiveness.
* This process is also time consuming.
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Background
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* Wood et. al. varied thresholding and
filtering parameters.
* Looked at effective property changes.

LaBonte et al. probed uncertainty via
BCNN and MCDN.
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(3]

Krygier et al. used percentile %

segmentations to propagate segmentation
uncertainty to physical quantities.
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Objective

Research Questions

Find correlations between effective
properties/image quality.

2. Predicting uncertainty through image
quality

3. Uncertainty propagation through
geometric uncertainties

4. Microstructural influences on

uncertainty propagation.
Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344. 4



Electrode Images

Numbered Electrodes

Ia IIa IIIa IVa
Ib I1b I1Ib IVb
Ic IIc IIIc IVc

Where a, b and ¢ denotes three samples taken from one commercial sheet

Named Electrodes

Litarion

Tesla SamsungE35 | Samsung 25R6 | GCA400

GCA2000

Named electrodes have 2x the resolution per voxel than the numbered.

All electrode data 1s open source provided by Vanessa Wood’s group from

ETH Zurich

*Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344. and Pietsch, P. et al. Sustainable Energy and Fuels, 2018, 2(3), 598-605




Structural Acquisition and Physics Quantities

Percentile segmentations were created
through probability maps via the
BCNN.

A total of 11 percentile segmentations
were used.

Image Quality o

Tortuosity/Conductivity

Tells how the pore/particle
phase 1s interconnected,
respectively.

OTSU intervariance i
and BRISQUE
scores were used.
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Property Correlations
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* Higher correlations between
conductivity.

structural morphology.

* Tortuosity is more dependent on

All effective properties show a gaussian distribution

By evaluation we can get the mean and standard
deviation

Uncertainty Correlation Matrix
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solidity uncertainty

Image-Quality Correlation
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Lower BRISQUE score the clearer the image.
Named and numbered electrodes are grouped.

Based on resolution or other factors dependent on imaging process.
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Geometric Uncertainty Correlations
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* Larger solidity uncertainties result in
larger conductivity uncertainties.

* Independent of structural anisotropy
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* Larger solidity uncertainties result in
larger conductivity uncertainties.
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in higher uncertainties.



Microstructural Influences

* Tortuosity is more sensitive to morphology changes than solidity changes.

* Conductivity us less sensitive to morphology changes compared to solidity changes.
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Geometric Uncertainty Propagation in Conductivity

Bruggeman Approximation
Conductivity can be fit to a Bruggeman
approximation.
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Uncertainty Propagation
Using the following identity of uncertainty

propagation:

OF = |F'(x)|6x
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Geometric Uncertainty Propagation in Tortuosity

Bruggeman Approximation e T
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Conclusion

Correlations were found in image-quality- geometric, and physics quantity
uncertainties.

Image-quality was not able to be used for uncertainty propagation.

Structural morphology impacted geometric uncertainty propagation to
physics quantities.

Using Bruggeman approximation, physics quantity uncertainties were
predicted to a successful degree.
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