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Motivation
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Thresholding/Segmentation

• Greyscale to binary images
• Image processing is used to gain bimodal pixel 

distribution prior to segmentation.
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Subjectiveness of Segmentation
• Segmentation is fraught with subjectiveness. 
• This process is also time consuming. 
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Background
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• Wood et. al. varied thresholding and 
filtering parameters.

• Looked at effective property changes. 
[1]

• LaBonte et al. probed uncertainty via 
BCNN and MCDN. 

[2]

• Krygier et al. used percentile 
segmentations to propagate segmentation 
uncertainty to physical quantities.



Objective
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Research Questions

1. Find correlations between effective 
properties/image quality.

2. Predicting uncertainty through image 
quality

3. Uncertainty propagation through 
geometric uncertainties

4. Microstructural influences on 
uncertainty propagation.

Muller, S. et. al. Journal of The Electrochemical Society, 2018, 165(2), A339-A344.



Electrode Images
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Numbered Electrodes
Ia IIa IIIa IVa
Ib IIb IIIb IVb
Ic IIc IIIc IVc 

Named Electrodes
Litarion Tesla SamsungE35 Samsung 25R6 GCA400 GCA2000

Named electrodes have 2x the resolution per voxel than the numbered. 

All electrode data is open source provided by Vanessa Wood’s group from 
ETH Zurich

Where a, b and c denotes three samples taken from one commercial sheet



Structural Acquisition and Physics Quantities
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μ+σ

μ

μ-σ

Percentile segmentations were created 
through probability maps via the 
BCNN.

A total of 11 percentile segmentations 
were used. 

Tortuosity/Conductivity

Tells how the pore/particle 
phase is interconnected, 
respectively. 

Image Quality

OTSU intervariance 
and BRISQUE 
scores were used. 

otsu: .03
BRISQUE: 124.06



Property Correlations
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μ
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Uncertainty Correlation Matrix

• All effective properties show a gaussian distribution

• By evaluation we can get the mean and standard 
deviation 

• Higher correlations between 
conductivity. 

• Tortuosity is more dependent on 
structural morphology.



Image-Quality Correlation
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• Lower BRISQUE score the clearer the image.

• Named and numbered electrodes are grouped.

• Based on resolution or other factors dependent on imaging process.  



Geometric Uncertainty Correlations
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• Larger solidity uncertainties result in 
larger conductivity uncertainties. 

• Independent of structural anisotropy

• Larger solidity uncertainties result in 
larger conductivity uncertainties. 

• Highly anisotropic structures resulting 
in higher uncertainties. 



Microstructural Influences

10

• Tortuosity is more sensitive to morphology changes than solidity changes. 

• Conductivity us less sensitive to morphology changes compared to solidity changes. 
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Geometric Uncertainty Propagation in Conductivity 
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Bruggeman Approximation
Conductivity can be fit to a Bruggeman 
approximation. 

Uncertainty Propagation 
Using the following identity of uncertainty 
propagation: 

conductivity variability in IIc

qx: 2.4751
qy: 2.6236
qz: 3.6754

In the 
limit, 

ε → 0%
σ/σbulk → 
1

ε → 
100% 
σ/σbulk → 
0



Geometric Uncertainty Propagation in Tortuosity 
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Bruggeman Approximation
Tortuosity can be fit to a Bruggeman 
approximation. 

Uncertainty Propagation 
Using the following identity of uncertainty 
propagation: 

tortuosity variability in IIc

px: 0.6171
py: 0.6280
pz: 0.9476

In the limit, 
ε → 100% 
τ → 1



Conclusion

• Correlations were found in image-quality- geometric, and physics quantity 
uncertainties. 

• Image-quality was not able to be used for uncertainty propagation. 

• Structural morphology impacted geometric uncertainty propagation to 
physics quantities.  

• Using Bruggeman approximation, physics quantity uncertainties were 
predicted to a successful degree. 

13



Acknowledgements

14

Funding from Sandia National Lab

Scott Roberts and team

Sandia National Laboratories is a multimission laboratory managed and operated 
by National Technology and Engineering Solutions of Sandia, LLC, a wholly 
owned subsidiary of Honeywell International Inc., for the U.S. Department of 
Energy’s National Nuclear Security Administration under contract DE-NA0003525.


