

Sandia
National
Laboratories

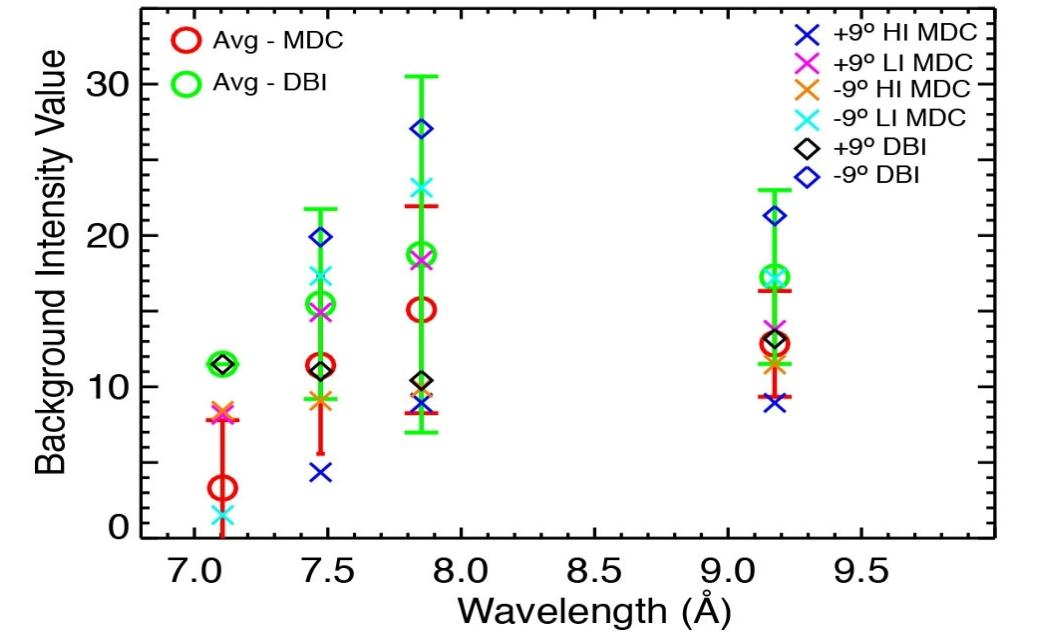
Temperature and density analysis and their uncertainties

PRESENTED BY

Taisuke Nagayama

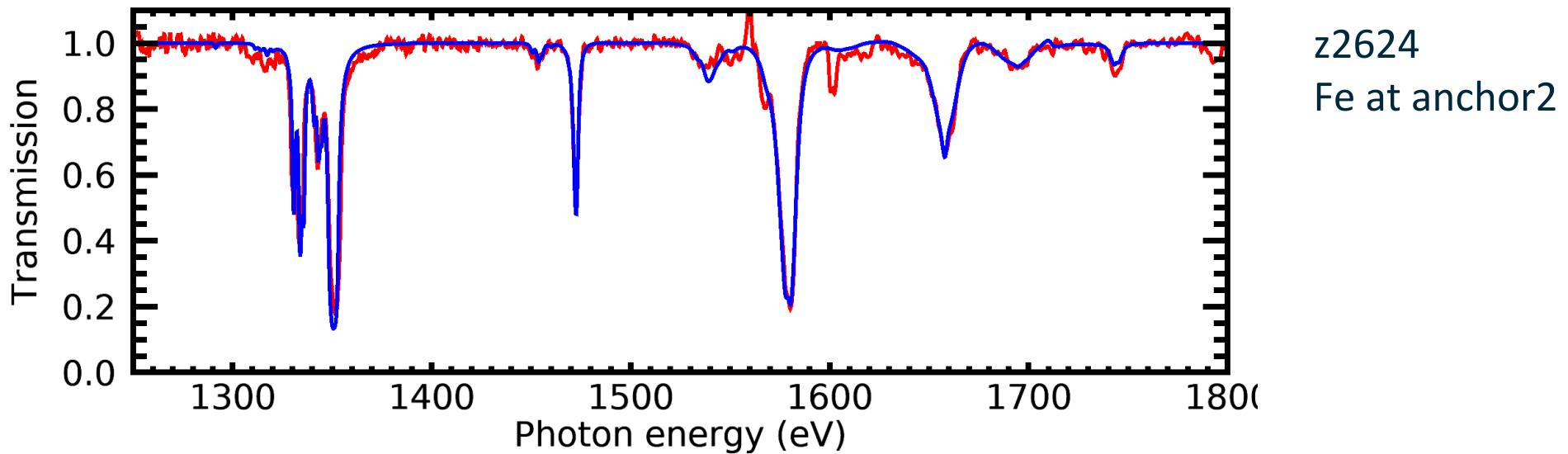
Sample temperature and density need to be reanalyzed due to recent refinements in line shapes and background inference

Line-shape refinements [1,2]


- Electron capture
- Removing 3 approximations

Affects n_e by up to 30%
Affects T_e by a few %

Background refinements [3]


- Method1: Dual backlight intensity (DBI)
- Method2: Modal-data comparison (MDC)

Affect both n_e and T_e for strong lines (e.g., $He\beta$)

Need to revisit Te and ne analysis, but let's revisit analysis method itself

I've been analyzing all lines simultaneously and infer T_e , n_e , ρL , and background simultaneously

$$T_e = 179.7 \pm 0.5 \text{ eV (0.2\%)}$$

$$n_e = (3.53 \pm 0.05) \times 10^{22} \text{ eV (1.4\%)}$$

$$\rho L = (6.2 \pm 0.1) \times 10^{-5} \text{ g/cm}^2 \text{ (1.6\%)}$$

$$\text{background} = 6.0 \pm 0.6 \text{ J/sr/Å (10\%)}$$

Final fits look great, but this analysis produces too small uncertainties, raising concern in uncertainty quantification

Uncertainties inferred from χ^2 analysis (or Bayesian analysis) are often too small when *assumptions* are inappropriate

Assumptions

- Experiment and data reduction are perfect
- Background treatment is perfect
- Uncertainty is dominated by random noise
- Plasma condition is spatially and temporally uniform
- Spectral model is perfect
 - Atomic data are perfect
 - Line-broadening model is perfect
 - Continuum lowering is perfect

Whenever the assumptions are invalid, the analysis shows inconsistency.

→ This inconsistency artificially reduce uncertainty.

Uncertainties inferred from χ^2 analysis (or Bayesian analysis) are often too small when *assumptions* are inappropriate

Assumptions

- Experiment and data reduction are perfect → We know they are not perfect
- Background treatment is perfect → We don't know where background is from
- Uncertainty is dominated by random noise → There are systematic uncertainties
- Plasma condition is spatially and temporally uniform → There is axial gradient that changes with time
- Spectral model is perfect → Different spectral model gives different answers → Nagayama HEDP (2016)
 - Atomic data are perfect
 - Line-broadening model is perfect
 - Continuum lowering is perfect

Reality

**Whenever the assumptions are invalid, the analysis shows inconsistency.
→ This inconsistency artificially reduce uncertainty.**

Jim took more conservative approach in 2008*

Different lines suggest different n_e

$$\begin{aligned} \text{He}\beta &\rightarrow 9.6 \times 10^{21} \text{ cm}^{-3} \\ \text{He}\gamma &\rightarrow 6.1 \times 10^{21} \text{ cm}^{-3} \\ \text{He}\delta &\rightarrow 4.9 \times 10^{21} \text{ cm}^{-3} \\ &\rightarrow (6.9 \pm 1.7) \times 10^{21} \text{ cm}^{-3} \end{aligned}$$

Different line ratios suggest different T_e

$$\begin{aligned} &\text{Ly}\alpha/\text{He}\beta \quad \text{Ly}\alpha/\text{He}\gamma \quad \text{Ly}\alpha/\text{He}\delta \\ &\text{Ly}\beta/\text{He}\beta \quad \text{Ly}\beta/\text{He}\gamma \quad \text{Ly}\beta/\text{He}\delta \\ &\rightarrow 156 \pm 6 \text{ eV} \end{aligned}$$

Since they give inconsistent results, he averaged them together.

Key question: Don't we get more accurate result if we analyze them together?

→ Answer depends on:

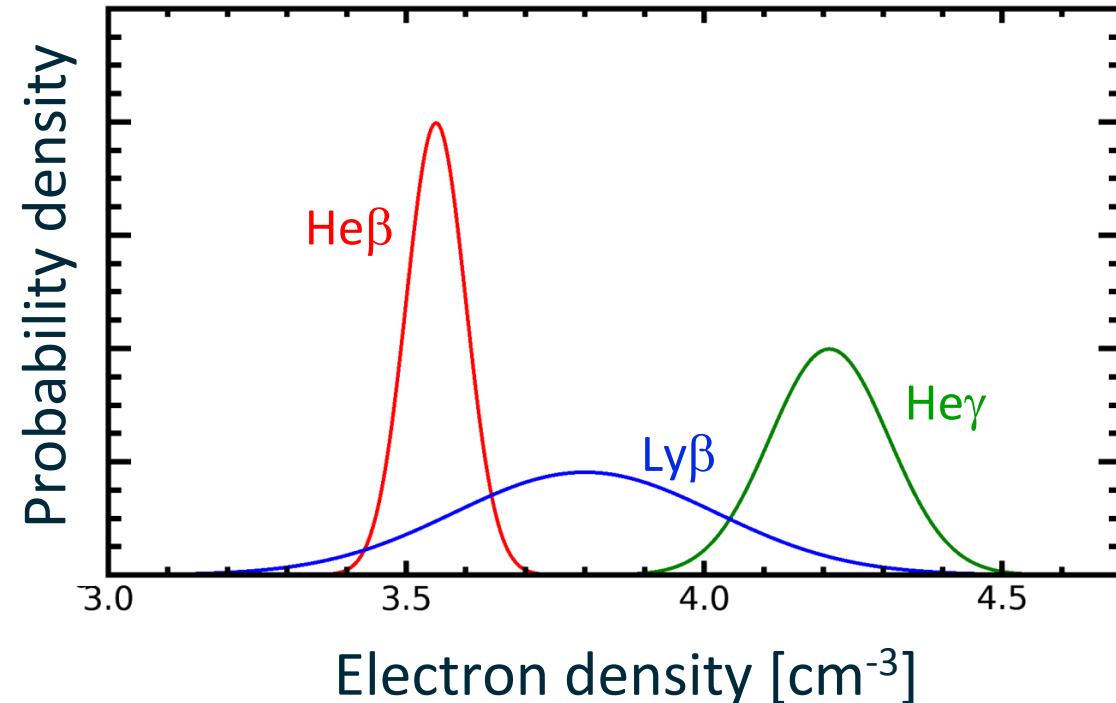
- If they are giving consistent answers
- If not, why they are giving inconsistent answers

All line analysis under this circumstance results in *some average* with very small uncertainties

Individual analysis:

Heb: $(3.55 \pm 0.05) \text{e}22$ (1.4%)

Heg: $(4.21 \pm 0.10) \text{e}22$ (2.4%)


Lyb: $(3.80 \pm 0.22) \text{e}22$ (5.8%)

What's happening?

Simultaneous analysis:

Heb, Heg, Lyb together

$(3.68 \pm 0.04) \text{e}22$ (1.1%) cm^{-3}

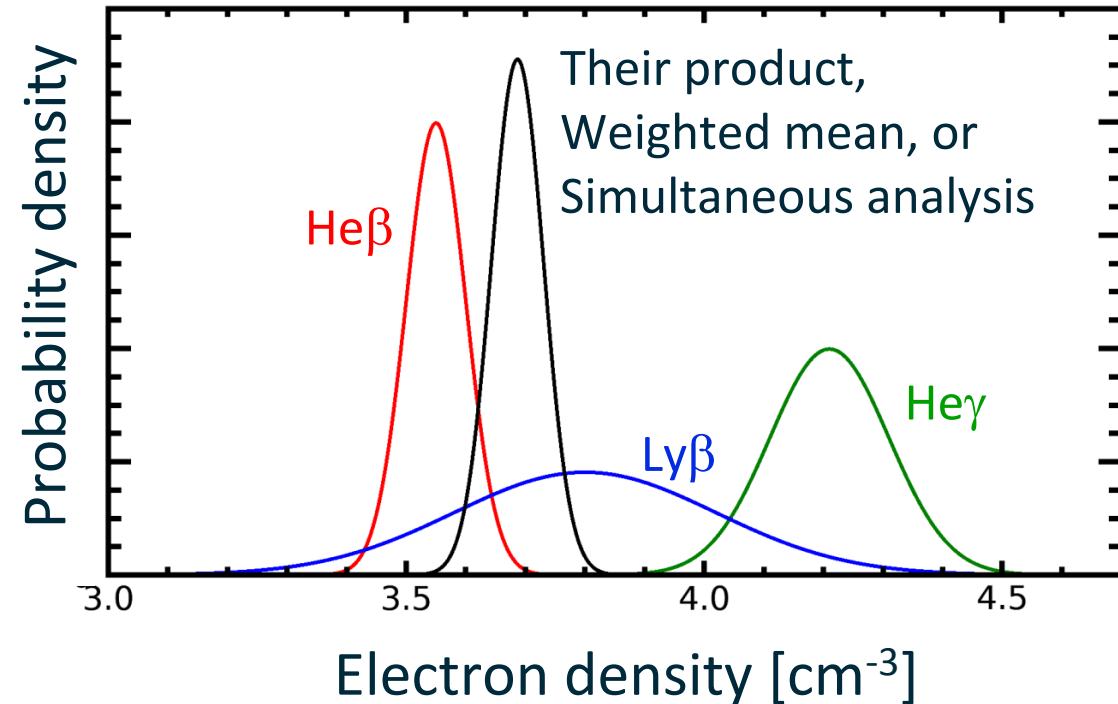
Both χ^2 and Bayesian analyses use the likelihood and thus can introduce this artificial underestimate of uncertainty *when model is inappropriate*

All line analysis under this circumstance results in *some average* with very small uncertainties

Individual analysis:*

He β : $(3.55 \pm 0.05) \times 10^{22}$ (1.4%)

He γ : $(4.21 \pm 0.10) \times 10^{22}$ (2.4%)


Ly β : $(3.80 \pm 0.22) \times 10^{22}$ (5.8%)

What's happening?

Simultaneous analysis:

He β , He γ , Ly β together

$(3.68 \pm 0.04) \times 10^{22}$ (1.1%) cm^{-3}

Both χ^2 and Bayesian analyses use the likelihood and thus can introduce this artificial underestimate of uncertainty *when model is inappropriate*

Our new approach quasi-isolate various dependencies, include inconsistencies into the parameter uncertainties

Step1: Background: Determine and subtract background from the data

Step2: n_e : Analyze Mg He β , He γ , Ly β line widths

Step3: ρL : Analyze Mg He β and He γ line depths

Step4: T_e : Analyze 11 line ratios

Advantage:

- This accounts for various uncertainties including uncertainty due to assumptions
- We may be able to identify issues from too large uncertainties

Pros and cons for each approach

Individual analysis:

Pros:

- Physics we rely on is clear --> More insightful
- Account for inconsistencies into uncertainty

Cons:

- Harder to account correlation between parameters and between objectives

Simultaneous analysis

Pros:

- Account for correlation between parameters and between objectives
- Statistically more accurate if dominant source of uncertainty is statistical noise

Cons:

- Physics we rely on is less clear --> Less insightful
- Cannot account for inconsistencies into uncertainties