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What are projection-based reduced order models?

(pPROMs)

* Fast-running surrogate models which
achieve their speed-ups by providing a B
approximate solutions to the exact S S PROM
governing equations. <
g
+ Leverages existing simulation software S 3
. . o o v @©
+ = :
Compatible with a priori and a posteriori o g e SedlrEed
error bounds = X .
| o o O | Surrogates Physics
+ Full-field predictions &
+ Less training data required <
Approximate Exact
—Intrusive

—Slower than “black box” methods Numerics
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pROM Worktlow Overview

Generate Solution Snapshots

High-Fidelity B P Solution
Model (FOM) Snapshots
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pROM Worktlow Overview

Generate Solution Snapshots

Solution
Snapshots
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High-Fidelity [T (

T |

Model (FOM)
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pROM Worktlow Overview

Perform PCA to Generate Reduced Basis

dx _ -
High-Fidelity [T (
Model (FOM) 1

=1"xT) =0

Solution ] M = UEV*I U Principal
Snapshotsj 'L Component
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pROM Worktlow Overview

Optionally Truncate

High-Fidelity ' A Solution ]M UEV* Principal Truncated
Model (FOM) Snapshots 'L Component Basis
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pROM Worktlow Overview

High-Fidelity ' A Solution ]M UEV* Principal Truncated
Model (FOM) Snapshots 'L Component Basis

Approximate FOM State
x(t; @) = X(t; ) = PE(t; i)

' J
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pROM Worktlow Overview

dx _ -
High-Fidelity |ETRARR (

=t(xF) =0 VL

Model (FOM)

Solution ]M UZV_( Principal Truncated
SnapshotsJ 'L Component Basis

Project System Dynamics

x(t; p) = X(t; p) = PR(L ) e ~ e N
| ﬂ Galerkin Projection LSPG Projection
OTr(@x™) = 0 ®x™ = argmin [[r" ()|
n=1,--,T verange(®)
_ \ Y =L T

D 1s a /inear trial subspace
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This works well for many problems

* Coupled transient nonlinear
conduction/radiation heat transfer

* LSPG for energy equation
 Galerkin for radiosity
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What’s the catch?

Kolmogorov n-width limitation

“+ Linear trial subspace sufficient for problems where
the singular values of M decay rapidly (i.e. diffusion
dominated problems).

*+ For other problems the singular values decay slowly
and many of the columns from U are required to be
retained in @ to achieve accurate solutions.

“* ROM computational cost is closely tied to the number
of modes retained

* Newton-Raphson iteration costs scale quadratically with the
trial subspace dimension

Solution is Nonlinear trial subspaces
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pROM Worktlow Overview

Nonlinear trial subspace

Optionally Truncate

High-Fidelity ' A Solution ]M UEV* Principal Truncated
Model (FOM) Snapshots 'L Component Basis
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pROM Worktlow Overview

Nonlinear trial subspace

dx _ -
High-Fidelity [T Solution
Model (FOM) Snapshots
= 1(xF)

" Nonlinear
x =~ g(x)

— ™/

Mapping
g: R" - R™
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pROM Worktlow Overview

Nonlinear trial subspace

dx

a=feen |
= 17¢xF) = 0 1

High-Fidelity

Model (FOM)

Solution
Snapshots

Approximate FOM State
x(t 1) = (6 @) = g(x(6 ), t; )

J

x~ g(x)

Project System Dynamics

Nonlinear
Mapping

g: R™ — R™

Galerkin Projection

x . gy —
= argmin|jr(J(xX)v, g(x),t; wll»

veRx

\

J

— ™/
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-

LSPG Projection

g(x") = argmin|[r"(g(v))ll

veRx

n=1,-,T

\
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e Bressio

* A computational framework aimed at providing performant m [ rom }
PROMSs to generic application codes J— T ............. I ‘;'-*':“T":é; ....... =
* Open source code developed at Sandia: 4{ (i maded J
» Lead developer: Francesco Rizzi 5 o lm,t,ga Tfi‘?’
 Team includes: Patrick Blonigan, Eric Parish, Kenny ;& i G
Chowdhary, John Tencer, Victor Brunini, Flint Pierce, % = fla,ti0) }
and more : 2(0: 1) = 2(3) :
* Former developers: Kevin Carlberg and Mark Hoemmen
B e
* Main idea:

« Separate the “application” and the ROM
« ROM methods are contained in the Pressio framework

* Pressio “plugs in” to an application code https://github.com/Press;
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https://github.com/Pressio
https://github.com/Pressio

Pressio High-Level Features

IF.Jressio

* Header-only C++11 library

» Benefits portability

* Leverages C++11 and metaprogramming for type detection and compile-time dispatching
* Supports HPC performance portability (Kokkos)
* Natively support data structures from Trillinos

 tPetra

* tPetraBlock

* ePetra
* Supports a Python API

* Enables Python users to use the C++ Pressio functionalities from Python
* Supports Galerkin, LSPG, and WLS ROMSs (w/ hyperreduction)
* Supports arbitrary nonlinear mappings for state reduction

I 4 I IR HE—— (BN R [ D
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How to define the mapping g(x)

Autoencoders, but what kind?

 Dense autoencoders
— Restricted to small states
— Parameter inefficient

* Convolutional autoencoders [1]
+ Parameter efficient
— Not very fast (no hyper-reduction)
— Limited to structured data

» Shallow masked autoencoders [2]
+ Faster evaluation (supports hyper-reduction)
+ Supports unstructured data
— Accuracy very sensitive to network width

* Graph convolutional autoencoders [3]

+ Parameter efficient (like traditional convolutional autoencoders)
1. Lee, Kookjin, and Kevin T. Carlberg. "Model reduction of dynamical systems on nonlinear

+ S uppo rts unstructured data (n;ggg(;lqls() g;l;g deep convolutional autoencoders." Journal of Computational Physics 404

T

Input Data Encoded Data Reconstructed Data

2. Kim, Youngkyu, et al. "A fast and accurate physics-informed neural network reduced order
+ RObUSt aCCu raCy model with shallow masked autoencoder." arXiv preprint arXiv:2009.11990 (2020).
. 3. Tencer, John, and Kevin Potter. "A Tailored Convolutional Neural Network for Nonlinear
— Not ve ry faSt (no hype r-red UCt|On) Manifold Learning of Computational Physics Data Using Unstructured Spatial

Discretizations." SIAM Journal on Scientific Computing 43.4 (2021): A2581-A2613.
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There’s an elephant in the room

Training time and scalability

* It's currently very difficult for non-pROM

experts to assess if using a pROM is Offline
worthwhile for a new application. training
— Absent this information, people are opting to not costs

adopt the technology and instead rely on existing
simulation tools.

Online
* We shouldn’t sweep training costs under the evaluation
rug. We should be reporting training costs for costs
our models alongside evaluation costs. B o
* We should be evaluating our methods on Lﬂj}

realistically large problems.

* We should be investing research effort into
speeding up and automating training in the
same way we invest in improving accuracy or
decreasing online costs.
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Some things we re currently playing around with:

Parallel training on spatially decomposed data

Pretty simple application problem
decomposed onto 4 processors

Trained 9 different models in parallel in a
coupled fashion.

Additional “global encoder” consolidates
information across processor boundaries
seems like a good idea, but introduces a

lot of extra communication and complexity “

without providing a ton of benefit.

SEA A
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Some things we’re currently playing around with:

Parallel training on spatially decomposed data

« Can get comparable performance with a 2-
step procedure where local autoencoders
are trained separately and then used to
define a single global latent space.

First Training Step Second Training Step

\

?

* Needed an additional penalty term at the
processor boundaries. Errors on processor
interfaces count double. This avoided the
need to couple the trainings.

B
Je—

r

 The second step is probably only necessary
for larger processor counts.

]

[N/ N/ _\/

* The chunks might need to be smaller than
what is typical for CFD simulations. When
we tried this for a larger proprietary problem,
the individual local autoencoders took hours
to train and we weren'’t able to fully
parallelize due to hardware resource
constraints.
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How does Pressio talk to an application?

4 )
Application Core Code
d
az() = flx,t, 1)
N\ /
T,l, 1 ‘ lf(a’:,t,p;) g—iv
4 )
Adapter
N\ /
m,t;u‘ lf(a':tp,) 9rv
(
Pressio
N\ J

int main( )

FHressio

Pressio’s API requires the application to expose two

main functions:

1. velocity: f(x,t, u)

.. Of
2. applyJacobian: 5~V

Pressio uses these functions to construct the ROMs

I 4 I IR HE—— (BN R [ D
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Convolutional Layers for Unstructured Data

(Especially PDE data)

Vy v, A
O—O—O0—0O0—0O0—0 o 1.1, 1.1,
O—O—O—O—O—O Commonly learned
filters are often closely 0] *1°1° i B
TS related to differential 2| o | 1 a |l a4 P P
O—O0—O0—0—0O0—0 operators
x- Sobel Filter y- Sobel Filter Edge Detection

* Use differential operators defined by the underlying spatial
discretization to propagate information.

* Operators can be computed offline or on-the-fly.

* Resulting learned weights will be discretization independent.

* Drop-in replacement for convolutional layers in autoencoder
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