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What are projection-based reduced order models?
    (pROMs)

• Fast-running surrogate models which 
achieve their speed-ups by providing 
approximate solutions to the exact 
governing equations.

+ Leverages existing simulation software
+ Compatible with a priori and a posteriori 

error bounds
+ Full-field predictions
+ Less training data required

─Intrusive
─Slower than “black box” methods
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This works well for many problems

• Coupled transient nonlinear 
conduction/radiation heat transfer

• LSPG for energy equation
• Galerkin for radiosity



Solution is Nonlinear trial subspaces

What’s the catch?
Kolmogorov n-width limitation
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Pressio

• A computational framework aimed at providing performant 
pROMs to generic application codes 

• Open source code developed at Sandia:
• Lead developer: Francesco Rizzi
• Team includes: Patrick Blonigan, Eric Parish, Kenny 

Chowdhary,  John Tencer, Victor Brunini, Flint Pierce, 
and more

• Former developers: Kevin Carlberg and Mark Hoemmen

• Main idea:
• Separate the “application” and the ROM
• ROM methods are contained in the Pressio framework
• Pressio “plugs in” to an application code

rom

https://github.com/Pressi
o

https://github.com/Pressio
https://github.com/Pressio


Pressio High-Level Features

• Header-only C++11  library
• Benefits portability 
• Leverages C++11 and metaprogramming for type detection and compile-time dispatching

• Supports HPC performance portability (Kokkos)
• Natively support data structures from Trillinos

• tPetra
• tPetraBlock
• ePetra

• Supports a Python API
• Enables Python users to use the C++ Pressio functionalities from Python

• Supports Galerkin, LSPG, and WLS ROMs (w/ hyperreduction)
• Supports arbitrary nonlinear mappings for state reduction



Autoencoders, but what kind?

• Dense autoencoders
─ Restricted to small states
─ Parameter inefficient

• Convolutional autoencoders [1]
+ Parameter efficient
─ Not very fast (no hyper-reduction)
─ Limited to structured data

• Shallow masked autoencoders [2]
+ Faster evaluation (supports hyper-reduction)
+ Supports unstructured data
─ Accuracy very sensitive to network width

• Graph convolutional autoencoders [3] 
+ Parameter efficient (like traditional convolutional autoencoders)
+ Supports unstructured data
+ Robust accuracy
─ Not very fast (no hyper-reduction)

ᵅ�
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There’s an elephant in the room
Training time and scalability

• It’s currently very difficult for non-pROM 
experts to assess if using a pROM is 
worthwhile for a new application.

– Absent this information, people are opting to not 
adopt the technology and instead rely on existing 
simulation tools.

• We shouldn’t sweep training costs under the 
rug.  We should be reporting training costs for 
our models alongside evaluation costs.

• We should be evaluating our methods on 
realistically large problems.

• We should be investing research effort into 
speeding up and automating training in the 
same way we invest in improving accuracy or 
decreasing online costs.

Offline 
training 
costs

Online 
evaluation 
costs



Some things we’re currently playing around with:
Parallel training on spatially decomposed data

Pretty simple application problem 
decomposed onto 4 processors

Trained 9 different models in parallel in a 
coupled fashion.

Additional “global encoder” consolidates 
information across processor boundaries 
seems like a good idea, but introduces a 
lot of extra communication and complexity 
without providing a ton of benefit.



Some things we’re currently playing around with:
Parallel training on spatially decomposed data

• Can get comparable performance with a 2-
step procedure where local autoencoders 
are trained separately and then used to 
define a single global latent space.

• Needed an additional penalty term at the 
processor boundaries.  Errors on processor 
interfaces count double.  This avoided the 
need to couple the trainings.

• The second step is probably only necessary 
for larger processor counts.

• The chunks might need to be smaller than 
what is typical for CFD simulations.  When 
we tried this for a larger proprietary problem, 
the individual local autoencoders took hours 
to train and we weren’t able to fully 
parallelize due to hardware resource 
constraints.
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How does Pressio talk to an application?

Pressio’s API requires the application to expose two 
main functions:

1. velocity: 

2. applyJacobian:

 Pressio uses these functions to construct the ROMs

Application Core Code

Pressio

Adapter int main(  )



Convolutional Layers for Unstructured Data
(Especially PDE data)

Commonly learned 
filters are often closely 
related to differential 
operators

x- Sobel Filter Edge Detectiony- Sobel Filter

∇ᵆ� ∇ᵆ� ∆

• Use differential operators defined by the underlying spatial 
discretization to propagate information.

• Operators can be computed offline or on-the-fly.

• Resulting learned weights will be discretization independent.

• Drop-in replacement for convolutional layers in autoencoder 
networks.
 


