
Exceptional service in the national interest

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and
Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department
of Energy’s National Nuclear Security
Administration under contract DE-NA-
0003525.

Projection-based reduced order models for
large-scale multiphysics applications

John Tencer
Patrick Blonigan, Eric Parish, Francesco Rizzi

September 28, 2021

SAND2021-11779CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

What are projection-based reduced order models?
 (pROMs)

• Fast-running surrogate models which
achieve their speed-ups by providing
approximate solutions to the exact
governing equations.

+ Leverages existing simulation software
+ Compatible with a priori and a posteriori

error bounds
+ Full-field predictions
+ Less training data required

─Intrusive
─Slower than “black box” methods

pROM Workflow Overview

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ�

Generate Solution Snapshots

pROM Workflow Overview

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ�

Generate Solution Snapshots

ᵇ�
ᵉ� ᵅ� (ᵉ� ᵅ�) = 0ᵅ� = 1, ⋯ ,ᵄ�

pROM Workflow Overview

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ�High-Fidelity

Model (FOM)
Solution
Snapshotsᵇ� Principal

Component
s

ᵇ� = ᵇ� ᵲ� ᵇ� ∗

Perform PCA to Generate Reduced Basis

ᵇ�
ᵉ� ᵅ� (ᵉ� ᵅ�) = 0ᵅ� = 1, ⋯ ,ᵄ�

pROM Workflow Overview

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ�ᵇ� Principal

Component
s

ᵇ� = ᵇ� ᵲ� ᵇ� ∗

Optionally Truncate

ᵇ� Truncated
Basisᵳ�

ᵉ� ᵅ� (ᵉ� ᵅ�) = 0ᵅ� = 1, ⋯ ,ᵄ�

pROM Workflow Overview

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ� Principal

Component
s

ᵇ� = ᵇ� ᵲ� ᵇ� ∗
ᵇ� Truncated

Basisᵳ�

Approximate FOM State

ᵉ� ᵅ� (ᵉ� ᵅ�) = 0ᵅ� = 1, ⋯ ,ᵄ�

pROM Workflow Overview

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ� Principal

Component
s

ᵇ� = ᵇ� ᵲ� ᵇ� ∗
ᵇ� Truncated

Basisᵳ�

Project System Dynamics

ᵉ� ᵅ� (ᵉ� ᵅ�) = 0ᵅ� = 1, ⋯ ,ᵄ�

Galerkin Projection LSPG Projection

This works well for many problems

• Coupled transient nonlinear
conduction/radiation heat transfer

• LSPG for energy equation
• Galerkin for radiosity

Solution is Nonlinear trial subspaces

What’s the catch?
Kolmogorov n-width limitation

pROM Workflow Overview
Nonlinear trial subspace

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ�ᵇ� Principal

Component
s

ᵇ� = ᵇ� ᵲ� ᵇ� ∗

Optionally Truncate

ᵇ� Truncated
Basisᵳ�

ᵉ� ᵅ� (ᵉ� ᵅ�) = 0ᵅ� = 1, ⋯ ,ᵄ�

pROM Workflow Overview
Nonlinear trial subspace

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ� Principal

Component
s

ᵇ� = ᵇ� ᵲ� ᵇ� ∗
ᵇ� Truncated

Basisᵳ�
ᵉ� ᵅ� (ᵉ� ᵅ�) = 0ᵅ� = 1, ⋯ ,ᵄ�

Nonlinear
Mapping

pROM Workflow Overview
Nonlinear trial subspace

High-Fidelity
Model (FOM)

Solution
Snapshotsᵇ� Principal

Component
s

ᵇ� = ᵇ� ᵲ� ᵇ� ∗
ᵇ� Truncated

Basisᵳ�

Nonlinear
Mapping

Galerkin Projection LSPG Projection

Approximate FOM State Project System Dynamics

ᵉ� ᵅ� (ᵉ� ᵅ�) = 0ᵅ� = 1, ⋯ ,ᵄ�

Build a pROM using data for

Use the pROM to predict for

Pressio

• A computational framework aimed at providing performant
pROMs to generic application codes

• Open source code developed at Sandia:
• Lead developer: Francesco Rizzi
• Team includes: Patrick Blonigan, Eric Parish, Kenny

Chowdhary, John Tencer, Victor Brunini, Flint Pierce,
and more

• Former developers: Kevin Carlberg and Mark Hoemmen

• Main idea:
• Separate the “application” and the ROM
• ROM methods are contained in the Pressio framework
• Pressio “plugs in” to an application code

rom

https://github.com/Pressi
o

https://github.com/Pressio
https://github.com/Pressio

Pressio High-Level Features

• Header-only C++11 library
• Benefits portability
• Leverages C++11 and metaprogramming for type detection and compile-time dispatching

• Supports HPC performance portability (Kokkos)
• Natively support data structures from Trillinos

• tPetra
• tPetraBlock
• ePetra

• Supports a Python API
• Enables Python users to use the C++ Pressio functionalities from Python

• Supports Galerkin, LSPG, and WLS ROMs (w/ hyperreduction)
• Supports arbitrary nonlinear mappings for state reduction

Autoencoders, but what kind?

• Dense autoencoders
─ Restricted to small states
─ Parameter inefficient

• Convolutional autoencoders [1]
+ Parameter efficient
─ Not very fast (no hyper-reduction)
─ Limited to structured data

• Shallow masked autoencoders [2]
+ Faster evaluation (supports hyper-reduction)
+ Supports unstructured data
─ Accuracy very sensitive to network width

• Graph convolutional autoencoders [3]
+ Parameter efficient (like traditional convolutional autoencoders)
+ Supports unstructured data
+ Robust accuracy
─ Not very fast (no hyper-reduction)

ᵅ�

1. Lee, Kookjin, and Kevin T. Carlberg. "Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders." Journal of Computational Physics 404
(2020): 108973.

2. Kim, Youngkyu, et al. "A fast and accurate physics-informed neural network reduced order
model with shallow masked autoencoder." arXiv preprint arXiv:2009.11990 (2020).

3. Tencer, John, and Kevin Potter. "A Tailored Convolutional Neural Network for Nonlinear
Manifold Learning of Computational Physics Data Using Unstructured Spatial
Discretizations." SIAM Journal on Scientific Computing 43.4 (2021): A2581-A2613.

There’s an elephant in the room
Training time and scalability

• It’s currently very difficult for non-pROM
experts to assess if using a pROM is
worthwhile for a new application.

– Absent this information, people are opting to not
adopt the technology and instead rely on existing
simulation tools.

• We shouldn’t sweep training costs under the
rug. We should be reporting training costs for
our models alongside evaluation costs.

• We should be evaluating our methods on
realistically large problems.

• We should be investing research effort into
speeding up and automating training in the
same way we invest in improving accuracy or
decreasing online costs.

Offline
training
costs

Online
evaluation
costs

Some things we’re currently playing around with:
Parallel training on spatially decomposed data

Pretty simple application problem
decomposed onto 4 processors

Trained 9 different models in parallel in a
coupled fashion.

Additional “global encoder” consolidates
information across processor boundaries
seems like a good idea, but introduces a
lot of extra communication and complexity
without providing a ton of benefit.

Some things we’re currently playing around with:
Parallel training on spatially decomposed data

• Can get comparable performance with a 2-
step procedure where local autoencoders
are trained separately and then used to
define a single global latent space.

• Needed an additional penalty term at the
processor boundaries. Errors on processor
interfaces count double. This avoided the
need to couple the trainings.

• The second step is probably only necessary
for larger processor counts.

• The chunks might need to be smaller than
what is typical for CFD simulations. When
we tried this for a larger proprietary problem,
the individual local autoencoders took hours
to train and we weren’t able to fully
parallelize due to hardware resource
constraints.

Exceptional service in the national interest

Backups

How does Pressio talk to an application?

Pressio’s API requires the application to expose two
main functions:

1. velocity:

2. applyJacobian:

 Pressio uses these functions to construct the ROMs

Application Core Code

Pressio

Adapter int main()

Convolutional Layers for Unstructured Data
(Especially PDE data)

Commonly learned
filters are often closely
related to differential
operators

x- Sobel Filter Edge Detectiony- Sobel Filter

∇ᵆ� ∇ᵆ� ∆

• Use differential operators defined by the underlying spatial
discretization to propagate information.

• Operators can be computed offline or on-the-fly.

• Resulting learned weights will be discretization independent.

• Drop-in replacement for convolutional layers in autoencoder
networks.

