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Background

I For decades, Deep Neural Networks were an academic research area, because they
were too expensive to train.

I Backpropagation, based on the chain rule and dynamic programming, and GPU
implementation starting in 2011 made it possible to train them efficiently.

I 2012: ImageNet challenge winners have never exceeded 74.3% top-five accuracy, and
the competition has been dominated by classical approaches. A team led by Alex
Krizhevsky and Geoffrey Hinton using DNNs achieve 83.6%. In more recent years,
winners have achieved ∼95% top-five accuracy using improved DNNs and the
ImageNet challenge is considered solved.

I Novel applications of DNNs – some of them breakthrough – have been found in
various scientific applications. We consider DNNs for scientific computating tasks
such as solving PDEs, surrogate modeling of high-dimensional systems, and
reduced-order modeling, which involve DNNs for regression tasks.

I Here, DNNs have been utilized in leiu of established numerical methods, such as
mesh-based PDE solvers and PCA.
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Deep Neural Networks

I Defining the affine transformation, Tl(x) = Wl · x+ bl, and given an activation
function σ, a feedforward neural network “hidden layer” architecture may be

FHL(x, ξH) = σ ◦ TL ◦ · · · ◦ σ ◦ T1. (1)

Here, ξH = {(Wl, bl)}Ll=1 consists of the hidden layer parameters. A typical activation
function σ is ReLU, defined by ReLU(x) = x if x ≥ 0 and ReLU(x) = 0 else.

I For regression, the DNN is typically of the form

NN (x; ξH ,W ) = FLL(x;W ) ◦ FHL(x, ξH) (2)

where the linear layer is given by FLL(x;W ) = Wx.

I With the hidden layer parameters ξH and linear layer parameters ξL = W free, a
DNN defines an approximation class, a parametrized manifold in some function
space defined by the regularity of the activation function σ. With parameters fixed, a
DNN is a fixed function.
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Figure: Left: Illustration of a fixed-width, fully-connected DNN with univariate output,
typical for regression. Right: End-layers for a classification-type DNN for 3 classes.

I For classification, the DNN is typically of the form

NN (x, ξH ,W ) = FSM ◦ FLL(·; W) ◦ FHL(x; ξH), (3)

where the softmax function is given by F iSM(x) = exp(xi)∑Nc
j=1 exp(xj)

, and satisfies for all x,

0 ≤ F iSM(x) ≤ 1,
∑
i

F iSM(x) = 1. (4)
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Approximation with DNNs

I Function approximation is at the heart of DNN applications.

I In regression, given finite samples {f(xi)}Ni=1 of a target function f : Ω→ Rd, where
xi ∈ Ω, one wishes to construct a good approximation to f in some norm, such as
Lp(Ω;Rd) or Hs(Ω;Rd).

I The purpose of training is to find parameters (ξH , ξL) that minimize some discrete
approximation to these norms.

I In a regression problem, the loss function may be of the form

L(ξ,W ) = ‖u(x)−NN (x, ξ,W )‖2`2(X ), (5)

where X is a finite set of points x in Rd over which u(x) is known. This is your
training set.

I In classification, we instead try to minimize the discrepancy between the DNN and a
target distribution, e.g. in the K-L divergence or Wasserstein metric sense, given
some samples. Usually the cross-entropy loss is used.

I We will focus in regression for the remainder of the talk, but classification
architectures will make an appearance.
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Physics-informed neural networks

I This involves a simple modification to the loss.

I Suppose in addition to having some data for a field u, you know that Pu = f , where
P is some (possibly nonlinear) differential operator.

L(ξ,W ) = ‖u(x)−NN (x, ξ,W )‖2`2(X ) +
∥∥f(x)−P [NN (x, ξ,W )]

∥∥2

`2(collocation points)
.

(6)

I Can work with this loss function exactly as before, using off-the-shelf tools such as
Tensorflow, Pytorch, etc.

I Typically, the first term is broken up into data on the interior of a domain and data
on the boundaries (ICs and BCs).

I Fuses data on u and knowledge of the PDE for u; can use both.

I Warning: BCs, ICs, and Source term must be treated as scattered data. Question of
what weights to put in front of each term in the loss.
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Figure: Solving the Burgers’ with a PINN using only IC and BC data, with collocation
points (not shown) in the interior. From Raissi et. al., “Physics Informed Deep Learning
(Part I)”.
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Figure: Solving the Burgers’ with a PINN using IC, BC and interior observations, with
collocation points (not shown) in the interior. From Raissi et. al., “Physics Informed Deep
Learning (Part II)”.
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Adaptive basis viewpoint

I We consider the family of neural networks NN ξ : Rd → R consisting of L hidden
layers of width w composed with a final linear layer, admitting the representation

NN ξ(x) =

w∑
i=1

ξL
i Φi(x; ξH) (7)

where ξL and ξH are the parameters corresponding to the final linear layer and the
hidden layers respectively, and we interpret ξ as the concatenation of ξL and ξH.

I This viewpoint makes it clear that ξH parametrize the basis (like a FEM Mesh &
Shape functions), while ξL are just coefficients for these basis functions.
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What is a PINN doing? A scientific computing perspective

I As an approximation scheme (class & method), training DNNs is nonlinear, like
adaptive FEM, free-knot splines, and best n-term wavelet approximation. (Linear
methods would be Fourier series and Taylor polynomials).

I Letting an optimizer go to town on a PINN is analogous to letting all the parameters
of a FEM mesh with parametrized shape functions be completely free, and letting a
first-order gradient optimizer try to adapt the mesh and solve your PDE using a
collocation objective function at the same time!

I This analogy can be made quite concrete; see He et al, (2018), “Relu deep neural
networks and linear finite elements”, which compares ReLU DNNs to continuous
piecewise linear (CPWL) finite elements.

I

Figure: From Hanin and Rolnick, “Complexity of Linear
Regions in Deep Networks”, 2019. Output of a
ReLU-activation DNN with two-dimensional input.
Different colors correspond to different direction/slope of
the CPWL output, to make “cut-planes” visible.
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Approximation Theory & Approximation Practice

I Approximation theory for DNNs has made several recent strides.

I Important Result: DNNs can approximate partitions-of-unity and monomials to an
accuracy which decays exponentially with the depth of the network, i.e., there exist
parameters for such DNNs that give such error rates w.r.t. depth.

I Therefore, DNNs can emulate hp-FEM approximation, among other approximation
classes.

I However, these theoretical results are only about existence of parameters giving such
approximation. Such optimal parameters cannot be found using practical training
methods! They do not address optimization error and generalization error.

I In practice, DNNs exhibit severe issues related to bad initializations (“dead
gradients”), unstable and irreproducible training, and hyperparameter optimization.

I Just getting DNNs to perform well for basic numerical tasks requires a lot of tuning
and art.
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Problems we consider and their loss functions

I We consider the following class of `2 regression problems:

argmin
ξ

K∑
k=1

εk ‖Lk[u]− Lk [NN ξ]‖2`2(Xk) (8)

where for each k = 1, 2, ...,K, Xk = {x(k)
i }Nk

i=1 denotes a finite collection of data
points, NN ξ a neural network with parameters ξ, and Lk a linear operator.

I In the case where k = 1 and L is the identity, we obtain the standard regression
problem

argmin
ξ
‖u−NN ξ‖2`2(X ). (9)

I In general, the multi-term loss is used, e.g., in physics-informed neural networks for
solving linear PDEs.
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DNN Architectures

I A broad range of architectures admit this interpretation. We consider both plain
neural networks (also referred to as multilayer perceptrons or MLPs) and residual
neural networks (ResNets).

I Defining the affine transformation, Tl(x, ξ) = W ξ
l · x+ bξl , and given an activation

function σ, plain neural networks correspond to the choice

Φplain(x, ξ) = σ ◦ TL ◦ · · · ◦ σ ◦ T1, (10)

while residual networks correspond to

Φres(x, ξ) = (I + σ ◦ TL) ◦ · · · ◦ (I + σ ◦ T2) ◦ (σ ◦ T1), (11)

where Φ is the vector of the w functions Φi, σ the vector of the w activation
functions σ and I denotes the identity. In both cases ξH corresponds to the weights
and biases W and b.

I In practice, very deep plain DNNs are not trainable. A rule of thumb is if you have
more than 10 layers, you should probably use a ResNet.
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Hybrid Least Squares/Gradient Descent

I We seek

argmin
ξL, ξH

K∑
k=1

εk

∥∥∥∥∥Lk[u]−
∑
i

ξL
i Lk

[
Φi(x, ξ

H)
]∥∥∥∥∥

2

`2(Xk)

. (12)

A typical approach to solving this problem is to apply gradient descent with
backpropagation jointly in (ξL, ξH).

I Given the adaptive basis viewpoint, an alternative is to hold the hidden weights ξH

constant and minimize w.r.t. to ξL, yielding the LS problem (for simplicity focusing
on K = 1):

argmin
ξL

∥∥AξL − b
∥∥2

`2(X )
(13)

Here we have bi = L[u](xi) and Aij = L
[
Φj(xi, ξ

H)
]

for xi ∈ X , i = 1, . . . , N ,
j = 1, . . . , w.
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Hybrid Least Squares/Gradient Descent (LSGD)

I Exposing the LS problem in this way prompts a natural modification of gradient
descent.

I The LSGD algorithm proceeds by alternating between: a LS solve to update ξL by a
global minimum for given ξH , and a GD step to update ξH.
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Illustration of LSGD

Figure: LSGD algorithm. The black dot
denotes the initial guess and the black
star a local minimum. The red line
represents the submanifold (ξH , ξL) for
which ξL is a solution to the least
squares problem for fixed ξH , written
ξL = LS(ξH), on which
∇ξJ = (∇ξHJ ,0).
Since the black star must also be a global
minimum in ξL, it lies on this
submanifold.
The blue curve represents GD, and the
rectilinear green curve LSGD. Each LS
solve (dashed green line) moves the
parameters to the submanifold
ξL = LS(ξH).
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Mean of log10(Loss) over 16
training runs ± one stan-
dard deviation of the same
quantity, for approximating
sin(2πx) on [0, 1] sampled at
256 evenly spaced points.
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The Box initialization for ReLU DNNs

I LSGD ensures optimal representation of data in terms of the basis. Thus, we want
the initial basis to have maximal rank.

I The He/Glorot initializations, for fixed width and increasing depth, rapidly lead to a
set of constant basis functions for plain networks and linearly dependent basis
functions for deep ReLU network.
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I Imagine a DNN with one hidden layer. From a C0 finite element point of view, it is
better to scatter the breakpoints (in one-dimension) or cut-planes (in higher
dimensions) of the ReLU functions randomly in the domain where data is available.
Then, each basis function will be sensitive to local changes in parameters.
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2
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Basis function plots for DNNs of width 8
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Effect of Box initialization on training

I We compare the use of the Box initialization for a residual neural network with
hidden layer width 32 against the He initialization for approximating sin(2πx) using
256 evenly spaced samples in [0, 1]. We average over 16 independent runs.

Figure: Mean of log10(Loss) over 16 training runs of residual width-32 ReLU network
with L = 8, 16, 32, 64 and 128 hidden layers and training rate 2−(k+3) for the He (left)
and Box (right) initializations.

21



Application: PINN solver for Advection Eq.

I We consider now a physics-informed neural network (PINN) solution to the linear
transport equation ∂tu(x, t) + a(x, t) ∂xu(x, t) = 0 on the unit space-time domain
(x, t) ∈ [0, 1]2, with initial condition u(x, t = 0) = u0(x) and homogeneous Dirichlet
boundary data u(x = 0, t) = 0.

I The loss function considered here is

J = εJ1 + J2 + J3, J1 =
1

N1

∑
i∈X1

|∂tNN i + ∂xa(x, t)NN i|2,

J2 =
1

N2

∑
i∈X2

|NN i(x, 0)− u0|2, J3 =
1

N3

∑
i∈X3

|NN i(0, t)|2
(14)

where X1,X2 and X3 are Cartesian point clouds with spacing ∆x on the interior, left
and bottom boundaries, respectively.
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Advection Equation with Constant Velocity

I For constant velocity, a(x, t) = 1, the analytical solution is u(x, t) = u0(x− t). We use
a shallow one-layer ReLU network.

I For this case, the exact solution is in the range of the network for width ≥ 3, and at
this point J1 = J2 = J3 = 0, rendering the choice of ε unimportant (we set ε = 1).
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Figure: Left: Loss evolution over training for GD and LSGD. Right: Solution after
5000 iterations for GD and 500 iterations for LSGD. Setting: Box initialization, ReLU
activation function, network width = 32, depth = 1, learning rate = 0.005.
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Advection Equation with Nonconstant Velocity

I We next consider nonconstant velocity, a(x, t) = x, with corresponding analytic
solution

u(x, t) = u0(x exp(−t)). (15)

I In this case we must fix ε independent of the neural network size to realize
convergence. We hypothesized ε = W−α and identified α = 1/2 as revealing O(W

1
2 )

convergence rate w.r.t. width.
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25



The POUnet Architecture

I Using practical training methods, it is not possible to achieve hp-approximation rates
using DNNs, despite what is theoretically possible with optimal approximation rates.

I On the other hand, DNNs have proven ability to partition space in very high
dimensions when used for classification problems.

I We propose partition of unity networks (POUnets) which incorporate
hp-approximation directly into the architecture.

I Classification architectures of the type used to learn probability measures are used to
build a meshfree partition of space, while polynomial spaces with learnable
coefficients are associated to each partition.

I The resulting hp-element-like approximation allows use of a fast least-squares
optimizer, and the resulting architecture size need not scale exponentially with spatial
dimension, breaking the curse of dimensionality.
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An abstract POU network

I Consider a partition of unity Φ = {φα(x)}Npart

α=1 satisfying
∑
α φα(x) = 1 and

φα(x) ≥ 0 for all x. We work with the approximant

yPOU(x) =

Npart∑
α=1

φα(x)

dim(V )∑
β=1

cα,βPβ(x), (16)

where V = span {Pβ}.
I For this work, we take V to be the space πm(Rd) of polynomials of order m, while Φ

is parametrized as a neural network with weights and biases ξ and output dimension
Npart:

φα(x; ξ) =
[
NN (x; ξ)

]
α
, 1 ≤ α ≤ Npart. (17)

I We consider two architectures for NN (x; ξ) to be specified later. Approximants of
the form (16) allow a “soft” localization of the basis elements Pβ to an implicit
partition of space parametrized by the φα.
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Figure: POUnet architecture.

Main idea: rather than attempt to emulate POU + monomials, build a POU
directly into the architecture using softmax layers and append monomial layers.
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Training with POUnets

I We fit both the localized basis coefficients c = [cα,β ] and the localization itself
simultaneously by solving the optimization problem

argmin
ξ,c

∑
i∈D

∣∣∣∣∣∣
Npart∑
α=1

φα(xi, ξ)

dim(V )∑
β=1

cα,βPβ(xi)− yi

∣∣∣∣∣∣
2

. (18)

I A shallow RBF-network implementation of Φξ is given by (16) and

φα =
exp

(
−|x− ξ1,α|2/ξ2

2,α

)
∑
β exp

(
−|x− ξ1,β |2/ξ2

2,β

) . (19)

I Here, ξ1 denotes the RBF centers and ξ2 denotes RBF shape parameters, both of
which evolve during training.

I Such an architecture works well for approximation of smooth functions, but the C∞
continuity of Φξ causes difficulty in the approximation of piecewise smooth functions.

I We also consider a deep architecture for Φξ given by a residual network architecture
composed with a softmax layer S to define (17).
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Optimal training error estimate

I Consider an approximant yPOU of the form (16) with V = πm(Rd). If y(·) ∈ Cm+1(Ω)
and ξ∗, c∗ solve (18) to yield the approximant y∗POU, then

‖y∗POU − y‖2`2(D) ≤ Cm,y max
α

diam
(
supp(φξα)

)m+1
(20)

where ‖y∗POU − y‖`2(D) denotes the root-mean-square norm over the training data
pairs in D,

‖y∗POU − y‖`2(D) =

√√√√ 1

Ndata

∑
(x,y)∈D

(y∗POU(x)− y(x))
2
, (21)

and
Cm,y = ‖y‖Cm+1(Ω). (22)

I In practice, we do not work with compactly supported partition functions, since
globally supported functions are easier to train as they are more robust to a bad
initialization.

I However, the principle behind this theorem still holds in practice: partitions that are
not localized should be avoided and every partition should be “active” to minimize
the size of the partitions.
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Two-Phase Training

I The least-squares structure of (18) allows application of the least-squares gradient
descent (LSGD) block coordinate descent strategy.

I To prevent learned partition functions φα from “collapsing” to near-zero values
everywhere. we will also consider a pre-training step, which adds an `2 regularizer to
the polynomial coefficients.

I The intuition behind this is that a given partition regresses data using an element of
the form cα,βφαPβ .

I If φα is scaled by a small δ > 0, the LSGD solver may pick up a scaling 1/δ for cα,β
and achieve the same approximation. Limiting the coefficients thus indirectly
penalizes this mode of partition function collapse, promoting more quasi-uniform
partitions of space.

I In the first phase of training, we include this regularizer to the loss. After a certain
number of epochs, when good partitions have been found, we perform a second phase
of training without it.
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Smooth example using RBFnets for POU

We consider an analytic function as our first benchmark, specifically the sine function defined on a
cross-shaped one-dimensional manifold embedded in [−1, 1]2

y(x) =

{
sin(2πx1), if x2 = 0,
sin(2πx2), if x1 = 0.

We test RBF-Nets for varying number of partitions, Npart = {1, 2, 4, 8, 16} and the maximal
polynomial degrees {0, 1, 2, 3, 4}. For training, we collect data xi, i = 1, 2 by uniformly sampling
501 {((x1, x2),y(x)}-pairs on each axis. We initialize centers of the RBF basis functions by
sampling uniformly from the domain [−1, 1]2 and initialize shape parameters as ones.
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Figure: Relative `2-errors (log-log scale) of approximants produced by POUnets with RBF-Net
partition functions for varying Npart and varying mmax (left) and standard MLPs for varying
width and depth (right).
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Piecewise smooth functions

I We next consider piecewise linear and piecewise quadratic functions: triangle waves
with varying frequencies, i.e., y(x) = TRI(x; p), and their quadratic variants
y(x) = TRI2(x; p), where

TRI(x; p) = 2

∣∣∣∣px− ⌊px+
1

2

⌋∣∣∣∣− 1. (23)

I We study the introduction of increasingly many discontinuities by increasing the
frequency p = {1, 2, 3, 4, 5}, which results in piecewise linear and quadratic functions
with 2p pieces.

I Based on the number of pieces in the target function, we scale the width of the
baseline neural networks and POUnets as 4× 2p, while fixing the depth as 8, and for
POUnets the number of partitions are set as Npart = 2p.

I For POUnets, we choose the maximal degree of polynomials to be mmax = 1 and
mmax = 2 for the piecewise linear and quadratic target functions, respectively.

I Reproduction of such sawtooth functions by ReLU networks via both wide networks
and very deep networks can be has been discussed theoretically, but to our knowledge
has not been achieved via standard training.
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Ground truth ResNet POUnet
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Snapshots of target functions y(x) and
approximants produced by ResNet and
POUnet (i.e., yPOU(x)) are depicted
in black, light green, and orange, re-
spectively. The target function corre-
spond to triangular waves (left) and their
quadratic variants (right). The bottom
row depicts the snapshots in the domain
[0.5,0.625].
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Two-phase training (piecewise linear waves)
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Figure: Triangular wave with two pieces (top) and triangular wave with eight pieces
(bottom): Phase 1 LSGD constructs localized disjoint partitions and Phase 2 LSGD
produces an accurate approximation.
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Two-phase training (piecewise quadratic waves)
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Figure: Quadratic wave with two pieces (top) and quadratic wave with eight pieces
(bottom): Phase 1 LSGD constructs localized disjoint partitions and Phase 2 LSGD
produces an accurate approximation.
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Probabilistic partition of unity networks (PPOUnets)

I We enrich POU-Nets with a Gaussian noise model to obtain a probabilistic
generalization amenable to gradient-based minimization of a maximum likelihood loss.

I The architecture provides spatial representations of both noiseless and noisy data as
Gaussian mixtures with closed form expressions for variance which provides an
estimator of local error.

I The training process yields remarkably sharp partitions of input space based upon
correlation of function values.

I Compared to standard deep neural networks, the framework demonstrates
hp-convergence without the use of regularizers to tune the localization of partitions.

I The framework scales more favorably to large data sets as compared to Gaussian
process regression and allows for spatially varying uncertainty, leveraging the
expressive power of deep neural networks while bypassing expensive training
associated with other probabilistic deep learning methods.
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Generative model, mean and variances

I Now, we associate to each partition i a random variable Xi(θ2) representing additive
noise whose distribution is characterized by parameters θ2. We define an analogous
sample of the probabilistic partition on unity network (PPOU-Net) model as

yppou(x, ξ, ω; θ1, θ2) =
∑
i

Φi(x, ξ; θ1)
(
pi(x) +Xi(ω, θ2)

)
, (24)

where Xi(ω, θ2) denotes a sample of Xi(θ2) with sample index ω. This leads to the
following generative model: for fixed x, one selects partition i with discrete probability
φi and then samples (pi(x) +Xi(ω; θ2)). It is clear that in the absence of the additive
noise (Xi = 0 for all i) we recover the standard POU-Net generative model.

I The probability density function p(yppou(x; θ1, θ2)) governing the distribution of (24)
is given by

p(yppou(x; θ1, θ2)) =

M∑
i=1

φi(x; θ1)N
(
yppou(x)

∣∣µi +Q(x), σi
)
, (25)

where N (y |µ, σ) denotes the normal density with mean µ and standard deviation σ.
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PPOUnets: POUnets with GMM noise model

I The mean µy and variance σy of the random variable yppou(x) are then given
explicitly by

µy(x) =

M∑
i=1

φi(x; θ1)(µi +Q(x)), (26)

σy(x) =

M∑
i=1

φi(x; θ1)σ2
i +

M∑
i=1

φi(x; θ1)µ2
i −

(
M∑
i=1

φi(x; θ1)µi

)2

. (27)

I Denoting by N (µ, σ) the random variable with density N (y |µ, σ), we have

yppou(x; θ1, θ2) ∼ Q(x) +

M∑
i=1

φi(x; θ1)N (µi, σi), (28)

which represents yppou as a POU-Net prediction augmented by Gaussian mixture
uncertainty.
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Likelihood function

I For the joint statistics for y(x1), y(x2), ..., y(xN ), we assume independence to obtain
the multivariate density

p(y(x1), y(x2), ..., y(xN )) =

N∏
`=1

p(y(x`)) =

N∏
`=1

M∑
i=1

φi(x`; θ1)N (y(x`);µi +Q(x`), σi),

(29)

where p(y(x`)) is the density given by (25). Given data D, we can evaluate the above
density and treat it as a likelihood.

I We then define a likelihood loss

L(θ1,µ,σ) = − log (p(y(x1), y(x2), ..., y(xN ))) (30)

= − log

(
N∏
`=1

M∑
i=1

φi(x`; θ1)N (y(x`);µi +Q(x`), σi)

)
(31)

= −
N∑
`=1

log

(
M∑
i=1

φi(x`; θ1)N (y(x`);µi +Q(x`), σi)

)
. (32)
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Training PPOUnets

I µ and σ are vectors with components µi and σi; below, we refer to {µ,σ} as θ2.

I We minimize this loss using the Adam algorithm. For all examples, a learning rate of
0.01 is used to emphasize the lack of sensitivity to model parameters.

I The parameters defining Q, i.e., the coefficients of the polynomials corresponding to
each partition, can be updated by minimizing the likelihood loss. An alternative step
to obtain an estimate of Q is to solve the following least squares problem for fixed θ1,

p∗i (x; θ1) = argmin
pi∈πm

N∑
j=1

M∑
i=1

(φi(xj ; θ1)(pi(xj)− y(xj))
2
, (33)

and define Q∗m =
∑M
i=1 φi(x; θ1)p∗i (x). Note that this least square estimator amounts

to solving a linear system of size Mdim(πm).
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PCA bisection of partitions

I We observed that the optimizer partitions the y-axis by placing the µi and selecting the σi

to cluster the y-values of the data. This effects a “soft” classification of the data into M
nearly-disjoint classes or intervals, labelled by the POU index i. The optimizer concurrently
partitions space during training by adapting the supports of the POU functions φi(x; θ1) to
the boundaries of the x-values of the data that have been so labelled.

I We found that this training is excellent at producing nearly disjoint partition of domain
space by the sets supp(φi) without explicit regularization. However, it has the undesirably
property that the sets supp(φi) are not simply connected.

I To post-process partitions, after the φi are trained, we pursue a principal component
analysis (PCA) based bisection strategy which reliably yields simply-connected,
quasi-uniform partitions in a post-processing step.

I Given a collection of points Di ⊂ D, define

Ci =
∑

xj∈Di

(xj − x̄i)⊗ (xj − x̄i) , (34)

where x̄i = (#Di)
−1∑

xj∈Di
xj is the center of mass. Performing the singular value

decomposition of Ci provides a best fit of an ellipsoid to Di, with the axis direction given by
the right singular vectors and the lengths given by the corresponding singular values. We
denote the vector corresponding to the largest singular value ni.
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Training with PCA bisection

I The function F (x) = argmax{φi(x)} classifies the data according into M classes. Taking
Di = F−1(i), we obtain two new partitions φi,+(x) = φi(x) ∗ 1(x−x̄i)·ni>0(x) and
φi,−(x) = φi(x) ∗ 1(x−x̄i)·ni≤0(x), where 1A denotes the indicator function of a set A.

I This decomposition preserves the POU property because φi = φi,+ + φi,−, and yield a total
of Mtot = M × 2Nref partitions of input space.

Figure: Evolution of PPOU at initialization
(left column), 1,000 steps (center column)
and 10,000 steps (right column). Row 1:
initially random partitions evolve into
approximation of indicator functions. Row
2: Training of MLE without polynomial
contribution Q yields piecewise constant
expectation on each partition with standard
deviation estimating error. Row 3:
Bisection provides simply connected
partitions amenable to polynomial
approximation. Row 4: Piecewise
polynomial regression with an estimate of
uncertainty with no human in the loop.
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Noisy with spatially heterogeneous noise

I Regression of smooth function with spatially varying noise using M = 5 partitions
(left column) and M = 10 partitions (center column). Partitions (top) cluster
automatically near steep gradients in either function value or uncertainty to
accurately estimate standard deviation. In comparison, Gaussian process regression
(right column) is unable to provide an accurate estimate of uncertainty, since the
constant noise amplitude σGP is unable to model the spatially heterogeneous noise.
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Regression in 2D

I Regressing y = sin 2πx sin 2πy in two dimensions (left) provides partitions of more
complex topology. Bisection is critical to obtain compactly supported sets amenable
to polynomial approximation, while initial partition focuses refinement. Comparison
of linear and quadratic regression for M = 1, 5, 10, 20 initial partitions demonstrate
algebraic convergence rates under refinement consistent with FEM approximation

theory.
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Breaking the curse of dimensionality: Regression in 4D

I Lifting the data from the previous example by mapping (x1, x2) ∈ R2 to
(x1, x2, x

2
2, 0) ∈ R4 (left) provides qualitatively similar partitions of space (center)

which provide similar convergence rates when comparing the two- and
four-dimensional settings (right). Plots depict the projection of data
(x1, x2, x3, x4) ∈ R4 into (x1, x2, x3, 0) ∈ R3.
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The Charon Database

I A representative solution from the BJT database demonstrating the electric potential
field on a finite element grid with 4,154 degrees of freedom (basis functions). The
potential is the solution of the boundary value problem obtained by imposing a fixed
voltage V1 at the emitter (top left red boundary), V2 at the base (top right green
boundary), and V3 at the collector (bottom blue boundary). The database is
constructed by performing a three dimensional sweep over (V1, V2, V3).

I
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Reduced-order model using PPOUnets for Charon

I (Left:) Applying the PPOU process with m = 0 and Nref = 0 provides an estimate for
the best set of 10 partitions which approximate any given PDE solution in the
database well. The location of partitions coincide with physical intuition - the sharp
gradients near “junctions” at the emitter and baseplate are the locations where the
BJT provides ideal diode-like behavior.

I (Right:) Evolution of RMS error for least squares fit of each solution in the database
as partitions evolve during training. A worst case error of < 5% is achieved.
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