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ABSTRACT: Accurate estimation of greenhouse gases (GHGs) emissions is very important 

for developing mitigation strategies to climate change by controlling and reducing GHG 

emissions. This project aims to develop multiple deep learning approaches to estimate 

anthropogenic greenhouse gas emissions using multiple types of satellite data. NO2 concentration 

is chosen as an example of GHGs to evaluate the proposed approach. Two sentinel satellites 

(sentinel-2 and sentinel-5P) provide multiscale observations of GHGs from 10-60m resolution 

(sentinel-2) to ~kilometer scale resolution (sentinel-5P). Among multiple deep learning (DL) 

architectures evaluated, two best DL models demonstrate that key features of spatio-temporal 

satellite data and additional information (e.g., observation times and/or coordinates of ground 

stations) can be extracted using convolutional neural networks and feed forward neural networks, 

respectively. In particular, irregular time series data from different NO2 observation stations limit 

the flexibility of long short-term memory architecture, requiring zero-padding to fill in missing 

data. However, deep neural operator (DNO) architecture can stack time-series data as input, 

providing the flexibility of input structure without zero-padding. As a result, the DNO 

outperformed other deep learning architectures to account for time-varying features. Overall, 

temporal patterns with smooth seasonal variations were predicted very well, while frequent 

fluctuation patterns were not predicted well. In addition, uncertainty quantification using 

conformal inference method is performed to account for prediction ranges. Overall, this research 

will lead to a new groundwork for estimating greenhouse gas concentrations using multiple 

satellite data to enhance our capability of tracking the cause of climate change and developing 

mitigation strategies. 

 

 
INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:  

Anthropogenic greenhouse gases (GHGs) emissions are the main cause of climate change.  A 

recent Department of Homeland Security report (DHS, 2021) for addressing climate change 

emphasizes an increasingly urgent call to reduce GHG emissions to mitigate climate change. 

Hence, accurate estimation of GHG emissions is very important for developing mitigation 

strategies to climate change by controlling and reducing GHG emissions. However, the accurate 

estimation and measurement of spatio-temporal distributions of GHGs and other pollutants are 

difficult to achieve. Current conventional methods rely on point-based or surface-based 

measurements, which are typically limited to cover large areas and are temporally sporadic.  

Over the past decade, a growing number of satellites with rapidly advancing technology provide 

numerous satellite data to fill in the information of GHGs in areas without ground-based 
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monitoring data (e.g., Crisp et al., 2012; Crisp, 2015; Taylor et al., 2022). For examples, Orbiting 

Carbon Observatory (OCO-2/OCO-3, e.g., Taylor et al., 2020), ground-based data from Total 

Carbon Column Observing Network (TCCON), TROPOspheric Monitoring Instrument 

(TROPOMI) data [Finch et al., 2022], and multi-modal Sentinel satellite sensing data (e.g., 

Scheibenreif et al., 2021a) are available for enhancing remote sensing systems. Furthermore, 

multiple aspects of remote sensing data such as satellite and ground-based monitoring data need 

to be integrated to improve the estimation of spatio-temporal distribution of GHGs beyond a 

correlation approach. 

Recent advances in deep learning approaches to analyzing satellite data show promising results 

to estimate greenhouse gas concentrations using remote sensing data (e.g., Yu and Liu, 2021; 

Scheibenreif et al., 2021a; Finch et al., 2022). For example, multi-band remote sensing data 

(Sentinel-2) and depth averaged NO2 data (Sentinel-5P) have been used to estimate NO2 

concentration over Europe (Scheibenreif et al., 2021a). Especially this work is motivated by a 

deep learning approach in Scheibenreif et al. (2021a) where NO2 data centered at ground-based 

monitoring station in Europe were processed from Sentinel-2 of multi-band spectral data (i.e., 12 

channels) and Sentinel-5P of depth-averaged time-series data. However, two deep learning 

architectures with ResNet and convolutional neural network (CNN) in Scheibenreif et al. (2021a) 

are in parallel to extract features from two different data from sentinel-2 & sentinel-5P satellites, 

which are combined to estimate NO2 distribution. However, multiscale/multimodal information 

is not thoroughly investigated to advance deep learning approaches to estimate anthropogenic 

GHG emissions using multiple types of satellite data.  

In this work, we develop multiscale and multimodal machine learning algorithms to train models 

using two different satellite data (Sentinel-2 & Sentinel-5P) to estimate NO2 concentrations. As 

in Scheibenreif et al. (2021a), average NO2 concentrations over 2018-2020 and monthly data are 

used as training data and target output. For the average data, we first evaluate a CNN architecture 

than ResNet-50 (similar tunable parameters of ~25.6 M) in Scheibenreif et al. (2021a). Here we 

did not use a pretrained ResNet-50, but trained our model from random initialization. Our CNN 

architecture using the encoder part of U-Net (Ronneberger et al., 2015) performs slightly better 

than the ML architecture with pretrained weights used in Scheibenreif et al. (2021a), however, 

much better than that without pretrained weights in Scheibenreif et al. (2021a). This indicates 

that ML architecture (e.g., CNN) can be trained without relying on particular ML model 

architecture. However, given the small number of training data, a ML architecture with a smaller 

number of tunable parameters may perform better with proper hyperparameter optimization. In 

addition, coordinates of ground stations as additional input data to two Satellite data and CNN + 

long short-term memory (LSTM) for time-series data are evaluated and all of models we trained 

performed better than the original architecture in Scheibenreif et al. (2021a). Overall, this 

comparison study demonstrates that a certain class of neural network architectures can extract 

features of input data better, providing better performance. In addition, proper additional 

information such as coordinates of ground station or constraints improve model performance by 



 
 

extracting additional features more efficiently. As well, changes in hyperparameters and model 

selection were found to improve performance. 

For monthly data, we developed multiple deep neural network models. One of the best models is 

a deep neural operator architecture where channels of sentinel-2 (12 channels) and sentinel-5P (1 

channel) are combined as input to a CNN architecture and time and coordinates of ground 

stations are another input to a feed forward neural network. A simple feature vector from each 

neural network block is concatenated to make a prediction of NO2 concentration. Although the 

model architecture is simple, deep neural operator (DNO) architecture can stack time-series data 

as input, providing the flexibility of input structure without zero-padding. As a result, the DNO 

outperformed other deep learning architectures. We observe that temporal patterns featured with 

seasonal variation were predicted very well, while temporal features with frequent fluctuation 

were not predicted well. This observation indicates that a limited data point is one bottleneck to 

improve the prediction accuracy. In addition, uncertainty quantification using conformal 

inference method is performed to account for prediction ranges. Overall, this research will lead 

to a new groundwork for estimating greenhouse gas concentrations using remote sensing data 

including satellite data, which will enhance our capability of tracking the cause of climate 

change and developing mitigation strategies. This work will be submitted for journal publication 

(Teeratorn et al., in prep). 

 

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 
METHODOLOGY:  

In this work we use the NO2 concentration data processed in Scheibenreif et al. (2021a,b) where 

the sentinel-2 (S2) carrying a multi-spectral instrument provides satellite images of visible and 

shortwave-infrared wavelengths (a total of 12 channel data) at a fine scale (10-60m). The 

sentinel-5P (S5P) satellite carries differential optical adsorption spectroscopy to observe trace 

gases (e.g., NO2, CH4) in the atmosphere at a coarse scale (3-5km). In particular, the column 

density product of satellite data can be used to measure the temporal variation of surface NO2 

concentrations. These satellite data are used as input to the deep learning model which is 

optimized to match the ground-based measurement data of NO2. For the period of 2018-2020 we 

investigate datasets which are averaged at two different temporal frequencies as described in the 

Addendum slide #1. For the average data S5P and NO2 data at ground stations are averaged for 

the entire 2018-2020 timespan, whereas for “monthly” data S5P and NO2 data are averaged over 

monthly intervals. Note that S2 images and other features (e.g., latitude/longitude) are considered 

static and remain constant for each station across different temporal frequencies. All data is 

normalized through z-score standardization (i.e., a mean of zero and a standard deviation of 1). 

In terms of data augmentation, during training S2 and S5P images are randomly rotated and 

flipped. 



 
 

We present three representative models evaluated in this study and detailed description of model 

architectures is provided in the Addendum slide #1-#5. Briefly, Model 1 takes in both the 

Sentinel-2 (S2) image and the corresponding Sentinel-5P (S5P) data averaged over the entire 

observation period (2018-2020) as shown in the Addendum slide #2 and #5. S2 features are 

extracted with CNN block and S5P features are extracted using a simpler CNN architecture. The 

S5P network is smaller than the S2 network because the S5P data has a lower native resolution 

and only has a single channel (the S2 data has 12 channel data). It should be noted that the 

architecture of Model 1 with the encoder half of a U-Net model with dropout is based upon work 

by Scheibenreif et al. (2021a) where a Resnet-50 is used to extract features from S2 images. We 

also use a LeakyReLU activation function instead of a ReLU activation function where 

applicable. Both changes were found to modestly improve performance.  

Model 2 with the time-gated LSTM (TGLSTM) model is used to predict time-series NO2 

concentration data (i.e., monthly data) (Addendum slide #3 & #5). The TGLSTM (Sahin and 

Kozat, 2018) is used instead of a regular LSTM layer because the TGLSTM can account for 

nonuniformly sampled timeseries data (i.e., data where the time between observations is not 

constant). This is done by incorporating time information as a nonlinear scaling factor using 

additional time gates. Here, “time information” is shown as Times in (slide #3), where Times is a 

tensor with 15 dimensions where each value is the time in months from October 2018 (the 

earliest recorded date for observations in the monthly dataset). For padded data a time of -1 is 

used. For timeseries additional data processing is used to account for the thousands of missing 

observations. Models expect inputs to be a uniform size, even though stations have a varying 

number of observations (see the Addendum slide #2). For Model 2 we decide to consider the first 

15 observations for each station. If a station has less than 10 observations it is discarded, and for 

stations with 10 to 14 observations we pre-pad using zero-padding give the input a length of 15. 

Note that padded values are discarded from loss calculations and are not considered when 

updating model parameters. 

Model 3 uses the deep neural operator concept (Lu et all, 2021) to construct model structure 

consisting of two networks; branch net of CNN and trunk net of feed-forward neural networks 

(FFN) (Addendum slide #4 & #6). The branch net takes all satellite data consisting of S2 12 

channels and S5P single channel. Model 3 reduces these high dimensional inputs to reduced 

embedded manifolds of size 250. We note that the size of reduced embedded manifolds is one of 

the hyper-parameters that need to be explored during the training phase. However, to simplify 

our workflow, we fixed the dimension of reduced embedded manifolds to 250. The trunk net 

takes spatial and time coordinates of ground station NO2 measurement and, again, collapses 

those data into the reduced embedded manifolds of size 250. Both reduced embedded manifolds 

are then combined through an element-wise addition and subsequently fed into a series of FNN 

to produce NO2 prediction. For all three models, a loss function of the mean squared error (MSE) 

between measured and predicted NO2 concentration is used. 

 



 
 

RESULTS AND DISCUSSION:  

We evaluate the performance of three deep learning models to predict NO2 concentrations at air 

quality ground measurement station. For model evaluation, we use a randomly selected test 

dataset which is not used during training. The performance metrics include a goodness of fit (R2) 

of linear regression, a mean absolute error (MAE), and a mean square error (MSE) (see the 

addendum slide #7). Results of three models in comparison with those in Scheibenreif et al. 

(2021a) are presented in the Addendum slide #8. For the average data case, Model 1 

performance is very similar to that with a pretrained model and transfer learning in Scheibenreif 

et al. (2021a). Without the pretrained model , the model result in Scheibenreif et al. (2021a) is 

much worse (e.g., R2 = 0.38) than our Model 1 (R2 = 0.55). Note that we use only three model 

evaluation. Hence, the fact that the best model out of 3 runs performs similarly to that out of 10 

runs in Scheibenreif et al. (2021a) demonstrates that our work tends to perform more robustly.  

Because the GHG concentrations vary temporarily, it is important to evaluate model 

performance against time-series data. In this work, we evaluate our performance using the 

monthly dataset. A short description of the data is provided in the addendum slide #1 and the 

detailed description is available in Scheibenreif et al. (2021a,b). The Model 2 performs better 

than the model in Scheibenreif et al. (2021a) as shown in the addendum slide #8. However, the 

degree of the performance difference is relatively small. It should be noted that we did not use 

pre-trained weights nor transfer learning. However, ML models in Scheibenreif et al. (2021a) 

require pre-training and transfer learning to have a relatively good performance, which is still 

worse than our model 2 performance. On the other hand, the model 3 outperforms the model in 

Scheibenreif et al. (2021a) in all three measures. For an example, the  R2 and MAE values of the 

model 2 are 0.64 and 5.45 (g/m3), respectively, compared to 0.53 and 6.31 in Scheibenreif et al. 

(2021a). The better performance of Model 3 compared to Model 2 may stem from two different 

aspects of input and deep learning architecture. First, Model 3 uses the additional information of 

station coordinates (two-dimensional vector), while Model 2 does not. Second, the time-series 

data is stacked as an input to Model 3, hence Model 3 does not need to pad any missing monthly 

data with zero-padding, while Model 2 needs to make a uniform batch size of the time-series 

input due to the requirement in the LSTM. The first aspect can be easily tested by including 

additional information in Model 2. Our preliminary result shows that Model 2 with additional 

station coordinates improves the performance much better, close to the Model 3 performance in 

the testing set, while the training of Model 3 still performs much better (see the parity plot on the 

addendum slide #9).  

The second aspect has been studied in the literature and the TGLSTM was developed to 

delineate the irregular time series data problem in the LSTM. However, in our case due to the 

limited dataset we still need to use a zero padding to the missing monthly data point. It is noted 

that we add the zero padding to the front of each dataset (i.e., using pre-padding), so the time-

series information can be carried over to the end of the time considered properly through the 

LSTM unit. This last aspect highlights the architecture advantage of Model 3 where each time-



 
 

series data (i.e., satellite data) with a corresponding time can be used as input to two parallel 

deep learning blocks in Model 3 (see the addendum slide #4). We note that the size of feature 

vectors is one of the hyper-parameters that need to be explored during the training phase. 

However, to simplify our workflow, we use a constant size depending on the model. 

We further analyze the model performance in terms of the characteristics of NO2 concentration. 

After inspecting both good and bad prediction cases, we observe the notable difference between 

two cases as shown in the addendum slide #10. For many good prediction cases NO2 

concentration fluctuates more seasonally without local fluctuations. However, for bad prediction 

cases monthly fluctuations are notably observed. This analysis reveals that the limit in our 

prediction capability is predominantly governed by local scale patterns of data, which typically 

requires either big data or other constraints and physical description to improve machine learning 

based models. Overall, our models for the monthly data perform much better than the model in 

Scheibenreif et al. (2021a) and there is room to improve with hyperparameter optimization, 

larger dataset, and/or other physical constraints.      

 
ANTICIPATED OUTCOMES AND IMPACTS:  

This project aims to develop multiscale deep machine learning approaches to estimate 

anthropogenic greenhouse gas emissions using remote sensing data (e.g., satellite data). Accurate 

estimation of greenhouse gas emissions will enable us to develop proper mitigation strategies to 

decrease the anthropogenic sources contributing to climate change, which is a threat to global 

and national security. If successful, the proposed approaches can be readily applicable for filling 

gaps in the remote sensing data and rapid deployment for the upcoming new sensing data 

streams. This will impact the nation’s ability to advance the goals and objectives in the nation's 

Climate Action Plan. 

Newly developed multiple deep learning models in this work improved prediction accuracy of 

spatio-temporal variations of NO2 concentrations based on two different satellite images and 

additional information such as time of monthly data and coordinates of ground stations. 

Although we do not perform specific hyperparameter optimization, our analysis reveals several 

significant outcomes that can be readily applicable for remote sensing data. Due to data-

preprocessing of Satellite data, we expect typical satellite data to have missing data points (e.g., 

cloud-based noise data). Some ML blocks such as LSTM requires the same input size in batch, 

requiring a zero-padding due to a limited dataset. Although it is trainable, the training efficiency 

to extract time-series information could be limited due to zero-padded datasets. On the other 

hand, the deep neural operator concept used in our Model 3 enables us to stack all time series 

data with corresponding times as model input, eliminating the zero-padding of missing data. This 

architectural advantage in Model 3 can be further developed as a tool for transfer learning in 

various remote sensing data. Due to a growing number of remote sensing data with multiscale 

and multimodal characteristics this portable architecture in the deep neural operator will improve 



 
 

the integration of the multiple scale and multi-modal data very efficiently. If successful, this DL-

based approach can be readily applicable for filling in gaps of remote sensing data and rapid 

deployment for upcoming new remote sensing data streams. 

To further quantify the uncertainty of our trained model’s predictions, we also use the recently 

developed split conformal inference method with our proposed positivity constraint. Conformal 

inference is a general framework for post-hoc uncertainty quantification for any, possibly black-

box, prediction algorithm. Split conformal inference is a computationally efficient version that 

only requires a training and validation dataset, which are already standard practice in machine 

learning (see the addendum slide #11). The only issue with this approach is that the prediction 

interval is unbounded, whereas our targets are strictly positive. We modify the analysis 

procedure to produce strictly positive intervals using an invertible function (e.g., the inverse logit 

g(x) = log(exp(x)-1) that continuously maps positive numbers to the real line. Due to its easiness 

and less restricted assumption, we can apply this approach for different datasets such as datasets 

featured with seasonal variations where we will be able to predict better and datasets featured 

with frequent fluctuations where we expect low accuracy of prediction. Hence, we can estimate 

the uncertainty bound more robustly depending on the model’s performance.  

This research will lead to a new groundwork for estimating greenhouse gas concentrations using 

remote sensing data including satellite data, which will enhance our capability of tracking the 

cause of climate change and developing mitigation strategies. This proposal aligns with DOE’s 

science and energy goal of “Transformational research, development, demonstration and 

deployment of clean energy and efficiency technologies”. The multiscale deep learning 

approaches also support many DOE research programs in which deep learning approaches can 

enhance nation’s capabilities to improve our fast and reliable prediction in multimodal and 

multiscale problems that are common to many natural and engineered systems for climate, 

energy, and homeland security. 

 

CONCLUSION:  

Anthropogenic greenhouse gases (GHGs) emissions are the main cause of climate change.  

Accurate estimation of GHG emissions is very important for developing mitigation strategies to 

climate change by controlling and reducing GHG emissions. This project aims to develop 

multiple deep learning approaches to estimate anthropogenic greenhouse gas emissions using 

multiple types of satellite data. NO2 concentration is chosen as an example of GHGs to evaluate 

the proposed approach. Two sentinel satellites (sentinel-2 and sentinel-5P) provide multiscale 

observations of GHGs from 10-60m resolution (sentinel-2) to ~kilometer scale resolution 

(sentinel-5P). In particular, the column density product of satellite data can be used to measure 

the temporal variation of surface NO2 concentrations.  

Multiscale aspects of satellite data are used as input to multiple architectures of a combination of 

convolutional neural networks and feed forward neural network. Additional information such as 



 
 

the coordination of ground stations and time for time-series data are used as input to feed 

forward neural network. Extracted features from multiple input are concatenated to predict NO2 

concentrations through output layers or LSTM architecture. Overall, we demonstrate that 

multiple models outperform those in the literature and especially our model performance is much 

better with more challenging monthly dataset in which a long-term variations such as seasonal 

changes and short-term fluctuation may cause a different level of challenges for model 

development. Due to the rapid execution time of trained deep learning model compared to any 

existing models, this deep learning approach can be combined with increasing remote sensing 

campaign and high-fidelity model such as evaluation of atmospheric carbon dioxide 

concentrations as simulated by the Energy Exascale Earth System Model (E3SM). Overall, this 

research will lead to a new groundwork for estimating greenhouse gas concentrations using 

remote sensing data including satellite data, which will enhance our capability of tracking the 

cause of climate change and developing mitigation strategies. 
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ADDENDUM:  
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 The first linear layer is subjected to  ea y elu, but the second one is not subjected to any activation functions .

   

         

    



 
 

 

 

 
 

               

 

                                                                        
             

                          

                         

                                                                                   

                                                                             

     
 

 
     

 

   

     
 

 
       

 

 

   

     
   

   
 

       
  

   

       
 
   

                       

                                     

                                    

                                

                  

                                                            

                                     

       

            
                              

       

         

               

                   

                                                 

 Two cases in red bo  are compared with deep learning models.  n  cheibenreifet al.  202 a , a total of  0 different models with random initial weights are trained . T 0 is 

the best top model out of  0 models. 

  ll models used for evaluation against test dataset are selected based on the best model in the validation loss during the training phase.

   or multiple runs, we perform only three models trained. T  is the best top model out of  0 models.  o ensemble represent single trained model.
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