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ABSTRACT: Accurate estimation of greenhouse gases (GHGs) emissions is very important
for developing mitigation strategies to climate change by controlling and reducing GHG
emissions. This project aims to develop multiple deep learning approaches to estimate
anthropogenic greenhouse gas emissions using multiple types of satellite data. NO2 concentration
is chosen as an example of GHGs to evaluate the proposed approach. Two sentinel satellites
(sentinel-2 and sentinel-5P) provide multiscale observations of GHGs from 10-60m resolution
(sentinel-2) to ~kilometer scale resolution (sentinel-5P). Among multiple deep learning (DL)
architectures evaluated, two best DL models demonstrate that key features of spatio-temporal
satellite data and additional information (e.g., observation times and/or coordinates of ground
stations) can be extracted using convolutional neural networks and feed forward neural networks,
respectively. In particular, irregular time series data from different NO; observation stations limit
the flexibility of long short-term memory architecture, requiring zero-padding to fill in missing
data. However, deep neural operator (DNO) architecture can stack time-series data as input,
providing the flexibility of input structure without zero-padding. As a result, the DNO
outperformed other deep learning architectures to account for time-varying features. Overall,
temporal patterns with smooth seasonal variations were predicted very well, while frequent
fluctuation patterns were not predicted well. In addition, uncertainty quantification using
conformal inference method is performed to account for prediction ranges. Overall, this research
will lead to a new groundwork for estimating greenhouse gas concentrations using multiple
satellite data to enhance our capability of tracking the cause of climate change and developing
mitigation strategies.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:

Anthropogenic greenhouse gases (GHGs) emissions are the main cause of climate change. A
recent Department of Homeland Security report (DHS, 2021) for addressing climate change
emphasizes an increasingly urgent call to reduce GHG emissions to mitigate climate change.
Hence, accurate estimation of GHG emissions is very important for developing mitigation
strategies to climate change by controlling and reducing GHG emissions. However, the accurate
estimation and measurement of spatio-temporal distributions of GHGs and other pollutants are
difficult to achieve. Current conventional methods rely on point-based or surface-based
measurements, which are typically limited to cover large areas and are temporally sporadic.

Over the past decade, a growing number of satellites with rapidly advancing technology provide
numerous satellite data to fill in the information of GHGs in areas without ground-based
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monitoring data (e.g., Crisp et al., 2012; Crisp, 2015; Taylor et al., 2022). For examples, Orbiting
Carbon Observatory (OCO-2/0CO-3, e.g., Taylor et al., 2020), ground-based data from Total
Carbon Column Observing Network (TCCON), TROPOspheric Monitoring Instrument
(TROPOMI) data [Finch et al., 2022], and multi-modal Sentinel satellite sensing data (e.g.,
Scheibenreif et al., 2021a) are available for enhancing remote sensing systems. Furthermore,
multiple aspects of remote sensing data such as satellite and ground-based monitoring data need
to be integrated to improve the estimation of spatio-temporal distribution of GHGs beyond a
correlation approach.

Recent advances in deep learning approaches to analyzing satellite data show promising results
to estimate greenhouse gas concentrations using remote sensing data (e.g., Yu and Liu, 2021;
Scheibenreif et al., 2021a; Finch et al., 2022). For example, multi-band remote sensing data
(Sentinel-2) and depth averaged NO, data (Sentinel-5P) have been used to estimate NO»
concentration over Europe (Scheibenreif et al., 2021a). Especially this work is motivated by a
deep learning approach in Scheibenreif et al. (2021a) where NO; data centered at ground-based
monitoring station in Europe were processed from Sentinel-2 of multi-band spectral data (i.e., 12
channels) and Sentinel-5P of depth-averaged time-series data. However, two deep learning
architectures with ResNet and convolutional neural network (CNN) in Scheibenreif et al. (2021a)
are in parallel to extract features from two different data from sentinel-2 & sentinel-5P satellites,
which are combined to estimate NO; distribution. However, multiscale/multimodal information
is not thoroughly investigated to advance deep learning approaches to estimate anthropogenic
GHG emissions using multiple types of satellite data.

In this work, we develop multiscale and multimodal machine learning algorithms to train models
using two different satellite data (Sentinel-2 & Sentinel-5P) to estimate NO> concentrations. As
in Scheibenreif et al. (2021a), average NO» concentrations over 2018-2020 and monthly data are
used as training data and target output. For the average data, we first evaluate a CNN architecture
than ResNet-50 (similar tunable parameters of ~25.6 M) in Scheibenreif et al. (2021a). Here we
did not use a pretrained ResNet-50, but trained our model from random initialization. Our CNN
architecture using the encoder part of U-Net (Ronneberger et al., 2015) performs slightly better
than the ML architecture with pretrained weights used in Scheibenreif et al. (2021a), however,
much better than that without pretrained weights in Scheibenreif et al. (2021a). This indicates
that ML architecture (e.g., CNN) can be trained without relying on particular ML model
architecture. However, given the small number of training data, a ML architecture with a smaller
number of tunable parameters may perform better with proper hyperparameter optimization. In
addition, coordinates of ground stations as additional input data to two Satellite data and CNN +
long short-term memory (LSTM) for time-series data are evaluated and all of models we trained
performed better than the original architecture in Scheibenreif et al. (2021a). Overall, this
comparison study demonstrates that a certain class of neural network architectures can extract
features of input data better, providing better performance. In addition, proper additional
information such as coordinates of ground station or constraints improve model performance by
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extracting additional features more efficiently. As well, changes in hyperparameters and model
selection were found to improve performance.

For monthly data, we developed multiple deep neural network models. One of the best models is
a deep neural operator architecture where channels of sentinel-2 (12 channels) and sentinel-5P (1
channel) are combined as input to a CNN architecture and time and coordinates of ground
stations are another input to a feed forward neural network. A simple feature vector from each
neural network block is concatenated to make a prediction of NO> concentration. Although the
model architecture is simple, deep neural operator (DNO) architecture can stack time-series data
as input, providing the flexibility of input structure without zero-padding. As a result, the DNO
outperformed other deep learning architectures. We observe that temporal patterns featured with
seasonal variation were predicted very well, while temporal features with frequent fluctuation
were not predicted well. This observation indicates that a limited data point is one bottleneck to
improve the prediction accuracy. In addition, uncertainty quantification using conformal
inference method is performed to account for prediction ranges. Overall, this research will lead
to a new groundwork for estimating greenhouse gas concentrations using remote sensing data
including satellite data, which will enhance our capability of tracking the cause of climate
change and developing mitigation strategies. This work will be submitted for journal publication
(Teeratorn et al., in prep).

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY:

In this work we use the NO; concentration data processed in Scheibenreif et al. (2021a,b) where
the sentinel-2 (S2) carrying a multi-spectral instrument provides satellite images of visible and
shortwave-infrared wavelengths (a total of 12 channel data) at a fine scale (10-60m). The
sentinel-5P (S5P) satellite carries differential optical adsorption spectroscopy to observe trace
gases (e.g2., NO2, CHy) in the atmosphere at a coarse scale (3-5km). In particular, the column
density product of satellite data can be used to measure the temporal variation of surface NO-
concentrations. These satellite data are used as input to the deep learning model which is
optimized to match the ground-based measurement data of NO». For the period of 2018-2020 we
investigate datasets which are averaged at two different temporal frequencies as described in the
Addendum slide #1. For the average data SSP and NO, data at ground stations are averaged for
the entire 2018-2020 timespan, whereas for “monthly” data S5P and NO» data are averaged over
monthly intervals. Note that S2 images and other features (e.g., latitude/longitude) are considered
static and remain constant for each station across different temporal frequencies. All data is
normalized through z-score standardization (i.e., a mean of zero and a standard deviation of 1).
In terms of data augmentation, during training S2 and S5P images are randomly rotated and
flipped.
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We present three representative models evaluated in this study and detailed description of model
architectures is provided in the Addendum slide #1-#5. Briefly, Model 1 takes in both the
Sentinel-2 (S2) image and the corresponding Sentinel-5P (S5P) data averaged over the entire
observation period (2018-2020) as shown in the Addendum slide #2 and #5. S2 features are
extracted with CNN block and S5P features are extracted using a simpler CNN architecture. The
S5P network is smaller than the S2 network because the S5P data has a lower native resolution
and only has a single channel (the S2 data has 12 channel data). It should be noted that the
architecture of Model 1 with the encoder half of a U-Net model with dropout is based upon work
by Scheibenreif et al. (2021a) where a Resnet-50 is used to extract features from S2 images. We
also use a LeakyReLU activation function instead of a ReLU activation function where
applicable. Both changes were found to modestly improve performance.

Model 2 with the time-gated LSTM (TGLSTM) model is used to predict time-series NO2
concentration data (i.e., monthly data) (Addendum slide #3 & #5). The TGLSTM (Sahin and
Kozat, 2018) is used instead of a regular LSTM layer because the TGLSTM can account for
nonuniformly sampled timeseries data (i.e., data where the time between observations is not
constant). This is done by incorporating time information as a nonlinear scaling factor using
additional time gates. Here, “time information” is shown as Times in (slide #3), where Times is a
tensor with 15 dimensions where each value is the time in months from October 2018 (the
earliest recorded date for observations in the monthly dataset). For padded data a time of -1 is
used. For timeseries additional data processing is used to account for the thousands of missing
observations. Models expect inputs to be a uniform size, even though stations have a varying
number of observations (see the Addendum slide #2). For Model 2 we decide to consider the first
15 observations for each station. If a station has less than 10 observations it is discarded, and for
stations with 10 to 14 observations we pre-pad using zero-padding give the input a length of 15.
Note that padded values are discarded from loss calculations and are not considered when
updating model parameters.

Model 3 uses the deep neural operator concept (Lu et all, 2021) to construct model structure
consisting of two networks; branch net of CNN and trunk net of feed-forward neural networks
(FFN) (Addendum slide #4 & #6). The branch net takes all satellite data consisting of S2 12
channels and S5P single channel. Model 3 reduces these high dimensional inputs to reduced
embedded manifolds of size 250. We note that the size of reduced embedded manifolds is one of
the hyper-parameters that need to be explored during the training phase. However, to simplify
our workflow, we fixed the dimension of reduced embedded manifolds to 250. The trunk net
takes spatial and time coordinates of ground station NO, measurement and, again, collapses
those data into the reduced embedded manifolds of size 250. Both reduced embedded manifolds
are then combined through an element-wise addition and subsequently fed into a series of FNN
to produce NO; prediction. For all three models, a loss function of the mean squared error (MSE)
between measured and predicted NO» concentration is used.
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RESULTS AND DISCUSSION:

We evaluate the performance of three deep learning models to predict NO» concentrations at air
quality ground measurement station. For model evaluation, we use a randomly selected test
dataset which is not used during training. The performance metrics include a goodness of fit (R?)
of linear regression, a mean absolute error (MAE), and a mean square error (MSE) (see the
addendum slide #7). Results of three models in comparison with those in Scheibenreif et al.
(2021a) are presented in the Addendum slide #8. For the average data case, Model 1
performance is very similar to that with a pretrained model and transfer learning in Scheibenreif
et al. (2021a). Without the pretrained model , the model result in Scheibenreif et al. (2021a) is
much worse (e.g., R?= 0.38) than our Model 1 (R?= 0.55). Note that we use only three model
evaluation. Hence, the fact that the best model out of 3 runs performs similarly to that out of 10
runs in Scheibenreif et al. (2021a) demonstrates that our work tends to perform more robustly.

Because the GHG concentrations vary temporarily, it is important to evaluate model
performance against time-series data. In this work, we evaluate our performance using the
monthly dataset. A short description of the data is provided in the addendum slide #1 and the
detailed description is available in Scheibenreif et al. (2021a,b). The Model 2 performs better
than the model in Scheibenreif et al. (2021a) as shown in the addendum slide #8. However, the
degree of the performance difference is relatively small. It should be noted that we did not use
pre-trained weights nor transfer learning. However, ML models in Scheibenreif et al. (2021a)
require pre-training and transfer learning to have a relatively good performance, which is still
worse than our model 2 performance. On the other hand, the model 3 outperforms the model in
Scheibenreif et al. (2021a) in all three measures. For an example, the R? and MAE values of the
model 2 are 0.64 and 5.45 (ug/m?), respectively, compared to 0.53 and 6.31 in Scheibenreif et al.
(2021a). The better performance of Model 3 compared to Model 2 may stem from two different
aspects of input and deep learning architecture. First, Model 3 uses the additional information of
station coordinates (two-dimensional vector), while Model 2 does not. Second, the time-series
data is stacked as an input to Model 3, hence Model 3 does not need to pad any missing monthly
data with zero-padding, while Model 2 needs to make a uniform batch size of the time-series
input due to the requirement in the LSTM. The first aspect can be easily tested by including
additional information in Model 2. Our preliminary result shows that Model 2 with additional
station coordinates improves the performance much better, close to the Model 3 performance in
the testing set, while the training of Model 3 still performs much better (see the parity plot on the
addendum slide #9).

The second aspect has been studied in the literature and the TGLSTM was developed to
delineate the irregular time series data problem in the LSTM. However, in our case due to the
limited dataset we still need to use a zero padding to the missing monthly data point. It is noted
that we add the zero padding to the front of each dataset (i.e., using pre-padding), so the time-
series information can be carried over to the end of the time considered properly through the
LSTM unit. This last aspect highlights the architecture advantage of Model 3 where each time-
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series data (i.e., satellite data) with a corresponding time can be used as input to two parallel
deep learning blocks in Model 3 (see the addendum slide #4). We note that the size of feature
vectors is one of the hyper-parameters that need to be explored during the training phase.
However, to simplify our workflow, we use a constant size depending on the model.

We further analyze the model performance in terms of the characteristics of NO»> concentration.
After inspecting both good and bad prediction cases, we observe the notable difference between
two cases as shown in the addendum slide #10. For many good prediction cases NO>
concentration fluctuates more seasonally without local fluctuations. However, for bad prediction
cases monthly fluctuations are notably observed. This analysis reveals that the limit in our
prediction capability is predominantly governed by local scale patterns of data, which typically
requires either big data or other constraints and physical description to improve machine learning
based models. Overall, our models for the monthly data perform much better than the model in
Scheibenreif et al. (2021a) and there is room to improve with hyperparameter optimization,
larger dataset, and/or other physical constraints.

ANTICIPATED OUTCOMES AND IMPACTS:

This project aims to develop multiscale deep machine learning approaches to estimate
anthropogenic greenhouse gas emissions using remote sensing data (e.g., satellite data). Accurate
estimation of greenhouse gas emissions will enable us to develop proper mitigation strategies to
decrease the anthropogenic sources contributing to climate change, which is a threat to global
and national security. If successful, the proposed approaches can be readily applicable for filling
gaps in the remote sensing data and rapid deployment for the upcoming new sensing data
streams. This will impact the nation’s ability to advance the goals and objectives in the nation's
Climate Action Plan.

Newly developed multiple deep learning models in this work improved prediction accuracy of
spatio-temporal variations of NO, concentrations based on two different satellite images and
additional information such as time of monthly data and coordinates of ground stations.
Although we do not perform specific hyperparameter optimization, our analysis reveals several
significant outcomes that can be readily applicable for remote sensing data. Due to data-
preprocessing of Satellite data, we expect typical satellite data to have missing data points (e.g.,
cloud-based noise data). Some ML blocks such as LSTM requires the same input size in batch,
requiring a zero-padding due to a limited dataset. Although it is trainable, the training efficiency
to extract time-series information could be limited due to zero-padded datasets. On the other
hand, the deep neural operator concept used in our Model 3 enables us to stack all time series
data with corresponding times as model input, eliminating the zero-padding of missing data. This
architectural advantage in Model 3 can be further developed as a tool for transfer learning in
various remote sensing data. Due to a growing number of remote sensing data with multiscale
and multimodal characteristics this portable architecture in the deep neural operator will improve
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the integration of the multiple scale and multi-modal data very efficiently. If successful, this DL-
based approach can be readily applicable for filling in gaps of remote sensing data and rapid
deployment for upcoming new remote sensing data streams.

To further quantify the uncertainty of our trained model’s predictions, we also use the recently
developed split conformal inference method with our proposed positivity constraint. Conformal
inference is a general framework for post-hoc uncertainty quantification for any, possibly black-
box, prediction algorithm. Split conformal inference is a computationally efficient version that
only requires a training and validation dataset, which are already standard practice in machine
learning (see the addendum slide #11). The only issue with this approach is that the prediction
interval is unbounded, whereas our targets are strictly positive. We modify the analysis
procedure to produce strictly positive intervals using an invertible function (e.g., the inverse logit
g(x) = log(exp(x)-1) that continuously maps positive numbers to the real line. Due to its easiness
and less restricted assumption, we can apply this approach for different datasets such as datasets
featured with seasonal variations where we will be able to predict better and datasets featured
with frequent fluctuations where we expect low accuracy of prediction. Hence, we can estimate
the uncertainty bound more robustly depending on the model’s performance.

This research will lead to a new groundwork for estimating greenhouse gas concentrations using
remote sensing data including satellite data, which will enhance our capability of tracking the
cause of climate change and developing mitigation strategies. This proposal aligns with DOE’s
science and energy goal of “Transformational research, development, demonstration and
deployment of clean energy and efficiency technologies”. The multiscale deep learning
approaches also support many DOE research programs in which deep learning approaches can
enhance nation’s capabilities to improve our fast and reliable prediction in multimodal and
multiscale problems that are common to many natural and engineered systems for climate,
energy, and homeland security.

CONCLUSION:

Anthropogenic greenhouse gases (GHGs) emissions are the main cause of climate change.
Accurate estimation of GHG emissions is very important for developing mitigation strategies to
climate change by controlling and reducing GHG emissions. This project aims to develop
multiple deep learning approaches to estimate anthropogenic greenhouse gas emissions using
multiple types of satellite data. NO2 concentration is chosen as an example of GHGs to evaluate
the proposed approach. Two sentinel satellites (sentinel-2 and sentinel-5P) provide multiscale
observations of GHGs from 10-60m resolution (sentinel-2) to ~kilometer scale resolution
(sentinel-5P). In particular, the column density product of satellite data can be used to measure
the temporal variation of surface NO, concentrations.

Multiscale aspects of satellite data are used as input to multiple architectures of a combination of
convolutional neural networks and feed forward neural network. Additional information such as
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the coordination of ground stations and time for time-series data are used as input to feed
forward neural network. Extracted features from multiple input are concatenated to predict NO»
concentrations through output layers or LSTM architecture. Overall, we demonstrate that
multiple models outperform those in the literature and especially our model performance is much
better with more challenging monthly dataset in which a long-term variations such as seasonal
changes and short-term fluctuation may cause a different level of challenges for model
development. Due to the rapid execution time of trained deep learning model compared to any
existing models, this deep learning approach can be combined with increasing remote sensing
campaign and high-fidelity model such as evaluation of atmospheric carbon dioxide
concentrations as simulated by the Energy Exascale Earth System Model (E3SM). Overall, this
research will lead to a new groundwork for estimating greenhouse gas concentrations using
remote sensing data including satellite data, which will enhance our capability of tracking the
cause of climate change and developing mitigation strategies.
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ADDENDUM:

®
1 | TIMESERIES DATA

« Overall monthly dataset contains 59,563data
points (NO, recordings/S5P image) from
3,185 stations Scheibenreifet al., 2021b). 1400

Each station has a single S2image, whichis
considered static.

« However, many of these stations don't have TG
complete information from the 20182020
timespan (seeplot on the right).

+ 105 of these stations have less than 10
recordings andthese are excluded when
training/evaluatingmodels (Models 1 & 2). 400 1

+ Model 2 require timeseries to be of the same
length for LSTM Model 2

Histogram for # of Observations per Station (Monthly)

1200 4

Frequency
o=}
Qo
153

=}
=}
S

2001

« Zero-pad stations with <15 observations G- =X 170' B Ilsl 1. o | '!5
Use first 15 recordings for stations with >15 # Observations
We plan to modify this approach in the future All data used in this work is downloaded fofcheibenreifet al. (2021b),
« Alltime series dataare stacked for Model 3, e : iz} s

so Model 3 does not have to do zero-padding

@
2 | MACHINE LEARNING ARCHITECTURE (MODEL 1)

*  Model consists of 2 CNN architectures (+ dense layer) followed by a “head”

+ Head consists of a dense layer followed by an activation function, followed by a final dense layer for
generating a single NO, prediction for the location.

+  Feature vectors of dense layer size are hyperparameters

CNN or ResNet

S2 Image

Simple CNN

S5P Col.

Average NO,
measurement
at ground station

Average NO,
prediction
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3 | MACHINE LEARNING ARCHITECTURE (MODEL 2) =

+ Time-Gated Long Short Term Memory TGLSTM, Sahin and Kozat, 2018)
« Sentinel 2, S5P column density, and time data are used as separate input
+  Time-Gated LSTM recursively processes time -series data

After TGLTSM has been
exposed to all

S5P images/times in
the series.

S2 Image

For each S5P
image

Times*

S5P Col
Densities

Previous
infor mation

Simple CNN TGLSTM I

Monthly NO,
Predictions

Monthly NO,
Measurements

4 | MACHINE LEARNING ARCHITECTURE (MODEL 3) =

Loss

*  Model consists of 1 CNN followed by a “head” and 1 Feedforward Neural Network (FNN) architectures

+  Head consists of a dense layer followed by an activation function

+ Both branches are reduced to z reduced dimensions before we perform element -wise addition; then
out layer delivers NO , prediction

CNN + Head

S2 Image +
S5P Col.
Density

element - out layer
wise addition

to, X0, Yo
: —_—
tvrXms Y

Monthly NO, Monthly NO,
Measurement Prediction
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input size output size instance normalization

1st contracting block [B, 12, 128, 128] [B, 128, 128, 128] X
. 2nd contracting block B, 12, 128, 128 B, 256, 64, 64 X
CNN with S2 3rd contracting block [[B, 256, 64, 64]] {B, 512, 32, 32} x x
image 4th contracting block [B, 512, 32, 32] [B, 512, 16, 16] X X
5t contracting block [B, 512, 16, 16] [B, 1024, 8, 8] X X
AdaptiveAvgPool2d [B, 1024, 8, 8] [B, 1024, 1, 1]
Flatten [B, 1024, 1, 1] [B, 1024]

*B represents batch size. Each contracting block consists of2 conv blocks, where each conv block is a Conv2d layer (keriwd of3, stride 0f2)
followed by an instance normalization layer, which are then followed byMaxP ool layer.

output size instance normalization

[B, 10, 118, 118]

input size
[B, 1, 120, 120]

; [B, 10, 118, 118] [B, 10, 118, 118]
'Slmple F’NN [B, 10, 118, 118] [B, 10, 39, 39]
with S5P image [B, 10, 39, 39] [B, 15, 35, 35]
[B, 15, 35, 35] [B, 15, 11, 11]

[B, 15, 11, 11] [B, 1815]

input size output size instance normalization

[B, 2176] [B, 544]
[B, 544] [B, 544]
Linear [B. 544] [B. 1]

input size output size instance normalization dropout
LSTMCell* [B, 256]. [B, 11, ([B, 2561, [B, 256]) [B, 256]

*Notethat theLSTMCell block is called recursively for each timestep in the data (in our case 15 times). This is why the input sizes are [B,features]
instead of[B, 15,n_features].

input size output size instance normalization dropout
[B, 1, 128, 128] [B, 32, 128, 128]
ing [B, 32, 128, 128] [B, 64, 64, 64] X X
s g [B, 64, 64, 64] [B, 128, 32, 32] X X
CNN Y‘”th 52/55P [B, 128, 32, 32] [B, 256, 16, 16] x X
images [B, 256, 16, 16] [B, 512, 8, 8] X
[B, 512, 8, 8] [B, 1024, 4, 4] X
g [B, 1024, 4, 4] [B, 2048, 2, 2] X
ing [B, 2048, 2, 2] [B, 4196, 1, 1] X
1st bottleneck reshape([B, 4196]) [B, 512]
*B represents batch size. A contracting block that performs two convolutions followed by a max pool operation. The bottlensmaploys two linear

layers.

input size output size instance normalization dropout
HEAD 1st linear layer

2nd linear layer

*The first linear layer is subjected td_eakyRelu but the second one is not subjected to any activation functions.

input size output size instance normalization

[B, 3] [B, 256]

[B, 256] [B, 256]

FFN 3rd linear layer [B, 256] [B, 256]
4th linear layer [B, 256] [B, 256]

5th linear layer [B, 256] [B, 256]

6th linear layer [B, 256] [B, 250]

input size i instance normalization

Out layer

1st linear layer
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+ r2 —coefficient of determination between NG, predictions and actual ground
measurements.

*  MAE - Mean absolute error.

+ MSE - Mean squared error.

+ X-Mean - average of scores for X metric overm number of trained model predictions.
« X-T# - Best score for X metric overa number (#) of trained model predictions

n - # of NO, observations

) RSS X' (vi—=9)* v~ :82 me3§utrgm$nt f?r;tat/ign/time i
= 9, - NO, prediction for station/time i
TS S Z 1(}' i~y ) y - Average of all NO, measurements
n n
1 R 1 -
MAE = n ly; = ¥l MSE = n i—yi)
i=1 i=1

TECHNICAL RESULTS

Original results from Scheibenreif et al. (2021a)*

DaTA TiME  N-OBs. PT R2 R2-TI0  MAE  MAE-TIO MSE MSE-T10
SEn.-2,5P [2018-20 3.0k v  0.54+0.04  0.59 5923044 542  62.524547  56.28 ]
SEN.-2,5P QUART. __10.6Kk v 0.5220.05 _ 057 _ 6.2420.22 5.8 7315688 66.12
SEN.-2,5P [MoNTH, _59.6k v __ 0.5120.01 _ 0.53 __ 6.54=0.15 __ 6.31 78.06+4.2 __ 73.74]

*Two cases in red box are compared with deep learning models. InScheibenreifet al. (2021a), a total of 10 different models with randominitial weights are trained. T10 is
the best top model out of 10 models.

m

Model 1 3.1 0.55 0.61 5.84 5.43 59.33 56.3
’:";ﬁﬁgGLSTM) v 59.6k 0.56 0.58 6.43 6.23 79.9 71.9
Model 3

(CNN+FNN, N 59.6k 0.64 5.45 58.86

station (t,x,y))

# All models used for evaluation against test dataset are selected based on the best model in the validation loss during sieitrg phase.
* For multiple runs, we performonly three models trained. T3 is the best top model out 0of 10 models. No ensemble represenirsgle trained model.
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TECHNICAL RESULTS: TRAINING & TESTING

Histograms for NO2 Vals Model 3 Parity Plot Model 3

1067 Parity Plot

All data Training Validation Testing
1201 e o S e OSE) =4 008 e st m2
s n!_wfrl.’u?c;-\—n.uj MMSE Siefly) = 0653
Bz haes 8l R OEX
10 )
o830 training testing ‘
- . ® 4
0025 L il 5 A
§ 0020 % M %
£ ooms L il o
0
0.005
B ¢ e ¢ L ¥ e T °
NO; concentrations ( pg/m3) NO; concentrations ( ug/m?3)

+  Data distribution in training, validation, and testing datasets are similar (left plot)

«  Parity plots for training and testing data from Model 3 are shown with key performance
metrics (right plots).

TECHNICAL RESULTS: PREDICTION CASES (MODEL 2)

Good Prediction Bad Prediction

R2 Val: 0.8992336222542195 R2 Val: 0.8725886895522523 R2 Val: 0.6631039150254571 R2 val: 0.3200425321624498 R2 val: -20.57226292831147 R2 val: -3.239251075151123

p — meazuremenes | 40 — Measuremens @
PredictEng i it Predictions

— Measurements R ' — seasements
Premctions 1 4\ / emctions
/\ B
\ BN = /

Za
3 L3 45
g
L
5
% 0
o ES
2| = sessirements
— Freactions
w £
dc 25 3p 73 00 s do s 5o 73 10 123 oo 23 s 75 a0 1s 42 23 5o 73 1o s do s 5o 73 10 123 da 25 5o 75 180 123
Time (=0xt-2018) Time (=Cx1-2018) Time (G=0ct-2018) Time (D=0eE-2010) Time (=Cx1-2018) Time (=Cx1-2018)

+ With monthly data, NO , data with smooth changes is predicted better than those with more
frequent changes
*  Smooth pattern in changes may reflect seasonal variations (winter is high and summer is low)
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Quantify uncertainty with conformal inference 33
* Generates well -calibrated prediction intervals for i
any prediction algorithm with Model 3 i

Empirical caversge (sample 2)

Qa5

WHERE INNOVATION BEGINS

Only requires a training and test dataset

Compute test residuals r; = |y; — ;| fori € 1,..., Nyog;
Prediction interval y + d,where d, = Quantile (1 —
ATy, ey, )

P T T
Timse

Out of sample 953% coverage Maa’qlnal 05% coverage Out of sample calibration
Empirical & | ooz — ferage L0 ] = Empirical
_ Fall sample . —— Thesretical — Thearetical
estimate

[T

Thenmiical . £ ueq Left - Estimated d, o5 against out
nats i of sample coverage. Concentrates
: around the target 95%.
0943
o T Right - Out of sample calibration.

- . Fo Blue lines are estimates. Orange

’ i wl line is perfect calibration.
135 6.0 13 1r.o 2 3 0 0.0 0.2 (L] (L] a8 o0
Estimated d {sample 1) Density. Theonetical Probabiliy
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