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ABSTRACT

Exterior solar glaze was added to a 3 foot x 3 foot x 3 foot aluminum solar collector that had
six triangular dimpled fins for enhanced heat transfer. The interior vertical wall on the south
side was also dimpled. The solar glaze was added to compare its solar collection performance
with unglazed solar collector experiments conducted at Sandia in 2021.

The east, west, front, and top sides of the solar collector were encased with solar glaze glass.
Because the solar incident heat on the north and bottom sides was minimal, they were insulated
to retain the heat that was collected by the other four sides.

The advantages of the solar glaze include the entrapment of more solar heat, as well as insulation
from the wind. The disadvantages are that it increases the cost of the solar collector and has
fragile structural properties when compared to the aluminum walls. Nevertheless, prior to
conducting experiments with the glazed solar collector, it was not clear if the benefits
outweighed the disadvantages. These issues are addressed herein, with the conclusion that the
additional amount of heat collected by the glaze justifies the additional cost.

The solar collector glaze design, experimental data, and costs and benefits are documented in
this report.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition
CNC computer numerical control
ROI return on investment
SNL Sandia National Laboratories
T Temperature (K, °F)
TC thermocouple




1. INTRODUCTION

There is a strong market demand for energy-collecting devices that have few, if any, moving parts and
that are economical and environmentally friendly, especially for off-the-grid and rural applications.
The hot water can be stored in the solar collector for future use, or piped into a separate tank, and
thereafter used for bathing, heating, and other routine homestead and greenhouse applications. The
solar-heat collection device discussed in this report consists solely of passive heat transfer mechanisms
(solar heat, conduction, and convection), and has no moving parts. This effort represents the
culmination of the designs, experiments, and simulations conducted during 2015, 2016, and 2020
[Rodriguez et al., 2015; Rodriguez et al., 2016A; Rodriguez et al., 2016B; Rodriguez, 2020; Rodriguez
et al., 2021].

For the final phase of the solar collector, exterior solar glass glaze was added to the 3 foot x 3 foot x
3 foot aluminum collector that was constructed and tested via computer numerical control (CNC)
[Rodriguez et al., 2021]. The advantages of the solar glaze include the entrapment of more solar heat
and insulation from the wind. The disadvantages are that it increases the cost of the solar collector,
and the glass is brittle. Prior to conducting the set of experiments involving the glaze, it was not clear
if the benefits outweighed the disadvantages; hence the reason for this undertaking. The solar
collector glaze design, experimental data, and costs and benefits are discussed in Sections 2, 3, and 4,
respectively.



2. SOLAR COLLECTOR GLAZE DESIGN

Solar glaze was added to the dimpled, fractal-fin solar heat collector to compare its performance vs.
the unglazed solar heat collector experiments that were conducted at Sandia in 2021 [Rodriguez et al.,
2021]. The original, hand-sketched conceptual schematic of the glaze design is shown in Figure 2-1,
which consists of glazed glass panes and structural iron rods.

Figure 2-1. Schematic of the glaze structure with respect to the aluminum solar-heat collector.

Note that the glaze was designed to encapsulate the dimpled, fractal-fin solar heat collector, and
therefore, had a cubic shape. The glaze encapsulation was constructed to provide an encapsulating
layer for the solar collector east, west, front, and top lateral sides, as shown in Figure 2-2. By contrast,
the bottom and north sides of the solar collector were insulated to retain heat, as those sides collect a
minimal amount of solar energy.

As shown in Figure 2-2, 12 rectangular iron rods were welded together to form a cube, for the purpose
of supporting the glaze assembly. There was a "4 inch air gap between the aluminum solar collector
and the glass, which was open to the environment in the sense that the gaskets, iron rods, and
insulation at the northern side did not form a perfect seal. The air gap traps the solar heat that passes
through the glaze, which is then convected and conducted onto the aluminum walls. Certainly, gases



other than air have a higher thermal diffusivity. For example, the thermal diffusivity of air at 350 K
is 0.3 x10* m?/s, while that of helium is 2.4x10* m?/s, which is eight times higher. However, the
replacement of air will incur higher manufacturing and maintenance expenses, as it requires a
pressurized helium gap between the solar collector and glaze.

The glaze consisted of a tempered, low iron, extra clear glass (not UV reflective glass), which has a
high energy transmittance and reduced sunlight reflectance. The four glazed glass panes and welded
rod frame were manufactured at “Affordable Glass and Mirror”, 120 B Menaul Blvd. NW,
Albuquerque, NM 87107, (505)-246-2997. The total cost was $2,600, including parts, labor, and taxes.

The thermocouple (TC) placement is shown in Figures 2-7 and 2-8. Figure 2-7 shows the west and
north TCs, while Figure 2-8 shows the east and top TCs.

N

Figure 2-2. Glaze structure showing the glass and support iron rods.



Figure 2-4. Fractal-fin solar collector inside the glaze containment.
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Figure 2-5. Instrumentation of the glaze, fractal-fin solar collector assembly.
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Figure 2-6. Fully-instrumented glaze solar collector placed outside the assembly building to
enable solar heat collection.
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Figure 2-7. Configuration of the west and north TCs.
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Figure 2-8. Configuration of the east and top TCs.
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3. SOLAR COLLECTOR EXPERIMENTS

The solar collector experimental data are discussed in this section. T'C experimental data was collected
during five multi-daytime time periods that included both day and night temperature recordings, as
follows:

o June 14— 19,2022
o July7-11,2022

o July 11— 14,2022
o July 14—17,2022
o July 18 —21,2022

The experimental data is shown in Figures 3-1 through 3-5, respectively, for the five time periods.

Note that the glaze temperature fluctuated +/- 10 °F, only during the day. This is attributed to small,
transient cloud formations, as the skies were generally clear.
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Figure 3-1. June 14 — 19, 2022 TC temperature.
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Figure 3-3. July 11 — 14, 2022 TC temperature.
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Figure 3-4. July 14 — 17, 2022 TC temperature.
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The peak glaze, water, and air temperatures are summarized in Table 3-1, and are compared with the
top-performing unglazed 2021 experiment. The table shows that the peak ambient temperature
ranged from 99 to 106 °F, reflecting that the data was recorded during some of the hottest days of the
year, and with little to no cloud cover and no smoke particulates in the air due to forest fires. This

resulted in peak glaze temperatures that ranged from 173 to 193 °F, while the peak water temperatures

ranged from 119 to 140 °F. There is a reasonable data correlation and consistency for the first four
time periods, while the July 18 — 21 data show a significantly-higher peak water temperature of 140
°F, despite the glaze temperature being one of the lowest. The reason for this is that for the fifth and
final experiment (e.g., the July 18-21 experiment), any visible small leakage gaps between the glaze,
insulation, and bars were carefully sealed to retain as much heat as possible within the air gap. Hence,
more heat was conducted from the glaze, through the air gap, and into the water, thereby reducing
the glaze temperature, while increasing the water temperature. This not only shows the importance of the
insulation, but also of having a well-sealed glaze/ solar collector system. Thus, the July 18—21 experimental data is
more prototypic of the glazed solar collector design. That said, a hermetically-sealed glaged solar collector will probably
have an even higher thermal performance than was measured during the fifth experiment.

Table 3-1. Summary of peak glaze, water, and air temperature.

July 18 —
September J“l}; 07 i 1, 21, 2022
9-13, June 14 - July 11 - July 14 - (il
2021 19, 2022 (glazed) 14, 2022 17, 2022 8 ’
improved
(no glaze) | (glazed) (glazed) (glazed) gap seal)
Totaze °F) N/A 173 187 190 193 175
Tater CF) 116 130 130 122 119 140
T;mbient
(°F) 104 106 102 99 106 106

The final comparison for the glazed vs. unglazed solar collector is shown in Figure 3-6, which shows
the thermal performance for the unglazed (left) and glazed (right) solar collectors.
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Figure 3-6. Water temperature heat-up performance comparison between the peak-performing,
unglazed (left) and glazed (right) solar collectors.

18



4, BENEFITS, DISADVANTAGES, AND COST OF SOLAR GLAZE

For the unglazed solar collector experiments conducted in 2021 [Rodriguez et al.,, 2021], the peak
water temperature was 116 °F, with a peak ambient temperature of 104 °F. For comparison, the best
peak water temperature performance for the glazed solar collector was 140 °F, with a peak ambient
temperature of 106 °F. Since both ambient temperatures are relatively close, this facilitates their
comparison (albeit at a 2 °F disadvantage for the glazed collector), conservatively showing an
additional water temperature increase of 24 °F; adding the 2 °F disadvantage, #he glazed solar collector

outperformed the unglazed collector by 26 °F. This corresponds to a significant water temperature increase,
though this increases the cost per unit, and the glass represents a structural weak point.

During the 2021 analysis, it was noted that for the aluminum sheets + burdened labor (CNC, welding,
machining, and assembly) + miscellaneous items, the cost for one solar collector was $1,320.62 +
$2,081.10 + $459.81 = $3,862 [Rodriguez et al., 2021]. The four glazed glass panes and welded rod
frame cost $2,600, including parts and labor. Therefore, the total cost rises to $6,462, not including
any inflationary costs.

However, as noted in the 2021 analysis, the cost of the unglazed unit can be reduced if the solar collector is built in high
numbers.  Moreover, more than half the cost results from labor; this cost can be reduced if automation is employed,
thereby potentially reducing cost by a factor of about 50%. 1f so, the labor cost per unit is reduced by §1,040.55,
resulting in an unglaged wunit cost of $2,821. The same arguments can be applied to the glage structure; for
conservativeness, assume that only a 40% reduction in cost can be achieved via antomation and high-number production.
If so, then the mass-produced glazge confinement is expected to cost §1,300 per unit. Under these assumptions,
the glazed solar collector costs $2,821 + $1,300 = $4,121 per unit.

The return on investment (ROI) time period for the glaged fractal fin dimpled solar collector is typical of solar panels,
on the order of 11.7 years if performed similarly to the unglazed solar collector (vs. 8 years for the unglazed solar collector);
but clearly, the glazed solar collector outperfornms the thermal performance of the unglazed solar collector, so this must be
factored into the ROI time period. In particular, its ability to heat up the water by an additional 26 °F means that it
has a higher thermal output, which is calcnlated as follows, and reflected onto the ROI time period: the unglazed
experiment water temperature rose from 83 to 116 F (i.e., from 301.5 and 319.8 K, a net rise of 18.4 K), while the
Slazed experiment water temperature rose from 83 to 140 T (301.5 and 333.2 K, a net rise of 31.7 K). Hence, the
increased performance is 31.7/18.4, or a factor of 1.73. This implies that the glazed solar heater has a ROI time of
approxcimately 11.7/1.73 = 6.8 years. Note that this analysis does not consider potential tax breaks and/ or subsidies,
s0 the ROI time period wonld be lower in such cases.

Moreover, an adpantage of the fractal fin dimpled solar collector is its affordability vs. home solar panels. For example,
according to ConsumerAffairs, the average cost for home solar panel installation in New Mexico 15 §16,680 [Parkman,
2021]. Thus, consumers desiring to supplement their energy usage and reduce their environmental footprint via green
energy can do so at a much lower cost via the glazged, fractal fin solar collector. Thus, buyers can join the green marfket
at a fraction of the cost for solar panels. For such comparison, the buyers can get up to four glazed dimpled fractal fin
solar collectors for the equivalent cost of a single home solar panel.
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5. CONCLUSION

A glazed glass exterior containment was incorporated onto the dimpled fractal fin solar collector
for the purpose of capturing more solar heat and providing protection from convective wind
losses. Then, solar collection experiments were performed to compare its thermal performance
against an unglazed, dimpled fractal fin solar collector.

The experimental data shows that the glazed solar collector outperformed the unglazed collector
by 24 to 26 °F. The experiments also showed the importance of sealing any visible small leakage
gaps between the glaze, insulation, and structural iron bars; providing a hermetic seal is crucial
for higher thermal performance. Moreover, by employing a replacement gas instead of air (e.g.,
helium), the thermal diffusivity could be increased by a factor of eight.

As noted in the 2021 analysis [Rodriguez et al., 2021], if automation and high-volume
manufacturing are considered, the glazed collector will cost $4,121 per unit and have a 6.8 year
ROI time petiod, not including tax breaks and/or subsidies.
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