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Scientific Contributions and Significance to LANL

1.Technical Training and Specialties
• What important skills and specialties do I bring to the Group and LANL as a whole?

2.Mission Related Research
• How does my research address the mission of the Group/LANL?

3.Contributions to the Mission & Program Development
• What are my objectives for the remaining duration of my appointment?
• How will I contribute to program development?

4. Goals for rest of time at LANL
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1. Technical Training and Specialties
B.S. Chemistry (University of Louisville, 2012)
Ph.D. in Biochemistry (University of Kentucky, 2019)
• Advisor: Dr. Hunter Moseley
• Thesis: Computational Tools for the Untargeted Assignment of FT-MS Metabolomics 

Datasets.
• Minor: Unofficially – Computer Science / Engineering
MD (University of Kentucky, 2021)
• Focus in Family Medicine / Primary Care and Non-Small Cell Lung Carcinoma 

Metabolomics

Unique Skills: My research has focused on improving our understanding of the Maize-soil-
microbiome in order to direct interventions to improve crop yield. I’ve applied my background 
in computer science and metabolomics to use GCxGC-TOFMS to explore these systems and 
develop computational tools to identify unknown metabolites. 
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Motivation

Drought (plus population growth) threatens food security in the US and the world at large. 
Large-scale irrigation is impractical, is there an alternative?
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Overall Experiment

A B

Start with parent 
microbiomes

A
A

B
B

A B
A

A
B

B

Grow plants under 
drought conditions

B
A

Select Best Performing 
Microbiome

Propagate Best Performing 
Microbiomes
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But why do some microbiomes perform better?

Amino Acids

Organic Acids

Carbohydrates

Exudation

Uptake

Mg
Ca

P
Chelation

Mining

Produce

Consume

Soil Microbiomes and Plants work 
together to mine for nutrients and 

provide for one another metabolically. 

Signaling and small molecules are 
exchanged between plants and 

microbes that could improve plant 
growth or drought tolerance.

Need to explore the root metabolome 
to understand further!
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Instrumentation

LECO Pegaus GCxGC-TOFMS 
System

An example 2D chromatogram. 
Each pixel is a mass spectrum.
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Analysis Tools

Tile-Based Fischer Ratio Analysis (ChromaTof Tile) was employed to identify 
differentially abundant chemical features between classes. 

Rules based on S/N ratios, minimum number of significant mass channels, and 
feature occurrence in at least N samples were used to minimize false positives.
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The parent microbiomes

A: Los Alamos Forest Microbiome

A B

B: Fort Collins Agricultural Field 
Soil Microbiome
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Parent microbiomes induce different metabolite responses in 
maize roots.
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What is stomatal closure point?

Open stomata enable gas change but result 
in water loss.

Photosynthesis needs open stomata. 

The decision to open stomata requires 
balancing energy production with water 
loss. 

A ‘worse’ SCP means more often closed 
stomata, a ‘better’ SCP means more often 
open stomata. 
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Generation 2 roots show differences in lignin biosynthesis 
depending on stomatal closure point

p=2.66E-02 p=3.55E-03 p=1.92E-02

p=1.47E-02p=3.21E-02p=9.34E-03

A B C

D E E
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But generation 3 roots have the opposite pattern!
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What is Lignin?



159/16/2022

So what does this all mean?
The agricultural field soil results in higher beta-alanine levels in the roots. The plants are 
reacting as if the drought is more severe than it actually is. 

The forest soil results in plants producing more sucrose, perhaps to recruit beneficial 
microbes.

In the generation where a statistically significant difference in SCP was observed, the lignin 
pathway appears more active in the worst SCP plants, the opposite of generation 3. 

Since the plants from generation 2 to generation 3 were from the same seed source (i.e., 
basically clones) this is probably due to the microbiome. 

Lignin is a structural carbohydrate associated with growth and drought tolerance but many 
questions remain.
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Side Experiments – Wick vs. Standard Pots

!=

Pots are not fields, but many experiments are performed using pots for 
convenience. Notably pots have a bottom, fields do not, changing the hydrology. 

Can the addition of a wick to a pot change the distribution of compounds by 
mimicking the suction force seen in real fields? 
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We see differences in fertilizer distribution
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We see differences and in sugar gradients
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But salty aqueous solutions are less than ideal for GC-MS
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Side Experiments – Uninoculated Pots x Drought

The absence of a microbiome in the soil causes Maize 
roots to produce more sugar and organic acids.
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Side Experiments – Uninoculated Pots x Drought

Drought induces changes in core metabolic pathways. 
They appear less abundant in drought.
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Side Experiments – Exudate Composition

Significant differences to established literature.
Highlights the problem with commonly used metabolite assignment 

methods

Compound un-concentrated (ppm) un-concentrated (mM)
Sucrose 0.137 0.0004003
Inositol 0.038 0.000211135
Mannitol 0.061 0.000337373
Fructose (iso 1) 0.163 0.00090643
Fructose (iso 2) 0.163 0.00090228
Glucose (iso 1) 0.359 0.001990141
Glucose (iso 2) 0.198 0.001096686
Quinic Acid 0.241 0.001256641
Shikimic Acid 0.020 0.000117393
Aconitic Acid 0.276 0.0015859
Ribitol 0.000 0
Ribose 0.014 9.45189E-05
Arabinose 0.009 6.13035E-05
Malic Acid 0.023 0.000169612
Succinic Acid 0.000 0
Pyruvic Acid 0.057 0.000646356
Benzoic Acid 0.000 0
Urea 0.000 0
Stearic Acid 0.013 4.59294E-05
Palmitic Acid 0.050 0.000195157
Myristic Acid 0.000 0
Glycine 0.000 0
Alanine 0.000 0
Aspartate-3TMS 0.000 0
Proline 0.000 0
Glutamine 0.000 0
Serine 0.000 0

Our Quantification Zhu et al.
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Main Experiment – Future Directions
• Instrument Issues:

• The LECO is finicky with tuning and intensity drift. 
• Could explore this with controlled experiments

• Main experiment results:
• Lignin pathway activation could be further examined:

• Transcriptomics 
• Stable-isotope tracing
• Microscopy

• More investigation of what happened between gen 2 and gen 3.
• LC-MS + FT-MS to capture more metabolites
• Transcriptomics
• Soil microbiome metagenomics

• More replicates
• Basically this is an n=1. An interesting n=1 but still n=1.
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Side Project – Machine Learning Pipeline to Improve 
Assignment Accuracy

By blasting a chemical structure with an electron beam and 
fragmenting it, a mass spectrum can be produced.

Each peak is the mass-to-charge ratio of a fragment ion.
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Side Project – Similar Structures = Similar Spectra

Is this Fructose or Xylose.
Very different sugars biologically!

Structural similarity = Mass spectral similarity
But one is keto sugar, the other aldo…
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Side Project – Similar Structures = Similar Spectra

If we can predict the presence of a ketone or aldehyde we can discriminate 
between Fructose and Xylose.

“Graph coloring” enables the efficient representation of any substructure.
Can we predict these colors using machine learning?

D=0, C
D=1, C((C,1), (O,2))
D=2, 
C(C((C,1),(C,1),(O,1)
,1),(O(C,2),2)

D=0, C
D=1, C((C,1),(C,1),(O,2))
D=2, 
C((C((C,1),(O,1),1),(C((C,
1),(C,1),(O,1),1),(O(C,2),
2))
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Side Project – Training Data

~300k EI-MS Spectra from NIST
But entries do not have structures! 

Just InChiKeys… 

BJHIKXHVCXFQLS-
UYFOZJQFSA-N

C1C(C(C(C(O1)(CO)O)O)O)O

PubChem 
API

Local SQLite 
Caching

BJHIKXHVCXFQLS-
UYFOZJQFSA-N

PySMILES
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Side Project – Deduplicate

Deduplicate Entries Based on SMILES 
Strings

Hold Out Set

Training Set
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Side Project – Automated Feature Engineering & Binary Color 
Models

Training Set

Feature Vectors
[0,0,0,123,4,0,0…]

A length 500 
vector of ints

Engineered Vectors
Use FWE selection to 
drop uninformative 

features

Binary Model per Color
Use RandomForest to 
build a model using 
engineered vector
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Side Project – Model Storage
Store models and FWE selector using JSONPickle

…
{

“Color”: “C((C,1),(C,1),(O,2))”,
“Count”: 120345,
“Transformer”: pickled FWE selector,
“Model”: pickled RF model,
“Hyperparam Dict”: …,
“Performance”: { *from 5-fold stratified cross validation*

“MCC”: .89,
“Precision”: .99,
“Accuracy”: .99,
“Recall”: .37,

}
}
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Side Project – Models tend to be high precision and low recall
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Side Project – Combine Models
Ubiquitous colors are uninformative
Rare colors are uninformative 

Which models need to be included in a model?
• Doing this by hand is bound to be error-prone 
How do we evaluate a model combination? 
• Can we calculate a weighting based on known substructures in a possible 

assignment and predicted substructures? 
• Combined with cosine similarity, a traditional metric for comparing mass spectra.
• If the weighting improves the net or average rank of the correct assignment, then 

it’s a good combination. 
• Can evaluate using the hold-out training dataset.
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Side Project – Combining with PyGad
A model combination can be expressed using a bitmask.
• Assign each model to an arbitrary index i.
• If bitmask[i] = 1, include model; else exclude model.

The bitmask can be optimized using genetic algorithms.
• For d=1, |bitmask| = 138, i.e., 3.48E41 combinations
• For d=2, |bitmask| = 502, i.e., 1.31E151 combinations!

Needs incredible performance to make tractable.
• Pre-compute all cosine similarities (big memory footprint).
• Vectorize cosine weighting and ranking functions.
• Use Pandas and Numpy where possible.
• Use high-performance computers

• SLURM and tricks to side step time limits on the cluster
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Side Project – Wrapper Trick
Each iteration takes the wrapper 
which stores all needed metadata and 
previous solutions. 

Each generation this is updated, and a 
new job initiated taking the wrapper.

This means the job can start, stop on 
a whim. No need to micromanage 
starting and stopping to get around 
time limits on cluster.

Process stops when convergence or 
generation limits met.
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Side Project – Example Solutions
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Side Project – Enough Performance?

Evaluating 100 generation of 40 population members ~2 days of compute

100 generations sufficient for D=1 convergence but not D=2
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Side Project – Results

• D=1 combinations yield a notable improvement ~300 net improved assignments out of 
8000 test cases.

• D=2 combinations did not converge to an improved solution before I left LANL. 
• Likely just needs more time.

• Not a home run result but proof of concept!
• Other teams focus on:

• predicting structure directly from spectra (go big or go home / challenging)
• building better similarity metrics on just spectra (easy / limited improvements)

• This shows that a hybrid approach is possible and may bridge the gap between 
existing methods and other approaches. 
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Side Project – Future Directions

• Niche enough that LANL let me take the code with me.
• Open source on GitHub 

• Need more performance for higher depth colors.
• Mpi4py – go wide
• Cython - make it faster
• Calculations are all dot products / matrix math – maybe GPU? 

• Individual models could be tuned further.
• Automate hyperparameter searching per model
• Could try different algorithms dynamically

• SVM vs RF
• 1-d convolutional techniques? 

• Test on data from new instruments
• NIST spectra are low resolution but new GC-MS systems have higher resolution. 
• Are the models resolution-dependent?
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Publications
1. RM Flight, Mitchell JM, Moseley HNB “Scan-Centric, Frequency-Based Method for Characterizing Peaks from Direct Injection Fourier

Transform Mass Spectrometry Experiments” (2022) Metabolites
2. Mitchell JM, RM Flight, Moseley HNB “Untargeted Lipidomics of Non-Small Cell Lung Carcinoma Demonstrates Differentially 

Abundant Lipid Classes in Cancer vs. Non-Cancer Tissue” (2021) Metabolites
3. Jin H, Mitchell JM, Moseley HNB “Atom Identifiers Generated by a Neighborhood-Specific Graph Coloring Method Enable Compound 

Harmonization across Metabolite Databases” (2020) Metabolites

4. Mitchell JM, Flight RM, Moseley HNB “Deriving Lipid Classification Based on Molecular Formulas” (2020) Metabolites

5. Mitchell JM, Flight RM, Moseley HNB “Small Molecule Isotope Resolved Formula Enumeration: A Methodology for Assigning Isotopologues
and Metabolite Formulas in Fourier Transform Mass Spectra” (2019) Analytical Chemistry

6. Mitchell JM, Flight RM, Wang QJ, Higashi RM, Fan TWM, Lane AN, Moseley HNB “New Methods to Identify High-Peak Density Artifacts in 
Fourier Transform Mass Spectra and to Mitigate Their Effects on High-Throughput Metabolomic Data Analysis” (2018) Metabolomics

7. Trainor PJ, Mitchell JM, Clarlisle SM, Moseley HNB, DeFilippis AP, Rai SN “Inferring metabolite interactomes via molecular structure informed 
Bayesian graphical model selection with application to coronary artery disease” (2018) BioArxiv

8. Mitchell JM, Flight RM, Wang QJ, Higashi RM, Fan TWM, Lane AN, Moseley HNB “Development and in silico evaluation of large-scale 
metabolite identification methods using functional group detection for metabolomics” (2014) Frontiers in Genetics

9. Kannan S, Jones J, Mitchell JM “Dynamic Scheduling of White Water Rafting (2013) Harvard College Mathematics Review

Patents
1. Moseley HNB, Carrer WJ, Mitchell JM, Flight RM “Method and System for Identification of Metabolites using Mass Spectra” US Patent 

10,607,723
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Objectives for LANL Work
1.Submit 4 papers (datasets LA-UR’d so I can help after LANL)

a. In preparation. Carter K., Mitchell JM*, et al. “The effect of Microbiome and Watering on Maize 
Root Exudates” (2022) New Phytologist?

b. In preparation. Yeager C.M., Kaplan, D., Santschi, P., Mitchell JM, et al. “Iodide oxidation by 
forest soils is principally related to the activity of extracellular oxidase: (2022) Frontiers in 
Chemistry

c. In preparation. Sevanto S., Mitchell JM, et al. *LDRD main experiment results*
d. In preparation. Newman B., Mitchell JM, et al. *Wick Pot side experiment results* 
e. Machine Learning Work? Depends on if it works or not. 

2.Further develop collaborative relationships
• UKY – Will be finishing two software projects from MD/PhD with Hunter Moseley

3.Continue to develop broad technical skills necessary for transition to industry
• Rounding out my Comp Sci. skillset for transition to Med-Tech (Dev Ops / Software Packaging)
• Take my patent and make something I can sell to Thermo (needs GUI, documentation, 

packaging)
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Design Microbiome
No 

microbiome

Drought
(45% VWC)

Full water
(65% VWC)
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Conducted and planned analyses

• Measured plant traits – Above and belowground 
growth
- Photosynthesis and stomatal conductance
- Leaf traits (area, %water content, LMA)

• Carbohydrate and invertase analyses – roots and 
exudates

• Leaf, root, exudate metabolomics
- GC-MS, LC-MS
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Water and microbiome treatment – stronger effect on 
aboveground growth

a

c

ab

bc

*** ***

• Aboveground dry mass lower in half 
water

• With microbiome – full water plants taller 
than half water

• No microbiome – no difference between 
water treatments
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Differentially Abundant Metabolites 
(Watering, p<.05)

Carbohydrates:
D-Turanose
Sucrose

Organic Acids:
Shikimic Acid
4-Coumaric Acid

Phenolic/Polyol:
Arbutin

Fatty Acid:
Nonanoic Acid*

Differentially Abundant Metabolites 
(Microbiome, p<.05)

Carbohydrates:
1,5-Anhydroglucitol
3-a-Mannobiose
D-Turanose
Sucrose
Maltose

Organic Acids:
Quininic Acid
Ribonic Acid
Mannonic Acid
Galactaric Acid
Citric Acid
Butanedioic Acid*

Fatty Acid:
Palmitic Acid*

Root Metabolic Profiles Change in Response to Microbiome 
and Watering Treatments

More Abundant in 
No Microbiome

More Abundant in 
Fort Collins

More Abundant 
in Full Water

More Abundant 
in Half Water

Unidentified but 
Differentially Abundant 
Metabolites Omitted!

Presenter Notes
Presentation Notes
Metabolic profiling of roots was performed using the GCxGC-MS system in CDE. The list on the left are the set of metabolites identified as differentially abundant among the microbiome treatments and on the right, the set of metabolites differentially abundant among the watering treatments. In both case a p-value cutoff of .05 was used and this analysis was performed using a closed-source, vendor-provided tool. 

Interestingly, although the carbohydrates observed as differentially abundant between watering was a complete subset of those observed between microbiome treatments, the differentially abundant organic acids between the different treatments are disjoint, suggesting that this class of chemically similar metabolites have nuanced and distinct functions in plant response to microbiome and watering. 

Animation, the majority of the observed differentially abundant metabolites between microbiome treatments were more abundant in the “No Microbiome” treatment as shown in purple. Only one organic acid and one fatty acid were more abundant in fort Collins. A similar trend is observed in the differentially abundant metabolites based on watering. All but the fatty acid, nonanoic acid, was more abundant in full water. 

Of note, there were nearly as unidentified but differentially abundant metabolites in some cases as there were known differentially abundant metabolites. 
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Differences in Metabolic Profiles Visualized by Partial Least 
Squares Discriminate Analysis (PLSDA)

PLSDA can differentiate 
microbiome treatments

PLSDA can partially differentiate 
watering treatments

PLSDA models trained on features selected in an unbiased manner

Work done in conjunction with Dr. Lubbers and Dr. Kim

Presenter Notes
Presentation Notes
Although PCA is a good tool for investigating data, the lack of a separation boundary in PCA space between treatments does not imply there are not real differences. To investigate this further, an additional technique called PLSDA was used. The feature selection for this approach was different than the previous two analyses; however, in the interest of time it will suffice to say they were selected in a robust, unbiased manner. In all cases, the major separation is not between treatments but rather between small and large roots and then between microbiome and watering within those morphological groups. In the case of microbiome, the response to no microbiome is similar among small and large roots. For watering the response appears to differ since the decision boundary for full and half water among the two groups are orthogonal. 
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Figure ___: Two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS) 
chromatograms of pooled root and exudate samples (panels A and B respectively). 1D  and 2D represent the 
retention times of a given compounds on the primary and secondary columns, a 30m Rxi-5Sil and a 1.0m DB-
17MS respectively. The distribution of peaks with similar 1D times along the 2D highlights the ability of two-
dimensional chromatography to separate better complex samples commonly observed in metabolomics 
studies. Unsurprisingly, our root tissue samples are more chemically complex and clearly more concentrated 
than our exudate samples. 

A BA

2 D
 (s

ec
on

ds
)

1D (seconds)

GCxGC-TOFMS Chromatograms of Pooled Root and Exudate Samples
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Figure ___: Metabolite profiles of roots (red) and 
exudates (green) differ with respect to watering 
and microbiome treatments. Metabolite profile 
differences were detected using ChromaTof Tile 
that compares chromatograms by dividing them 
into tiles and performing a Fischer-ratio based test 
on the mass spectrum for each tile across 
treatments. The number of tile hits (p<0.05), 
partially reflects the metabolite differences 
between treatments. While not a true treatment, 
dividing the roots into two morphological groups 
based on median root diameter demonstrates that 
although watering and microbiome treatments 
induce some metabolic differences, they are small 
compared to the effect of morphology in roots. 
The absolute number of hits is greater in the 
exudate than expected; however, false positive 
hits from the presence of fertilizer compounds 
exaggerates the number of hits in exudate 
samples. 
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9/16/2022Los Alamos National Laboratory

Data Normalization and PCA (Leaf Tissue)
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Presenter Notes
Presentation Notes
Once normalized we can use principal component analysis to investigate how metabolite profiles differ with drought treatments. Separation in PCA space indicates meaningful, hopefully biological variance. 
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Normalized by Mass and Ribitol (2d-Integral)
Chromatof Tile Results – Water Status

Blue = Full Water
Brown = Half Water
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Normalized by Mass and Ribitol (2d-Integral)
Chromatof Tile Results

Contaminants
Or 

Misassignment
s

Loadings
Feature 00068
• PC1: .85
• PC2: -.38

Methoxyamine 2TMS:
• PC1: .28
• PC2: .77
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Feature 00522 Feature 00246 Feature 01443

Trisiloxane

Trisiloxane

Missing Value = 
0?

Unknown Compounds



569/16/2022Aspartic Acid 90.78% 
similarity

Normalized by Mass and Ribitol (2d-Integral)
Chromatof Tile Results 

Microbiome (Brown) or No Microbiome (Blue)
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The S_LENS focuses ions into a beam to move through the 
instrument

Not sure if S_EXT is the voltage for the Source or the S_LENS
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What about Filament 2?
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CV_wo Chained = Add 
predicted parent class 
to feature vector at 
each subsequent 
depth. 

• Examples are very sparse at low depth.
• Training dataset is all metabolites, introduces biases:

• if you know the compound is an Amino Acid, it is almost certainly an L-Amino Acid. 
• If it’s a sugar, it’s a D-Sugar.

Need More Examples
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Climate Change and Population Growth Threaten Food 
and Biofuel Security 

Climate Change = Decreased Crop Yield Population Growth = Increased Crop Demand

Can we modify crops, soil or both to maintain sufficient food and biofuel production?

”World-population-1800-2100.png” by Tga.D, CC-BY-SA-3.0 
Credit: nasa.gov
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Soil Microbes
Utilize / Metabolize the Compounds

Metabolite 
Secretion

Metabolite
Uptake

1 
Sample

100’s – 1000’s
Detected

Metabolites

Mass 
Spectral 

“Fingerprints
”

What metabolites are 
present?

What are their roles?

Possibly… but our models of plant-soil metabolism are limited

Our ability to detect metabolites has increased greatly…

” Mass_spectrum_brassicasterol.png” by Smmudge, CC-BY-SA-3.0 
Credit: leco.com

Image by Ehecoatl (pixabay), pixabay license 

https://upload.wikimedia.org/wikipedia/commons/1/1b/Mass_spectrum_brassicasterol.png
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100’s – 1000’s Mass Spectral 
“Fingerprints”

Metabolite 
Databases

>50% Are 
Unidentifiable!

Existing Techniques

But identifying detected metabolites remains difficult!
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100’s – 1000’s Mass Spectral 
“Fingerprints”

Metabolite 
Databases

>50% Are 
Unidentifiable!

Existing Techniques

My Project at LANL

Machine Learning Models

Graph Theory

Advanced Analytical Chemistry

Comprehensive 
Metabolite 

Identification 
Without 

Databases!

Improved 
Metabolic Models

But identifying detected metabolites remains difficult!

” lipid_metabolism.png” by OpenStax College, CC-BY-SA-3.0 

https://upload.wikimedia.org/wikipedia/commons/1/1b/Mass_spectrum_brassicasterol.png
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Comprehensive 
Metabolite Identification + =  

Plant-Soil 
Metabolism Models

Interventions to 
Improve Crop Yield

These models will guide interventions to improve crop yield
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