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ABSTRACT 

This report summarizes the work performed under a project funded by U.S. DOE Solar 
Energy Technologies Office (SETO), including some updates from the previous report 
SAND2022-0215, to use grid edge measurements to calibrate distribution system models for 
improved planning and grid integration of solar PV.  Several physics-based data-driven 
algorithms are developed to identify inaccuracies in models and to bring increased visibility 
into distribution system planning.  This includes phase identification, secondary system 
topology and parameter estimation, meter-to-transformer pairing, medium-voltage 
reconfiguration detection, determination of regulator and capacitor settings, PV system 
detection, PV parameter and setting estimation, PV dynamic models, and improved load 
modeling.  Each of the algorithms is tested using simulation data and demonstrated on real 
feeders with our utility partners.  The final algorithms demonstrate the potential for future 
planning and operations of the electric power grid to be more automated and data-driven, with 
more granularity, higher accuracy, and more comprehensive visibility into the system. 
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EXECUTIVE SUMMARY 

Distribution planning and operations are increasingly relying on utility distribution system 
models.  As a result, limitations in the accuracy and detail of the models can lead to inaccurate 
planning and operational assessments and decisions.  Errors in the models may stem from unlogged 
maintenance events, systems evolving over time, data entry errors, etc.  The accuracy of these 
models is critical, however these errors often remain undetected, until issues occur, as manual field-
verification is prohibitively expensive and time-consuming.  Fortunately, recent grid modernization 
efforts, such as the widespread deployment of smart meters and other advanced metering 
infrastructure (AMI) devices, have dramatically improved both the quantity and quality of the data 
available to utilities.  This project has developed a variety of physics-based, data-driven approaches 
that leverage AMI data to calibrate distribution system models and facilitate accurate analyses and 
planning tasks for integrating rooftop solar photovoltaic (PV) systems and other distributed energy 
resources (DERs).  The following topic areas summarize the work conducted during this project. 

Data Considerations 

Working with real-world utility data comes with a set of data-related challenges.  This 
portion of the project addresses those challenges.  A set of definitions for the types of data 
challenges was created along with methodologies to systematically inject these issues into synthetic 
data; this includes challenges such as measurement noise, missing data, meter bias, etc.  Filtering 
techniques were designed to filter erroneous data points from the datasets prior to use in subsequent 
model calibration applications.  An assumption in prior model calibration efforts in literature is that 
the characteristics in question do not change, which is unrealistic.  An algorithm to detect phase 
changes of customers in the dataset was developed and tested on both utility and synthetic data.  
The algorithm successfully detected several events in utility data with high confidence.  This work 
also provides several recommendations related to AMI data collection in terms of meter settings and 
data quality.  This can guide utilities in determining metering policies for time resolution, 
measurement resolution, noise limits, and other key metering decisions.   

Phase Identification 

Three phase identification algorithms were developed and tested, two based on voltage 
correlations and one based on state estimation.  Results for the state estimation algorithm are shown 
on synthetic data and demonstrate the applicability of state estimation algorithm for model 
calibration tasks.  Both voltage correlation algorithms leverage voltage time series data from 
customer advanced metering infrastructure (AMI) meters, and one of them also uses additional 
sensors placed on the medium voltage if available.  Both algorithms were extensively tested using the 
synthetic data and further validated on the utility datasets.  Utility #1 provided field validation of the 
results on four feeders, confirming the algorithm detection of a number of customers with incorrect 
phase labels.  Utility #1 has also implemented a working, tested prototype of one of the algorithms 
into their own system.    Additionally, in partnership with the National Rural Energy Cooperative 
Association (NRECA), one of the phase identification algorithms is now publicly available for coops 
and others to use as part of their Open Modeling Framework tool suite.   

Secondary System Topology and Parameter Estimation 

A parameter estimation algorithm based on pairwise linear regression leveraging voltage, real 
power, and reactive power from customer AMI meters was developed and tested on Utility #2.  The 
algorithm successfully determines the wire type, resistance, and reactance values associated with the 
secondary network of the distribution system.  In addition, a distribution system state estimator 
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(DSSE) was developed and tested using the synthetic dataset.  The DSSE successfully improves 
visibility into the distribution system state and demonstrates results that allow for the detection of 
incorrect phase labels in the system. 

Meter-to-transformer Pairing 

A two-stage meter-to-transformer pairing algorithm was developed that first flags errors in 
transformer group labeling using correlation coefficients between voltage data in stage 1 and then 
corrects the flagged errors with a pairwise linear regression methodology using voltage, real power, 
and reactive power in stage 2.  The algorithm was extensively tested using the synthetic data and was 
demonstrated as a proof of concept on examples from Utility #1 and Utility #2. 

Medium-Voltage Reconfiguration Detection 

An algorithm based on linear discriminant analysis (LDA) was developed to determine the 
position of switches with a distribution feeder.  This algorithm was developed and tested for 
robustness using the synthetic dataset.   

Regulator and Capacitor States and Settings 

Two methods were developed to detect regulator and capacitor states and settings.  The first 
method leverages the DSSE discussed in the secondary topology section.  The DSSE can be used to 
provide visibility of regulator and capacitor states.  The second method leverages measurements 
from both sides of the regulator, in this case from the IntellRupters® present in the Utility #1 
feeders.  An optimization algorithm is used characterize the physical parameters of the voltage 
regulator and identify the regulator tap position at each point in time.  For the capacitor states, a 
clustering algorithm was developed that leveraged real and reactive power measurements.  Results 
are demonstrated on data from Utility #1. 

PV System Detection, Parameters, and Settings 

A number of different algorithms were developed to provide enhanced visibility into behind-
the-meter (BTM) photovoltaic (PV) systems.  These include detecting, localizing, and estimating 
circuit parameters and volt-var settings.  Algorithms for detecting the size of PV installations and 
estimating their tilt and azimuth were developed using a convolutional network method and a deep 
learning method, respectively.  Algorithms were also developed for detecting PV control settings, 
power factor control settings, and volt-var control settings. 

Load Modeling 

Research in load modeling developed and evaluated improved, yet practical, distribution load 
modeling methods that leverage AMI and other modern data streams.  In particular, this research 
developed improved spatial and temporal active and reactive power load models, methods to 
consider behind-the-meter PV in load modeling, representation of highly unbalanced loading 
conditions, and voltage-sensitive load models.  This research identified numerous ways for 
distribution planners to enhance the conventional distribution load modeling practices to better 
utilize the modern data.  

PV Dynamic Modeling 

Viable approaches to calibrating an aggregate PV dynamic model and detecting 
maloperation/failure of PV inverter systems were tested in a modeling environment. More 
specifically, we have (1) accurately fitted the DER_A model and calibrated its parameters via a 
derivative-free nonlinear least-squares algorithm and (2) trained and tested some of the popular 
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machine learning classifiers with certain pre-/post-event features, using the transient simulation data 
provided by CYME. 

Algorithm Implementation 

Two types of algorithm implementation were conducted.  First, the Python implementation 
for both phase identification algorithms and the meter-to-transformer pairing algorithm were 
released as open source, hosted on the Sandia National Laboratories GitHub repository.  CYME 
also implemented phase identification algorithms, both the one developed during this project and 
others for comparison, meter-to-transformer pairing algorithms, and secondary system topology 
algorithms as prototypes.  Working in collaboration with NRECA, one of the phase identification 
algorithms was released as an available tool in the Open Modeling Framework (OMF) tool suite.  
OMF is an open-source resource of distribution modeling tools used by rural coops and others.  
Utility #1 implemented one of the phase identification algorithms within their system and intends it 
for widespread use throughout their service area.   

Project Outcomes and Conclusions 

This research work has resulted in a number of publications.  The full publications list can 
be seen in Section 13.2.  The ability to detect errors and calibrate distribution system models will 
continue to be an ongoing challenge for utilities, especially with the continued adoption of new 
smart grid technologies and controls.  The developed algorithms, tested on real feeders, demonstrate 
the potential for future planning and operations of the electric power grid to be more automated and 
data-driven, with more granularity, higher accuracy, and more comprehensive. 
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ACRONYMS AND DEFINITIONS 

Abbreviation Definition 

ADMS advanced distribution management system 

AMI advanced metering infrastructure 

ANSI American National Standards Institute 

AWG American Wire Gauge 

BTM Behind-the-Meter 

CC Correlation Coefficient 

CLM Composite load model 

CNN Convolutional neural network 

CYME Company that develops the CYMDIST power system analysis tool 

DER distributed energy resource 

DFT Discrete Fourier Transform 

DG Distributed Generation 

DMS Distribution management system 

DNI direct normal irradiance 

DNN Deep neural network 

DOE Department of Energy 

DSPE Distribution System Parameter Estimation 

DSSE Distribution System State Estimation 

DSTI Distribution System Topology Identification 

DWT Discrete Wavelet Transform 

EPB Electric Power Board Chattanooga 

EMT Electromagnetic transient 

EPRI Electric Power Research Institute 

ESS energy storage system 

EV electric vehicle 
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GHI global horizontal irradiance 

GIS geographic information system 

GMP Green Mountain Power 

GP Gaussian process 

GUI graphical user interface 

HC Hosting capacity 

IEEE Institute of Electrical and Electronics Engineers 

I/O input/output 
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Abbreviation Definition 

k-NN k-nearest neighbors 

LASSO least absolute shrinkage and selection operator 

LLNL Lawrence Livermore National Laboratory 

LDA Linear Discriminant Analysis 

LDC Line Drop Compensation 

LR linear regression 

LRPE linear regression parameter estimation 

LRTE linear regression topology and parameter estimation 

LSE Least square estimator 

LTC Load Tap Changer 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MATLAB Matrix Laboratory 

ML machine learning 

MPPT maximum power point tracking 

MSE Mean squared error 

NB Naïve Bayes 

NERC North American Electric Reliability Corporation 

NREL National Renewable Energy Laboratory 

NLS nonlinear least-squares 

NLSE Nonlinear least-squares estimator 

OLS ordinary least squares 

OpenDSS Open Distribution System Simulator™ 

OWA optimally weighted average 

PCA principal component analysis 

PCC point of common coupling 

PF Powe flow 

POA plane of array 

PMU phasor measurement unit 

pu per unit 

PV photovoltaic 

QSTS Quasi-Static Time-Series 

RBF radial basis function 

RDQDA Regularized Diagonal Quadratic Discriminant Analysis 

RF random forest 
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Abbreviation Definition 

RMS root mean squared 

RMSE root-mean-square error 

SOC state of charge 

SNL Sandia National Laboratories 

SVD singular value decomposition 

SVM support vector machine 

TSHC time-series hosting capacity 

VRE voltage regulating equipment 

VREG voltage regulator 

WECC Western Electricity Coordinating Council 

WLS-SE weighted least-squares static state estimator 
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1. INTRODUCTION 

Modern distribution planning software (OpenDSS, CYME, Synergi, Milsoft, etc.) have 
evolved to allow accurate and detailed modeling and analysis of distribution feeders. However, while 
the software tools allow detailed modeling, the results are only as accurate as the models used for the 
simulations. 

Utility distribution system models are traditionally created by importing equipment locations 
and connections from a utility’s geographic information system (GIS).  There is commonly little 
validation or calibration performed for these models, and all calibrations or corrections are done 
with manual, time-intensive testing.  Historically, with low photovoltaic (PV) penetrations, model 
accuracy away from the substation was of little concern. However, at high PV penetrations where 
there will be multiple power injection points along the feeder, reverse power flows, and possible 
voltage and protection issues, it becomes critical to have accurate modeling to enable proper 
decision-making in all planning and operation stages of the distribution grid [1].  Even at the 
medium-voltage (e.g., 12 kV) level, the phasing of lines, topology changes, voltage regulator 
setpoints, and load connections are often uncertain.  Very little may be known at the low-voltage 
level for locations of loads, connections between customers and service transformers, and the 
secondary system model, leading to large inaccuracies with errors >100% in the voltage drop/rise to 
the customer or distributed PV connected on the low-voltage. 

Although utilities log PV interconnection requests, verifying all the details for hundreds of 
interconnections per day and keeping databases updated is a major challenge.  PV penetrations on 
distribution feeders are increasing to become significant generation sources, but utilities lack 
visibility of this distributed PV.  Many utilities do not record parameters for distributed PV such as 
their DC power rating, tilt, or azimuth, making it difficult to estimate their power.  Furthermore, the 
actual PV system may vary from the interconnection plan, such as systems may not have been 
interconnected, may have been connected many months later than expected, may have changed size, 
have major shading issues, or may have failed.  In the vast majority of cases of feeders in the United 
States that have been instrumented with sensors, significant differences are present between the field 
quantities retrieved by the sensors and the corresponding models used for planning, operations, and 
decision-making. 

The determination of the amount of solar PV that can be reliably and safely connected at a 
given location of a distribution system (i.e., the PV hosting capacity) depends on a number of 
variables including the characteristics of the PV system, its inverter and its controls, and the model 
of the distribution circuit. The results of hosting capacity are known to be highly sensitive to the 
feeder model, where a few volts difference in the results of the power flow or quasi-static time-series 
(QSTS) analysis can result in estimations of PV hosting capacity varying by more than 200%.  With 
this high level of uncertainty, planning engineers have limited confidence in distribution grid models 
and instead assume a conservative worst-case scenario based on rough rules of thumb rather than a 
detailed understanding of their system. 

With the proliferation of advanced metering infrastructure (AMI), micro-inverters, and 
advanced sensors such as phasor measurement units (PMUs), a more granular and rigorous 
understanding of distribution grid operations with enhanced distribution feeder models is enabled.  
This will cause a fundamental change from models based on manual entry to data-driven modeling 
of the grid.  This paradigm shift will require new learning and model calibration algorithms and 
interfaces between the data and modeling tools that will be developed in this project.  Additionally, 
data-driven modeling will allow dynamically changing models that are automatically adapted to 
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changing conditions on the grid, constantly modifying themselves based on topology 
reconfigurations, new PV installations, etc.  This project uses the Big Data provided by the rapidly 
increasing distribution system sensing capabilities and physics-based machine learning using on 
standard power flow equations and feeder models to increase the accuracy and remove uncertainty 
from distribution system models to accommodate greater PV penetrations.  

With high penetration of PV and other active resources, the future grid will have more 
complex analysis needs and new control architectures, coordinating load, storage and generation-
based resources. The accuracy of distribution grid models, and availability of measurement data to 
validate the models will be a key component in determining overall deployment, investment, and 
future control strategies. Errors in models are prevalent in the distribution system, and data accuracy 
is a key challenge that leads to a lack of confidence in analysis and operations, and reluctance to 
move forward with advanced grid analyses. Barriers to modernization of the distribution system 
include availability and capabilities of existing planning tools, data availability, and model validation 
and accuracy, particularly inaccurate representation of impedances, connectivity/topology, loads, 
and DERs.  

Inaccurate feeder models can result in under- or overestimating PV hosting capacity, 
highlighting the need for improvements to make models more accurate. Improved feeder models 
will enable accurate PV distribution impact assessment, improved distribution system efficiency, 
better implementation of conservancy voltage reduction, and numerous other key functions in 
distribution planning and operations. Model improvements have diminishing marginal returns, for 
example, in reducing hosting capacity error as illustrated in Figure 1-1, but this work targets the 
initial model improvements with very high returns. Current models are so uncertain that planners 

and developers have little confidence in the results‒this project will provide massive improvements 
in PV hosting capacity accuracy and confidence by taking the first steps toward more accurate 
models. This enhanced utility understanding and the increased accuracy of feeder models will both 
substantially reduce the technical uncertainty of feeder hosting capacity calculations (eliminating the 
need for utilities to “hold back” feeder PV hosting capacity due to distribution model uncertainties) 
and allow for better utilization of inverter grid support functions. 

  
Figure 1-1. The influence of model accuracy on the hosting capacity error 

1.1. Background 

Distribution system models are prone to having a variety of different error types.  Compared 
to the transmission system, distribution systems are less instrumented, less thoroughly modeled, and 
evolve faster.  There are storm restorations, maintenance, new distributed energy resource (DER) 
devices, and new construction happening all the time.  Each of these events can contribute to 
introducing errors into the distribution system model.  These models are increasing critical for many 
desirable tasks including, grid modernization tasks, distribution system planning, resilience and 
reliability studies, hosting capacity analysis, and others.  Errors in the distribution system models 
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impact the accuracy of these studies and can force utilities to be, at best overly cautious, and at 
worst, use inaccurate results to influence their decision making.  Having accurate models is critically 
important as DER integration increases; the zero carbon initiatives call for significant grid 
modernization in the coming years and accurate distribution system models are essential for success 
in those areas.  Figure 1-2 shows a (non-exhaustive) list of distribution model errors by category.  
This project has developed model calibration algorithms or considered errors from nearly all the 
categories shown in this figure.  This overview analysis of types of distribution system model errors 
resulted in a conference paper publication [2]. 

 
Figure 1-2. Common Types of Distribution System Model Errors 

Table 1-1 shows a literature overview of distribution system model calibration tasks in 
response to the errors shown in Figure 1-2.  This project has significantly advanced several of these 
key areas including Phase Label Errors (Section 4), Model Parameters (Section 5 and Section 6), PV 
Installations (Section 9), System State and Setting Errors (Section 7 and Section 8). 

Table 1-1. Types of distribution system model errors and literature addressing those challenges 

Error Categories Error Types 

System State and 
Setting Errors 

[3]–[8] 

State of switches (normal open or closed) 

Capacitor states 

Voltage regulator settings 

Switching capacitor settings 

Phase Label 
Errors 

[9]–[17] 

Individual transformer phase label error 

Lateral phase label error 

Three-phase customer labeled as single-phase 

Single-phase customer labeled as three-phase 

Data Missing 
from the Model 

[6], [18]–[22] 

Missing/Incorrect GIS coordinates 

Unmarked transformers 

Unmarked PV installations 
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Error Categories Error Types 

Unmetered load (unmarked customers or sources) 

Connection (LN or LL) and grounding 

PV Installations 

[18], [23]–[25] 

PV kW rating 

Tilt 

Azimuth 

Volt/VAr settings 

Connection (LN or LL) 

Inverter size 

Connect/disconnect dates 

Meter 
Configuration 

[8], [26] 

PT or CT ratios 

Units (kW vs mW) 

Time zone 

Measurement location 

Unknown collection type (time-avg or instantaneous) 

Unknown meter accuracy 

Model 
Parameters 

[7], [9]–[11], [22], [27], [28] 

Wire Types, overhead line configuration, underground 
cable insulation, lengths, and number of phases 

Transformer rating, connection (LN or LL), or turns 
ratio error 

Substation short circuit impedance 

Meter-to-transformer connection errors 

New or 
Replacement 

Equipment 

New home construction 

Reconductoring of lines 

New voltage regulation equipment 

Service transformer replacement 

1.2. Project Objectives 

As the cost of solar continues to decrease, grid integration becomes an increasingly 
important factor.  The goal of the project was to develop novel methods to improve key modeling 
challenges that are beyond the immediate vision of utilities and regulatory agencies and to solve grid 
integration challenges resulting from issues in model accuracy.  The research effectively utilizes 
modern distribution sensor data from AMI, PV systems, and supervisory control and data 
acquisition (SCADA) systems to calibrate distribution power flow models using physics-based 
Machine Learning.  This will meet the following SETO objectives: 

 
Objective 1: Develop improved modeling tools for power system planning with high PV 
penetration 

Develop and validate advanced models and data analytical techniques (including machine 
learning) that improve grid modeling accuracy and robustness to support system planning and the 
operation for high penetrations of distributed PV.  Task 1 will develop algorithms to improve 
modeling accuracy of distribution system model parameters for lines, topology reconfigurations, 
modeling errors and issues, and system phase connections.  This work is summarized in Sections 2, 
4, 5, 6, 7, 8, and 12. 
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Objective 2: Provide visibility into real-time solar generation throughout the distribution 
system 

Develop and validate algorithms for improved observability into the state of distributed 
generation in the network under constantly changing conditions.  This task will develop algorithms 
to determine locations and sizes of PV, in addition to their parameters (DC ratings, 
azimuth/tilt/tracking, etc.) and settings (power factor, volt-var curves, etc.).  This work is 
summarized in Section 9. 

Objective 3: Develop accurate and high-resolution (spatial and temporal) models 
Create high-resolution and accurate models to reduce the cost for utilities to host higher 

level of solar generation on their systems.  This task will develop improved spatial and temporal load 
modeling methods that include detailed modeling of phases, reactive power, and voltage sensitivities.  
This work is summarized in Section 10. 

Objective 4: Enhance the understanding of PV inverter control 
Identify PV inverter dynamic models to understand impacts to system inertia and stability, 

system protection, and capability to provide other grid services.  This task will develop algorithms to 
improve the fidelity of dynamic models the distribution system and PV inverters and to detect 
maloperation, failures, or areas to improve operation.  This work is summarized in Section 11. 

Figure 1-3 shows an overview of the broad project tasks.  Each of the blue rectangles 
corresponds to a chapter section in this report.   

 
 

 

Figure 1-3. Project Overview 
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2. DATA CONSIDERATIONS 

This section provides an overview of data considerations for utility AMI data.  Real-world 
data provides a variety of challenges related to data quality that must be considered in developing 
model calibration algorithms.  Algorithms that are not equipped to deal with these types of real-
world data issues will be impossible to roll out for widespread utility usage.   

2.1. Types of Data Issues 

Figure 2-1 illustrates three general types of data quality issues affecting utility data.  Data 
collection decisions are decisions made the by utility, which are the data types, measurement fields, 
measurement intervals, measurement resolutions, and data quantity.  These decisions are influenced 
by data management issues, data transmission concerns, data storage, and what a particular utility 
feels are the use cases for the data in the future.  One aspect of this project is to better inform 
utilities about best practices for collecting AMI data based on requirements and considerations for 
the model calibration algorithms developed throughout this project.  Systemic errors stem from 
ongoing problems within the meters; these can be from meter failure issues such as meter bias or 
time synchronization or operator error such as incorrect time zone settings or incorrect meter units.  
Finally, random errors include measurement noise, missing data, bad data, etc.   

 
Figure 2-1. AMI data considerations chart 

2.2. Data Preprocessing and Remediation 

2.2.1. Definitions for AMI Data Challenges 

For many of the data considerations shown in Figure 2-1, the best solution overall is to 
develop algorithms that are robust to those data challenges.  With this objective in mind, we 
developed methodologies to artificially simulate these data issues in our synthetic dataset.  Table 2-1 
shows the formulas used to inject a wide variety of realistic data issues into the synthetic data.  The 
data issues simulated include differing measurement intervals, differing meter resolution, meter bias, 
measurement noise, time synchronization, missing data, and data availability.   This allowed us to 



 

29 

rigorously test algorithms under development to quantify the effects of these data issues and design 
algorithms to be robust to them without incurring large preprocessing costs.  The results of this data 
issues overview were published in a conference paper [29]. 

Table 2-1. AMI data quality manipulation formulas 

 

 

 

 

 

 

Variable 

Definitions 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠  

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 1 − 𝑚𝑖𝑛𝑢𝑡𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑡 ∈ {1, 2, 3,… , 𝑇𝑡𝑜𝑡𝑎𝑙} − 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑎𝑡  

1 − min 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑖 ∈ 𝐼 𝑤ℎ𝑒𝑟𝑒 𝐼 = {1, 2, 3, . . . ,
𝑇𝑡𝑜𝑡𝑎𝑙

𝑘
 } 

−𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 

𝑣 ∈  𝑉, 𝑤ℎ𝑒𝑟𝑒 𝑉 = 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑓  

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 

𝐶𝑇𝑜𝑡𝑎𝑙 = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

𝑐 ∈ 𝐶, 𝑤ℎ𝑒𝑟𝑒 𝐶 = { 1,2,3,… , 𝐶𝑇𝑜𝑡𝑎𝑙} 

−𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

𝜇 = 𝑖𝑑𝑒𝑎𝑙 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠  

(240 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒) 

𝑈 − 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

 

Measurement 

Interval 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐: 

  𝑣𝑐,𝑘(𝑖) =  
1

𝑘
∑ 𝑣𝑐(𝑡)

𝑡 =𝑘+𝑡0−1

𝑡0 = (𝑖−1)∗𝑘+1

, ∀𝑖 

𝑘 = { 1, 5, 15, 30, 60} – measurement interval in minutes 

 

Meter 

Resolution 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐: 

  𝑣𝑐,𝑘(𝑖) = 𝑟𝑜𝑢𝑛𝑑(𝑣𝑐,𝑘(𝑖), 𝑑), ∀𝑖  

𝑑 ∈ 𝐷 𝑤ℎ𝑒𝑟𝑒 𝐷 = {0, 1, 2} − 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠 

 

 

Meter Bias 

𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑐: 

𝑉𝑘,𝑏𝑖𝑎𝑠 = 𝑉𝑘 + (𝑏 ∗  𝜎𝑐) 

𝑝 ∈ {0, 0.5, 1.0, 1.5, 2} 

−max  𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑏𝑖𝑎𝑠 

𝜎𝑐  ~ 𝑈(−1,1) − 𝑏𝑖𝑎𝑠 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑏 = (𝑝/100 ∗  𝜇) − 𝑚𝑎𝑥 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑏𝑖𝑎𝑠 

 

 

Measurement 

Noise 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐: 

𝑣𝑘,𝑛𝑜𝑖𝑠𝑒(𝑖) =  𝑣𝑘(𝑖) + (𝑛 ∗ 𝜎𝑖), ∀𝑖 

𝑝 ∈ {0, 0.05, 0.25,0.5,0.75,1.0,1.25,1.50,1.75,2.0} 

−𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑛𝑜𝑖𝑠𝑒  

𝜎𝑖  ~ 𝑈(−1,1) − 𝑛𝑜𝑖𝑠𝑒 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟  

𝑛 = (𝑝/100 ∗  𝜇) − 𝑚𝑎𝑥 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑛𝑜𝑖𝑠𝑒 

 

 

 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐: 

∀𝑖, 𝑣𝑐,1,𝑡𝑖𝑚𝑒𝑆𝑦𝑛𝑐ℎ(𝑖) =  𝑣1(𝑖 +  𝑠𝑐) 

𝑉𝑐,𝑡𝑖𝑚𝑒𝑆𝑦𝑛𝑐ℎ = 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑉𝑐,𝑡𝑖𝑚𝑒𝑆𝑦𝑛𝑐ℎ, (2 ∗ 𝑓)) 
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Time Synch 𝑓 ∈ 𝐹,𝑤ℎ𝑒𝑟𝑒 𝐹 = {1,2,3,4,5} 

−max  𝑜𝑓𝑓𝑠𝑒𝑡 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

𝑠𝑐  = 𝑈(−𝑓, 𝑓) 

−𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

Truncate(timeseries, truncationAmount) – truncates the beginning 
and end of the specified timeseries by the amount specified  

 

 

 

 

Missing Data 

For Each Customer 𝑐: 

   For 𝑐𝑡𝑟 from 0 to h: 

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑈𝑖𝑛𝑡(0, |𝐼|) 
                        𝑉𝑐,𝑘,𝑀𝑖𝑠𝑠𝑖𝑛𝑔 [𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

∶ (𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑔)] = 𝑁𝑎𝑁 

𝑝 = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

−𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 

ℎ = 𝑓𝑙𝑜𝑜𝑟 (
(𝑝 ∗ |𝑉|)

𝑔
) 

− 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠  

𝑔 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 

Quantity of 

Data 
𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑐: 

𝑉𝑐,𝑘,𝑚 = 𝑉𝑐,𝑘,12(1),  𝑉𝑐,𝑘,12(2),  𝑉𝑐,𝑘,12(3),…,   

𝑉𝑐,𝑘,12(30 ∗ 𝑚) 

𝑚 ∈ 𝑀 𝑤ℎ𝑒𝑟𝑒 𝑀 = {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

− 𝑚𝑜𝑛𝑡ℎ𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎  

2.2.2. Filtering Erroneous Data 

It is unrealistic to expect the algorithm to handle some types of bad data.  Erroneous 
datapoints may arise for a variety of reasons, the full description of such is outside of this project.  
Here we assume there is an unknown quantity of different types of bad data due to meter failure.  In 
many cases, these outlier values are best removed prior to using the data in a model calibration 
algorithm.  The goal of the data pre-processing task is to identify and remove errored measurements 
from the data set. A set of functions were created in Python for the task of removing abnormally 
high and low data points due to meter error from the voltage and power data set. The functions 
used to filter the per unit voltage data took a percentage of the mean and filtered data above or 
below that threshold.  In the power filtering task, the objective is to identify abnormally large spikes 
that likely resulted from aggregate power measurements after long periods of missing data.  This 
aggregate value appears to be expected functionality from the meter; however, for our purposes it 
does not reflect a “normal” timeseries value. The function created for this task used the customer’s 
95th percentile and a multiplier (10 or 20) to filter out these large spikes.  Figure 2-2 shows examples 
of abnormal data points from the Utility #1, Feeder #1 that are flagged and filtered using these 
functions. 
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Figure 2-2. Abnormal voltage (left) and power data (right) flagged by filtering functions from Utility 

#1, Feeder #1. 

In addition to the functions described above created to identify and filter errored/abnormal 
measurements, another set of functions were created to identify significant shifts in the data. Each 
function uses a sliding window to compare two consecutive windows of data. One function 
compares the mean of two windows and flags the timestamps where the percent change in mean is 
above a given threshold. The second function compares the standard deviation of two windows, and 
flags timestamps where the percent change in standard deviation is above a given threshold. Figure 
2-3 shows examples of shifts in data identified in the Utility #1, Feeder #1 using these functions. 

 
Figure 2-3. Example of shifts in data detected by sliding window functions from Utility #1, Feeder 

#1. 

2.2.3. Data Interpolation for AMI Data 

Missing data is consistently a problem for distribution system model calibration algorithms.  
Missing data can occur due to communication failure between the meters and the control center, 
outages, or filtering erroneous values as described in Section 2.2.2.  Algorithms developed for model 
calibration must be able to deal with this issue.  Many of the algorithms developed in this project 
such as phase identification (Section 4) and meter-to-transformer pairing (Section 6) incorporate 
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robustness into the algorithm itself, for example by using an ensemble approach, and thus do not 
require perfectly complete datasets.  This is one method for dealing with missing data.  However, in 
other cases it may be desirable, or necessary, to have complete timeseries without missing values, for 
example in the case of state estimation (Section 4.4).  In those cases, some type of data interpolation 
technique is necessary.   

Figure 2-4 shows a straightforward linear interpolation approach for timeseries voltage data, 
and Figure 2-5 shows an interpolation using the optimally weighted average (OWA) approach 
developed during a previous project [30].  Clearly the interpolation is significantly improved using 
the OWA method.  Testing of the OWA approach using the phase identification algorithm 
described in Section 4.3 demonstrated the interpolation was not accurate enough to successfully 
complete the phase identification task.  However, in cases where having complete timeseries data is 
essential it could be a reasonable approach.  A third method was under development when the 
project ended.  This method was based on leveraging an interpolation of the real power datapoints 
to inform the interpolation of the voltage datapoints.  The final development of this methodology is 
left to future work.  

 
Figure 2-4. Voltage timeseries section shown with linear interpolation 

 
Figure 2-5. Voltage timeseries section shown with OWA interpolation 



 

33 

2.3. Model Evolution Through Time 

2.3.1. Overview 

The distribution system is changing and evolving rapidly as digital technologies are 
integrated with existing components, renewable energy resources are added, new construction is 
integrated, and as maintenance occurs, either due to upgrades or extreme events. The evolution of 
the distribution system over time poses some particular challenges for maintaining accurate 
distribution system models. 

One major assumption that is made in each of those cases, and the bulk of distribution 
system model calibration algorithms in general, is that the attribute in question does not change 
during the period of AMI data that is being used as input.  For example, the phase identification 
algorithms assume that the phase labels, for every customer on the feeder, are perfectly consistent 
during the period of AMI data being used.  This of course, is an unrealistic assumption in practice.  
These types of model attributes are constantly changing and evolving over time in some unknown 
quantity and frequency; there is no way to realistically make that assumption. 

2.3.2. Phase Change Detection Methodology 

This work describes an algorithm to detect a change in phase for a customer during a given 
time period.  If a customer has changed phase, this can be used to split the dataset such that the 
phase identification algorithms (described in Section 4) can be used to verify the correct phase for 
that customer.   

The spectral clustering ensemble phase identification algorithm described in Section 4.3 
partitions the voltage time series data into a series of windows and clusters each window using 
spectral clustering. This algorithm uses a window size of 384 datapoints (4 days using 15-minute 
interval data) as does Section 4.3. Figure 2-6 illustrates this portion of the algorithm, emphasizing 
the window ensemble step.  Because each window of data is clustered in the ensemble step, it is 
possible to obtain a predicted phase for each customer for every window of data. This allows a 
customer’s predicted phase to be observed over time. 

 
Figure 2-6. The ensemble step, which clusters each window of data and assigns a predicted phase 

In the ensemble step, each window of data is clustered four times using 6, 12, 15, and 30 
clusters; this step is explained in more detail in Section 4.3. From the k-vector clustering process, we 
can obtain a matrix with dimensions n x m x 4 of predicted phases where n denotes the number of 
customers, m denotes the number of windows, and 4 is the number of values in the k-vector . We 
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take the mode of the 4 predicted phases to condense the array to n x m. In the case that there is no 
single value mode of the 4 predicted phases, we choose the predicted phase from the six-cluster 
result. We believe this prediction to be slightly more reliable than the predictions resulting from 
larger numbers of clusters. 

Using the condensed array, the customers’ predicted phase can be observed over time; 
therefore, it follows that a change in predicted phase over time may indicate a true phase change 
event.  Figure 2-7 is a flow chart describing the steps taken to detect these events via the array of 
predicted phases per window.  The key challenge is that the individual phase predictions may be 
quite noisy due to outside factors, measurement noise, customer behavior, etc.  

To detect a change of phase event, we compare the predicted phase of each window, starting 
at window 20 until window – 20 is reached. If a given window i and the window succeeding it, 
window i+1, have different phases, this represents a potential phase change if the threshold criteria 
is met. We define a change point at window i+1 for this algorithm if the following criteria is met: 

• At least X% of windows in range [i-20,i] have the same phase as window i. 

• At least X% of windows in range [i+1, (i+1) + 20] have the same phase as window i+1 

 
Figure 2-7. Flow chart of methodology for flagging possible phase change events 

The comparison range of 20 windows was chosen after testing the algorithm using a number 
of different choices. Twenty produced the most consistent results in the synthetic dataset. This value 
needs to be as small as possible to reduce the data requirements for the algorithm but large enough 
to account for the incorrect (noisy) phase predictions in individual windows. We observed that 
smaller values of this parameter increased the number of false positives flagged in the synthetic 
dataset. 

Confidence Scores 
One challenge in finding change of phase events, is determining which flagged events 

represent true events, and which events are falsely flagged. We have developed two metrics used to 
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help quantify how confident we are a flagged event represents a true event. These metrics can be 
used to help further eliminate false positive events.   

Number of Segments 
If we define the number of segments in a set of a window as any contiguous series of 

windows with the same phase, we can use the number of segments to quantify the level of 
consistency/variation in window predictions. Ideally, customers without events would have one 
segment, and true positive customers would have two segments. As the number of segments 
increases, meaning the variation in window predictions increases, we have less confidence that the 
flagged event is due to a true change point, rather than random variation in the window predictions.  
One note on this confidence metric is that the number of segments is highly affected by the 
measurement noise, and other issues, in the dataset. 

K-Vector Agreement 
The k-vector clustering step used in the phase identification algorithm is used to increase the 

robustness of the final co-association matrix. We can also base confidence in a change point 
occurring based on the agreement of the four k-means results by testing whether the change point 
occurs in the four different clustering results. 

In the ideal situation, a change point would be flagged at the same location for all four, 
individual k-means results. This would indicate that all four clustering results in the k-vector step 
showed a change of phase. Therefore, we can derive a score representing the number out of four of 
k-means results that return a change point.   

2.3.3. Phase Change Detection Results 

Synthetic Data 

The synthetic dataset described in Section 3.1 was used to test the algorithm for identifying 
phase changes. OpenDSS was used to simulate three lateral phase change events and one 
transformer change event affecting 46 customers in total. 

Looking at Figure 2-7, the primary parameter to set is the threshold criteria shown in the 
middle diamond.  The change point detection method was tested for a range of thresholds using the 
synthetic data. With the synthetic data, the ground truth is known, so we can evaluate the number of 
true positive and false positive customers flagged. The algorithm was tested using a range of percent 
thresholds from 50%-95% incrementing by 5%. In addition, we used the k-vector agreement 
confidence metric to further filter for customers with “high confidence.”  These results are shown in 
Figure 2-8. 
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Figure 2-8. Threshold sweep showing true positives flagged and false positives flagged with and 

without filtering 

 Setting the threshold parameter involves a tradeoff between limiting the number of false 
positive events flagged and maintaining most if not all true positive events.  This tradeoff is seen in 
Figure 2-8.  In general, for this synthetic dataset, the number of true positive customers flagged 
doesn’t begin to degrade until the 80% where the algorithm, flagged all true positive customers 17 
out of 20 runs, and flags one false positive for 19 out of 20 runs, and flags zero false positives in the 
last run.  In contrast, to eliminate all false positive customers, an 90% threshold was needed, at the 
cost of failing to flag, 2 true positive customers on average. 

We can use the k-vector agreement metric to filter the number of false positive customers by 
only permitting customers with events that had a k-vector agreement metric greater than or equal to 
3.  Similar to setting a higher threshold, eliminating the number of false positive customers comes at 
the cost of eliminating some true positive customers. Understanding the trade-offs between allowing 
false events into the distribution system model and failing to detect true events will help inform how 
to best select the threshold parameter. Figure 2-9 shows an example of a true positive customer 
(customer with a phase change) and a false positive customer (no phase change); the colors 
represent the phase predictions for each window for the two customers. 

In the synthetic dataset, we demonstrate the use of both proposed confidence metrics to 
filter the flagged change point results. For the synthetic dataset we assign low confidence to a 
flagged event represents a true event if: 

• The customer has a k-vector agreement metric less than or equal to 3, AND 

• The number of segments is less than the number of segments in the 95th percentile 
 

Because the number of segments is highly affected by measurement noise, which is 
particular to each dataset, rather than pre-defining an “acceptable” value to filter with, we use the 
95th percentile as a threshold, which is dependent on the data characteristics.  The 95th percentile was 
chosen for the synthetic dataset because it was most effective at separating false positive customers 
from true positive customers.  



 

37 

 
Figure 2-9. Example of false positive customer filtered with the confidence metrics, and a true 

positive customer. 

The proposed method for detecting phase change events was additionally tested using the 
synthetic dataset with various levels of noise. The data was injected with normally distributed noise 
with a specified standard deviation. Noise injections ranged from percent standard deviation 0.01% 
to 0.8%.  Figure 2-10 shows the results of the noise sweep. The plot contains the number of true 
positive and false positive customers flagged with and without filtering for customers with a k-vector 
agreement greater than or equal to three for each level of noise. The plot shows the average number 
of customers flagged for each noise level.  

 
Figure 2-10. Number of flagged customers per noise level 

Utility Data 

The algorithm was applied to AMI voltage data from two different utilities using two feeders 
from each utility. 

When applied to data from Utility #1, Feeder #1, and Feeder #2, the phase change 
detection algorithm did not flag any customers for any threshold. Given the information available 
for these feeders from the utility, we find this to be a reasonable result. 

The algorithm was also applied to Utility #2, Feeder #1.  The algorithm flagged 20 
customers using an 80% threshold. These results could be further filtered by selecting customers 
with a k-vector agreement of 4, leaving 13 customers remaining. Although there is no way to know 
the ground truth without field verification, we can validate our algorithm’s findings using the 
distribution system topology made available to us via publicly available from Google Earth and 
Google Street View Imagery. In total, we were able to partially validate 3 events affecting all 13 
remaining customers. 
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The algorithm flags 10 customers that are detected to have changed from phase A to phase 
C at window 69. From the topology information on Google Earth we have available for this feeder, 
we found that these customers were on the same lateral. Figure 2-11 shows the flagged customers, 
and the lateral they belong to.  Although the ground truth is not available, the fact that these 
customers are all on the same lateral and all flagged at the same moment does partially validate these 
results as a probable phase change event for this lateral.  

In addition to the 10 customers flagged for an event at window 69, two customers were 
flagged for a change from phase A to phase B at window 69, and one customer was flagged for a 
change from phase B to phase A at window 39. Figure 2-12 shows the map of the two customers 
connected to the same transformer.  Again, only the two customers labeled as serviced by this 
transformer were flagged as having this event.  It is less confirmative than in the lateral case, but still 
provides some validation of the algorithm results. 

 
Figure 2-11. Ten customers flagged for change from phase A to phase B on Feeder #1 from Utility 

#2 

 
Figure 2-12. Two customers connected to the same transformer with a phase change event from 

phase A to phase B on Feeder #1 from Utility #2 

Google Earth 

© 2018 Google Earth

- Phase A

- Phase B

- Phase C
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2.3.4. Phase Change Detection Conclusion 

 This section presented an algorithm for detecting phase changes in voltage time series data, 
and a set of confidence metrics that can be used to evaluate the results of the algorithm. The 
proposed methodology leverages the ensemble step of the spectral clustering ensemble phase 
identification algorithm combined with a novel phase change detection algorithm to obtain 
predicted phases for windows of data, which can be used to determine whether changes of phase 
occur. This algorithm was applied to a synthetically generated voltage time series data set with phase 
change events, and to four utility datasets. Further work is needed on parameter tuning of the 
algorithm and use of the proposed confidence metrics. The results on the synthetic dataset 
demonstrate high accuracy and robustness to measurement noise.  In addition, the algorithm 
identified three possible phase change events affecting 13 customers in one of the utility datasets, 
which we were able to verify using the grid topology made available through Google Earth and 
identified two other possible events in another utility dataset. We have demonstrated that the 
proposed algorithm demonstrates the ability to accurately identify true phase change events, with 
limited numbers of false positive events.  This work was published as a conference paper [31]. 

2.4. AMI Data Requirements for Model Calibration 

This section presents some general conclusions and recommendations for AMI data 
collection requirements as it relates to model calibration.  Certainly, the requirements will vary 
somewhat by task, specific algorithm, and model calibration requirements.  The following notes and 
conclusions should be taken in the context of the experiments, algorithm, and data used; however, 
they may serve as a foundation for utility decision making. 

Table 2-2 shows a set of AMI data recommendations based on testing with a correlation-
based phase identification algorithm described in Section 4.3.1.3.  Table 2-3 shows a set of AMI data 
recommendations based on a meter-to-transformer pairing methodology based on the parameter 
estimation algorithm described in Section 5.1; a refined version of meter-to-transformer pairing 
algorithm is presented in Section 6.   
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Table 2-2. AMI data recommendations for correlation-based phase identification algorithms 

Data Quality 
Manipulation 

AMI Considerations Based on the Phase 
Identification Task 

Measurement 
Interval 

5 - 15-minute intervals are recommended 

Meter Precision At least 1 decimal on voltage measurements 
(240V) is required 

Meter Bias Bias does not impact phase identification results 
with this algorithm 

Measurement 
Noise 

< 0.25% maximum uniform random noise is 
recommended 

Time 
Synchronization 

> 1-min measurement intervals are required to 
account for the time synchronization errors 

Missing Data Sensitive to the distribution of missing data.  Given 
uniformly distributed 4-hr missing data instances, 

with this algorithm, the percentage of missing 
data is required to be < ~4%   

Data Availability > 4 months of AMI voltage data are required 

Table 2-3. AMI data recommendations for preliminary version of meter-to-transformer pairing 
algorithm 

Parameter Without Base Noise With Base Noise 

Measurement Interval Any interval 30 and 60 min. 

Average Vs 

Instantaneous 

Any type for smaller intervals. 
Average for larger intervals 
(>30min) 

Averaged data performs well especially in the 
presence of time synchronization issues. 

Data Resolution At least 0.1V and 0.1kW (1 decimal) required. 

Meter Bias No Impact 

Meter Precision 
(Noise) 

0.35-0.55 % maximum noise in Voltage: Corresponds to ANSI standards class 
0.2 

Time Synchronization Averaged and larger measurement intervals are more robust 

Missing Data 
Low sensitivity to 
missing data 

Data Quantity ∼ 1 month 
Error decreases steadily with larger quantities 
of data. 

 

The tables above represent two specific examples of defining AMI data collection 
recommendations for two specific algorithms.  The following are some general AMI data 
recommendations that come from the work conducted across the project as a whole.   

• Measurement Interval:  15-minute or 30-minute intervals for model calibration tasks, for 
load modeling at least 15-min for medium voltage and 5-min or better for low voltage 
applications. 

• Average voltage generally performs better for these tasks than instantaneous voltage. 

• Data Resolution:  At least one decimal point for voltage magnitude, real power, and 
reactive power measurements. 

• Data Availability:  This varies significantly among algorithms, though all algorithms tested 
require at least one month of available data, and more data tends to improve algorithm 
performance. 
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• Missing Data:  Requirements vary significantly depending on the algorithm in question 

• Time Synchronization Issues: All algorithms tested had significant issues if the AMI 
timeseries were out of sync. 
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3. TEST CIRCUITS 

This project leverages both synthetic datasets as well as a number of different utility datasets.  
The primary project goal is to reduce errors and unknowns in distribution system models.  One key 
assumption from the beginning is that the exact quantity and form of the model errors is unknown.  
See Section 2.1 and [2] for more details.  In addition, distribution system data itself (AMI, SCADA, 
or additional sensors) contains an unknown quantity of several different types of data issues.  See 
Section 2.2 and [29], [32] for more details.  Another consideration is that, in most cases, the utility 
datasets will not contain the ground-truth labels for the model characteristics under consideration.  
The project was fortunate to work with Utility #1 who provided some field-verification, but even in 
that case it was only for a small subset of the total feeder.  These factors make the use of synthetic 
data essential for the algorithm development process.  The synthetic data is fully controlled, with 
ground-truth labels, and can be injected with any amount of known data issues such as measurement 
noise, and any quantity of erroneous labels, such as incorrect phase labels.  This allows for rigorous 
algorithm testing for robustness under a variety of conditions ranging from expected to extreme.  
Then in the second stage of research the algorithms can then be tested on the utility data with 
confidence in how the algorithms are likely to perform under real conditions.  This combination of 
using both synthetic data and utility data provides the best environment for developing algorithms 
under known conditions and also testing them on real systems.  The follow sections describe the 
synthetic dataset, Section 3.1, and the utility datasets, Section 3.2.   

3.1. Synthetic Test Circuits 

3.1.1. EPRI Ckt5 Feeder Model 

Distribution load modeling research discussed in Section 10 along with several other 
research areas discussed in this report utilize the OpenDSS model of EPRI “Ckt5”, which is 
included in the OpenDSS software distribution1. Ckt5 is a model of a real US 3.2-mile long 12.47 kV 
distribution feeder that supplies 1,379 residential loads with 591 service transformers. The original 
Ckt5 model has no load tap changer or line voltage regulators but includes four switched-capacitor 
banks. The key parameters of Ckt5 model are listed in Table 3-1. 

Table 3-1. Key parameters of Ckt5 

Parameter Value 

Medium voltage base kV (line-to-line) 12.47 kV 

Number of devices 4,411 

Number of buses 2,998 

Number of nodes 3,437 

Max. bus distance miles (km) 3.24 (5.22) 

Number of transformers 592 

Number of lines 2,429 

Number of loads 1,379 

Number of capacitors2 4 (600 kvar, 300 kvar, 450 kvar, 600 
kvar) 

Number of voltage regulators 0 

Substation transformer type 10 MVA, 115/12.47 kVLL, D-Yg 

 
1 The OpenDSS Ckt5 feeder model can also be separately downloaded from: 
http://svn.code.sf.net/p/electricdss/code/trunk/Distrib/EPRITestCircuits/ckt5/ 
2 The original Ckt5 feeder model has four switched-capacitors that were disabled to allow focusing on the impact of 
different load modeling aspects, as opposed to the impact of mismatching controller states between simulations. 
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Parameter Value 

LTC No 

Number of feeders supplied by the 
substation transformer bank 

1 

Load voltage sensitivity model Constant P and Q3 

 
Ckt5 feeder layout contoured with the distance from the substation and the baseline4 voltage 

profile is shown in Figure 3-1 on the left and right, respectively. 

 

Figure 3-1. Ckt5 feeder layout contoured with the distance from the substation (left) and the 
baseline voltage profile (right) 

Ckt5 feeder supplies primarily residential customers. In the original Ckt5 model included in 
OpenDSS distribution, the secondary circuits are modeled as follows. Each secondary circuit 
consists of a service transformer rated from 5 to 75 kVA supplying from one to six customers and 
each customer is served with a dedicated 100-ft 2/05 triplex service line. To better represent the 
diversity in real-world secondary circuit construction (and the resulting voltage drops/rises), the 
service line lengths were randomly modified to range from 40 feet to 180 feet. For details, see [33]. 

Various modified versions of the Ckt5 feeder model were implemented for the different 
research areas discussed in this report. As follows, selected versions are briefly introduced. 

3.1.1.1. Ckt5 with 1-Minute AMI Load Profiles 

Several research areas discussed in this report utilized a modified version of the Ckt5 model 
with 1-minute AMI load models established as follows, for details see [33]. For this Ckt5 version, 
each load was assigned a real power profile created based on real residential customer load data that 
was obtained from PecanStreet Inc. The load data consists of 1-minute time-averaged kW 

 
3 By default, all loads in Ckt5 are modeled with OpenDSS load model=4 (nominal linear P and quadratic Q) with 
CVRwatts=0.8 CVRvars=3. However, for the load modeling research discussed in Chapter 10, the voltage-sensitivity 
models of all loads were replaced to constant active and reactive power consumption. 
4 The “baseline” voltage profile refers to the voltage profile obtained without load multipliers and before applying load 
profiles. 
5 The original service line is not mentioned in Ck5 documentation but its impedance corresponds roughly to a triplex 
service line with gauge 2/0. 
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measurements recorded in Austin, Texas. The reactive powers of loads were represented through 
random inductive power factors between 0.79-0.99. 

3.1.1.2. Ckt5 with Hourly AMI Load Profiles 

Several research areas discussed in this report utilized a modified version of the Ckt5 model 
with hourly AMI load models that were established as follows, for details see [33]. 

This modified version of Ckt5 leveraged an AMI data set obtained from a US utility that 
included residential customer active and reactive power measurements for a full calendar year at 15-
min time granularity (35,040 samples per profile). The data set included net metering for active and 
reactive power for 1,309 residential customers. The data set also included PV active power 
generation measurements for 691 of the 1,309 customers, who had a PV system. The native load 
was calculated for each customer from the customer’s net metering and PV generation data (native 
load = net load + PV generation). As this utility AMI dataset was unrelated to the Ckt5 feeder, the 
data had to be associated to the model in such a way that was representative of an actual utility 
feeder. To create the reference case load model for Ckt5 using the AMI data set, a single (active and 
reactive power) native load profile from the AMI data set was assigned to each of the Ckt5 loads. 

3.1.1.3. Ckt5 with AMI Load and PV Models 

This Ckt5 model version was based on the version discussed in Section 3.1.1.1 but also 
included PV system models with annual AMI generation profiles, for details see [33], [34]. The PV 
systems were added as follows. Each feeder load, which was assigned AMI load profiles from a real 
customer with a PV system, was also assigned a PV system with the corresponding DC and AC 
ratings, and PV AMI real power measurement profile. The random AMI load and PV profile 
assignment process resulted in random PV distribution on the feeder shown in Figure 3-2 on the 
left. The simulated feeder net real and reactive power over the year is shown in Figure 3-2 on the 
right. 

 
Figure 3-2. The topology of the modified version of EPRI's Ckt 5 feeder model highlighting service 

transformers with at least one downstream PV system (left) and simulated feederhead real and 
reactive power (right) 
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3.2. Utility Systems 

There are three utilities that provided the test circuits leveraged in this project, with a total of 
nine feeders across the three utilities.  The utilities are varied in location and characteristics, and 
Table 3-2 provides a broad overview of the feeder characteristics.  The following sections provide 
further details on the utilities and feeders.     

 

Table 3-2 - Utility Dataset Overview 

Datasets 
Number 

of 
Customers 

Voltage 
(L-L kV) 

Peak 
Load 
(MW) 

Length 
(km) 

Line 
Voltage 

Regulators 
Capacitors 

Additional 
Sensors 

Utility #1, Feeder #1 847 12.47 3.6 5.0 1 1 fixed, 2 switched 10 

Utility #1, Feeder #2 1285 11.85 4.7 10.1 3 2 switched 14 

Utility #1, Feeder #3 546 12.47 2.1 3.8 0 1 fixed, 1 switched 4 

Utility #1, Feeder #4 1053 11.85 3.3 11.2 3 2 fixed, 1 switched 7 

Utility #2, Feeder #1 1104 12.47 2.8 22.3 3 2 fixed, 2 switched 0 

Utility #2, Feeder #2 1410 12.47 2.8 22.0 5 1 fixed 0 

Utility #2, Feeder #3 1153 12.47 2.0 5.4 0 0 0 

Utility #2, Feeder #4 2385 12.47 3.8 8.2 1 2 fixed, 1 switched 0 

Utility #2, Feeder #5 1309 12.47 1.8 2.5 1 1 fixed 0 

Utility #2, Feeder #6 1188 12.47 1.4 3.2 0 1 fixed, 1 switched 0 

Utility #3, Feeder #1 766 8.32 8.9 12.0 7 2 fixed, 1 switched 0 

Synthetic 1379 12.47 7.3 5.2 0 4 fixed 10 

 

3.2.1. Utility #1 

Utility #1 used in this project is located in the southern United States and data from two 
feeders are used.  The first feeder serves ~800 customers, includes one voltage regulator, and has 9 
IntelliRupter® devices.  The second feeder servers 1,255 customers and has 13 IntelliRupter® 
devices.  The third feeder has 546 customers and 4 IntelliRupters®; likewise the fourth feeder serves 
1053 customers and has 7 IntelliRupters®.  Please see Table 3-2 (Utility #1 rows) for further details 
on the feeder characteristics.  The AMI meters and IntelliRupters® provide timeseries data at 15-min 
intervals.  The AMI data has individual measurements for real power and voltage, and the additional 
sensors have individual measurements for real power, reactive power, and voltage on each phase.  
Note that we are not referring to phasor measurement unit (PMU) devices; the additional sensors in 
this work are not high-resolution sensors but sensors recording data at a similar resolution to AMI 
meters. 

Figure 3-3 shows a feeder diagram for Feeder #1 including markers for the voltage regulator 
(dark red diamond), the substation (black star), and the IntelliRupter® devices (gold pentagons). The 
additional sensors are distributed throughout the feeder, giving good location diversity.  The 
customers are grouped by transformer, and the transformer locations are shown in circles colored by 
the original phase labels in the distribution system model because coordinates are available for 
transformer locations but not individual AMI meters.   

The IntelliRupter® devices have several decimal points of precision in their measurements 
for voltage. However, the AMI voltage data does not include any decimal points in the recorded 
measurement.  The smart meters measure the voltage much more accurately, but no decimal points 
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were retained for data storage purposes.  A full year of AMI and sensor data is available, with 
roughly 0.6% missing data during that year.   

 
Figure 3-3. Full feeder diagram for Utility #1, Feeder #1 with customers colored by their original 

phase labels with red as Phase A, green as Phase B, and blue as Phase C.  Additional sensors are 
shown in gold markers, the voltage regular as a red diamond, and the substation as a black star. 

3.2.2. Utility #2 

The AMI data used in this research covers an approximately 15-month period for all 
customers on six feeders.  Table 3-2 (Utility #2 rows) shows a comparison of key characteristics of 
the six feeders.  The data comes from a utility in the north-eastern United States.  The utility has 
installed AMI smart meters for each customer in these feeders.  The dataset contains individual AMI 
data for each customer.  Each individual profile contains 15-minute average measurements for real 
power, reactive power, and voltage, as well as power generation type and a phase label (possibly 
incorrect) from the utility company.  The power and voltage measurements are taken to an accuracy 
of four decimal places.  Figure 3-4 shows a diagram of Feeder #3 as an example.  The dataset for 
that feeder contains ~8% missing data spread throughout the customers, and this can be a challenge 
for certain algorithms. 
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Figure 3-4. Diagram of Feeder #3 from Utility #2 with lines colored by phase label 

3.2.3. Utility #3 

The distribution management system (DMS) load modeling assessment discussed in Section 
10.8 was conducted on a single utility feeder. The feeder topology is illustrated in Figure 3-5 on the 
left and the feeder key equipment are listed in the table in Figure 3-5 on the right. The utility feeder 
planning model was converted into OpenDSS. 

 
Figure 3-5. The case study utility feeder model 

 

 

Substation

Voltage Regulator

Switched Capacitor

Fixed Capacitor*

*

*

Feeder Characteristic Characteristic Value

Voltage (kV line-line) 8.32

Peak load (MW) ~8.9

Further bus distance (miles) ~7.5

Number of nodes 2,498

Number of sections 2,563

Number of loads 766

Types of loads Mainly residential

Capacitors 2 fixed, 1 switched

Voltage regulators 8 voltage-controlled

DER Limited BTM DER

Secondary circuit models No*
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4. PHASE IDENTIFICATION 

4.1. Task Overview 

Phase identification is the task of grouping the customers in a feeder by their phase.  
Looking at Figure 4-1, we want to know for each customer which phase that customer is connected 
to.  We frame this problem by looking at the voltage time series data from customer AMI meters 
and data from additional sensors from the medium voltage if that is available.  It is a well-established 
fact that utilities have an unknown quantity of error in the phase labels for their customers, and 
some utilities did not record phase labels at all.  Accurate phase labels are important for load 
balancing of distribution systems, hosting capacity analysis, and other grid planning tasks.  This 
project developed three phase identification algorithm, one of which leverages only voltage data 
from AMI meters (Section 4.3), one which leverages both voltage data from AMI meters as well as 
voltage data from additional sensors placed on the medium voltage (Section 4.2), and one phase 
identification method which is based on a state estimation approach (Section 4.4). 

 
Figure 4-1. Phase Identification illustration 

4.2. Sensor-based Phase Identification 

The first phase identification method developed over the course of this project uses voltage 
timeseries data from customer AMI in addition to time series data from additional sensors placed on 
the medium voltage portion of the distribution system.  Any type of sensor that records timeseries 
data at a similar resolution to the customer AMI data can be used.  An example of this type of 
sensor are the IntelliRupter© relays used by Utility #1 described in Section 3.2.2.  This type of 
sensor was only employed due to the utility data available for this work, and this does not constitute 
an endorsement of any particular type of sensor device.  This work resulted in a conference paper 
publication [35].  

4.2.1. Methodology 

The proposed methodology leverages data from the AMI meters and the additional sensors 
and uses Pearson correlation coefficients between data streams of voltage timeseries to perform the 
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phase identification task.  This methodology is designed to work on a single feeder at a time and the 
data mentioned in the remainder of the paper is assumed to be from a single feeder.  Figure 4-2 
shows a flowchart of the overall methodology. 

There are two pre-processing steps prior to the methodology shown in the flowchart.  First, 
the voltage data is converted into a per-unit representation.  Second, the difference between adjacent 
timesteps is taken, converting the original timeseries into a change-in-voltage timeseries.  These 
steps are taken to enhance the utility of the Pearson correlation coefficients.  Foundational work 
demonstrating this concept can be found in [13], [36], [37]. 

 

 

Figure 4-2. Methodology flowchart performing voltage correlation coefficient analysis between all 
customer AMI voltages and sensor voltages for multiple windows of historical timeseries data 

An ensemble approach is used to process the entire available dataset.  In Step 1 of Figure 
4-2, a period, or window, of data is selected for processing; a window of eight days was used in this 
work.  Any customers with missing data during this time period are removed and correlation 
coefficients are calculated between the remaining customers and the available sensor data streams 
(i.e., Step 2).  Figure 4-3 shows an example of this for one customer in one window.  The correlation 
coefficients are shown between one customer and each available sensor data stream.  All subsequent 
windows are processed in the same way, collecting the calculated correlation coefficients, until all 
available data has been used.  The ensemble is used, both to deal with having missing data 
throughout the dataset, as well as to leverage the power of an ensemble approach, [13], [37].  In Step 
3, the mean correlation coefficient is calculated using the correlation coefficients across the entire set 
of windows.  This is shown in Figure 4-4 for the same customer shown in Figure 4-3.  In Figure 4-4 
the average correlation coefficient was taken across all windows (the time dimension).  As you can 
see the correlation coefficients have shifted slightly in the averaged case.   
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Figure 4-3. Correlation coefficients between one customer and all sensors for one eight-day 
window 

In Step 4, a predicted phase for each customer is assigned based on votes from the highest 
correlated sensors.  Our work used the top 5 most correlated sensors for the voting, but this number 
would depend on the number of sensors available in the system.  Using a voting approach rather 
than taking only the highest correlated sensor provides additional algorithm robustness under a 
variety of feeder conditions.  Finally, in Step 5, the customer predictions are filtered based on a 
minimum window requirement per customer as well as filtering based on confidence scores.  Any 
customers with low confidence scores or too few windows available are considered to have low 
confidence in the predicted phase and should be either re-evaluated using more data or flagged for 
further post-processing investigation.    

 
Figure 4-4. Correlation coefficients between one customer and all sensors averaged over all the 

windows (averaged over time) 

4.2.2. Validation of Sensor Phase Labels 

Prior to considering the task of predicting the customer phase labels, the accuracy of the 
phase labels on the additional grid sensing devices must be considered.  Any errors in the sensor 
phase labeling would be transferred to the customer phase identification and render that analysis 
incorrect.  Therefore, an analysis was conducted to validate the phase labeling of each sensor data 
stream by comparing the data streams between sensors and also with the substation.  This was done 
by calculating correlation coefficients between all sensor data streams using the window method 
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described above.  The highest correlation coefficients were used as “votes” for the phase of the 
sensor data stream in question.  If the highest correlated sensor data streams agree with the labeled 
phase of the data stream in question, then the phase label for that sensor data stream is considered 
validated.   

Figure 4-5 demonstrates this approach.  One sensor data stream was chosen, representing 

the center of the radar plot‒each additional sensor is a point around the circle, and points are 
plotted for the correlation coefficients between the chosen sensor data stream and all other sensor 
data streams.  Each radial axis has three points, one for the correlation coefficients for Phase A 
(red), Phase B (green), and Phase C (blue) of the other sensors respectively.  The correlation 
coefficient magnitude increases as the point approaches the edge of the circle.  It is clear from this 
plot that all the other sensors agree that this sensor data stream is measuring Phase A as it was 
originally labeled.  This is shown by the outer red circle on the radar plot.  All the sensor data stream 
phase labels were validated in this manner and no discrepancies were found with the original phase 
labels.  This allows for the use of the sensor phase labels in the customer phase identification 
methodology described in Section 4.2.1.  Had there been discrepancies in the sensor phase labeling, 
this could have been addressed in advance.  Using this type of verification method does require that 
there be multiple sensors on the feeder and that the majority of the original sensor phase labels are 
accurate.  We believe this is likely to be true in general as they are medium-voltage sensing devices. 
However, a utility could make this determination based on their own knowledge of the feeder.  If 
this type of validation of the sensor phase labels is infeasible, then the sensor phase labels must be 
manually verified in advance of using the phase identification method proposed in this work. 

 

 
Figure 4-5. Example of phase validation for a sensor data stream.  This sensor data stream 

(middle point) was labeled on Phase A and the highest correlated data streams from all the other 
sensors is from Phase A (red).  The units of the radial axis are correlated. 

4.2.3. Comparison of Sensor Method and Substation Method 

This section shows the results of comparing the method based on leveraging additional grid 
sensors described in Section 4.2.1 with a similar method from the literature that utilizes correlations 
only with the substation.  The method using only the substation data is similar to the methods in 
[38], [39].  However, the pre-processing and window ensemble steps described in Section 4.2.1 are 



 

52 

also used to keep the comparison shown here as similar as possible.  Thus, the only difference 
between the Sensor Method results and the Substation Method results is the use of the additional 
grid sensors.   

4.2.3.1. Correlation Coefficient Spread 

This section directly compares the correlation coefficients produced by the two methods.  
Figure 4-6 shows a boxplot for the correlation coefficient spread using the Sensor Method.  Each 
subplot represents data from customers labeled in the utility model on Phase A, Phase B, and 
Phase C, respectively.  Within each subplot, there is a box for each sensor phase.  Thus, according to 
their labeled phase, each customer is included in one of the subplots and all boxes in that subplot, 
and correlation coefficients with the most correlated sensor are plotted for that customer.  In each 
subplot, it is clear that the box for the labeled phase has higher correlation coefficients on average 
than the other two phases.  Keep in mind that we expect there to be some degree of phase labeling 
errors in the distribution system model, so we would not expect the complete separation of the 
boxes.  Contrast Figure 4-6 with Figure 4-7, which shows the same type of figure for the Substation 
Method.  In Figure 4-7, there is no separation between the phases; each box contains approximately 
the same spread of correlation coefficients for each phase, implying that the correct phase labels 
cannot be accurately determined in general.   

 

 
Figure 4-6. Sensor correlation coefficient boxplot showing that customers on a particular phase 

are significantly more correlated with the sensor voltage measurements on that same phase 
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Figure 4-7. Substation correlation coefficient boxplot showing that you cannot easily distinguish 

customer phase using substation voltage measurements that are separated by a voltage regulator 

For this work, only the customers downstream of the regulator, ~600 customers, are 
considered, as the customers separated from the substation by a voltage regulator are the most likely 
to have issues correlating correctly with the substation voltages.  In this case, the AMI data, as well 
as the IntelliRupter® data was averaged to 30-min intervals to provide better correlation 
coefficients. 

4.2.3.2. Confidence Scores 

For a utility company to expend man-hours and financial resources based on algorithm 
predictions, there must be a methodology to judge confidence in the algorithm results overall and 
confidence in individual phase predictions.  There are many feeder and customer characteristics that 
may affect the results.  Figure 4-6 demonstrates that the phase identification task should be possible, 
but how confident are the individual phase predictions for each customer?   

We propose four different metrics of confidence in customer predictions.  Correlation 
Coefficient Separation is based on an analysis of the correlation coefficients for a particular 
customer, the Window Voting Confidence Score is an analysis of the window ensemble shown in 
Figure 4-3, the Sensor Agreement Score leverages the ensemble of all sensors on the feeder, and 
finally, a Combined Confidence Score combines the Window Voting and Sensor Agreement scores.  
For the first two scores, the results for the substation method are also shown.  Note that all these 
confidence scores are data-driven metrics for prediction accuracy, and they can be derived directly 
from the results of the correlation coefficient calculations for each customer.  Separate confidence 
metrics can be derived based on the system topology, such as if all customers on a transformer agree 
about the phase connection, but the objective of the work is to provide entirely data-driven without 
any reliance on access to topology information or relying on the accuracy of the system topology 
data. 

The Correlation Coefficient (CC) Separation is based on looking at the highest correlated 
sensor for a particular customer.  That sensor will have a correlation coefficient for each phase that 
it measures, thus three correlation coefficients to each customer.  The CC Separation finds the 
sensor with the highest correlation coefficient to that customer and subtracts the next highest 
correlation coefficient on that sensor.  That difference is defined as the CC Separation.  The larger 
this difference is, the better separation there is between the correlation coefficient for the predicted 
phase of the customer and any other correlation coefficient.  This can be seen in Figure 4-4 for one 
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customer.  For that customer, Sensor 3 has the highest correlation coefficient (blue circle); the CC 
Separation is calculated as the difference between the correlation coefficients marked by the blue 
circle and green square for Sensor 3.  If the difference is small, then the confidence in the predicted 
phase will be low.  This metric is used for filtering in Step 2 of Figure 4-2.  If the CC Separation 
between a customer and a particular sensor is too low that means that multiple phases from a sensor 
were similarly correlated to that customer.  Clearly that is not a desirable situation, and the 
correlation coefficients from that sensor are excluded, in that window, for that customer.  This 
situation was seen to occur for sensors that were separated from the customer by the voltage 
regulator. Filtering these coefficients helps to ensure that only high-quality coefficients are included 
in the mean in Step 3. 

The Window Voting Score leverages the ensemble nature of steps 1 and 2 shown in Figure 
4-2.  For each window, correlation coefficients are calculated between each customer (that is not 
missing data during that period) and each sensor.  In the full methodology, the mean correlation 
coefficient is taken, however the windows can be considered individually and used to create this 
metric.  In each window, the results of the sensor voting is considered a “vote,” and the window 
voting metric is the ratio of windows that agree versus the total number of windows.  For example, 
consider the case that there are 10 windows available.  If, in 9 of the windows, the sensor voting 
resulted in Phase A, and in 1 of the windows the sensor voting resulted in Phase B, then the 
Window Voting Score would be 0.9.  This can be interpreted as “90% of the windows throughout 
the year agreed on the predicted phase for this customer.” 

The Sensor Agreement Score is defined as the ratio of the sensors that agree on the 
predicted phase of a customer versus the total number of sensors in the system.  For example, if 
there are 10 sensors used in the voting and 8 of them agree that the predicted phase for a customer 
is Phase A and two of the sensors predicted Phase B, then the Sensor Agreement Score would be 
0.8, signifying that 80% of the sensors in the system agree on the predicted phase. 

In practice, using three different confidence scores is onerous for standard operation in the 
utility setting.  We propose to use the CC Separation Score as a first-pass filter to filter out 
customers with low CC Separation Scores for different treatment as this method cannot successfully 
perform the phase identification task on those customers.  We also propose combining the Window 
Voting Score and the Sensor Agreement Score to form a single confidence score to be used as a 
second-stage filter.  Both the Window Voting Score and the Sensor Agreement score will be 
between 0 and 1 and represent the same type of ratio.  Thus, they can be multiplied together and 
retain their basic meaning and interpretation.  The Combined Confidence Score can be used to 
further quantify the confidence in individual customer phase predictions after the CC Separation 
Score filter has been applied.  A value of 1 for the Combined Confidence Score means that all 
sensors and all windows agree on the predicted phase of that customer.  Figure 4-8 shows a 
histogram of Combined Confidence Scores for two feeders from Utility 1.  Notice the couple of 
customers in the blue histogram on the left side of the figure.  These are low confidence customers 
who would be excluded from the final results and flagged for potential further investigation.   
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Figure 4-8. Combined Confidence Scores for Utility 1 

4.2.4. Synthetic Data Results 

The first simulation conducted provides base case results on the synthetic data for the 
sensor-based method.  Normally distributed noise was injected into both the AMI data and the 
sensor data.  For the AMI data, normally distributed noise with a mean of 1 (per-unit voltage) and 
standard deviation of 0.07% is injected into each customer in the dataset.  The standard deviation 
came from a meter testing report provided by one of our utility partners.  For the sensors, the 
standard deviation was 0.04%.  This came from analysis of the noise present in the IntelliRupter® 
measurements from Utility 1.  As the devices record on both sides of the relay, closed relays should 
have the same measurements on both sides allowing for an estimation of the noise present in the 
measurements.   

Figure 4-9 shows the results of a missing data sweep and a measurement noise sweep, 
showing the CC confidence scores on the y-axis.  Figure 4-10 shows results from the same sweeps 
with the Combined Confidence Scores on the y-axis.  Notice that the algorithm is completely robust 
to missing data as low as the minimum requirements are met.  One month of available data per 
customer, not necessarily contiguous, was determined to be the minimum requirement.  Step 5 in 
Figure 4-2 shows the filtering step based on that requirement. 
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Figure 4-9. Synthetic data results showing a missing data sweep and noise sweep for the CC 

Separation metric 

 
Figure 4-10. Synthetic data results showing a missing data sweep and noise sweep for the 

Combined Confidence Score metric. 

4.2.5. Utility Results 

The proposed Sensor Method identified 6 customers on Feeder #1 for Utility #1 who are 
predicted to have a different phase label than in the original utility model, while the substation 
method predicted 14 customers to have a different label.  The set of 14 customers identified by the 
substation method includes 5 of the 6 customers identified by the proposed method.  The 
confidence scores for the additional customers identified using the substation method are 
significantly lower than the confidence scores of the 6 customers identified using the sensor method.  
This indicates that those additional customers are likely to be false positive results and demonstrates 
the effectiveness of the sensor-based method. 

The utility company responsible for this feeder performed field verification on the six 
customers predicted to be incorrect by the sensor phase identification method.  In all six cases, the 
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algorithm predictions were shown to be correct.  Table 4-1 shows those customers with their 
confidence scores.  There was also one low confidence customer, shown in the last row, which was 
excluded from the final results.  Figure 4-11 shows satellite imagery of one of the customers, marked 
with the yellow pin.  In the utility model, this customer was serviced by the transformer on the right 
and connected to Phase A.  The predicted label was Phase C, and this was confirmed by field 
personnel.  This customer is actually serviced by the Phase C transformer on the left side of the 
image.  A field visit by utility personnel to visually inspect the secondary voltage connections 
confirmed the prediction.  In Figure 4-12, the other five customers are shown on two laterals.  The 
original utility labeling (top) showed that the four customers on the lateral on the left side were 
connected to Phase B and the remaining customer on the right side was connected to Phase C.  The 
algorithm predictions are shown in the bottom panel and were verified by field personnel.  The four 
customers on the lateral on the left side are connected to Phase C and the customer on the right side 
is connected to Phase B.   

  

Table 4-1. Utility #1, Feeder #1 results 

 Confidence Scores  
 CC 

Separation 
Window 
Voting 

Combined Comments 

1 0.089 0.9 0.9 Field-verified 

2 0.13 0.98 0.98 Field-verified 

3 0.12 0.97 0.97 Field-verified 

4 0.13 0.94 0.94 Field-verified 

5 0.15 0.97 0.97 Field-verified 

6 0.066 0.94 0.94 Field-verified 

7 0.088 0.48 0.24 Low Confidence  

 
 

 
Figure 4-11. Satellite image with the left showing the original utility label of Phase A for the 

customer marked with a yellow pin and the right showing the true service transformer and phase 
C labels verified via field verification 
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Figure 4-12. Satellite image showing five customers on two laterals predicted to have incorrect 
phase labels.  The original utility labels (top) show four Phase B customers and one Phase C 
customer and the predicted labels (bottom), verified with field verification show four Phase C 

customers and one Phase B customer. 

Ten customers were flagged as being incorrect on Utility #1 Feeder #2.  Two of those were 
found by the utility to be on a different feeder.  Table 4-2 shows the results for Feeder #2 with their 
confidence scores, excluding the two customers located on an adjacent feeder.  Five customers were 
field-verified, and 3 customers were excluded due to low confidence scores.  Thus, for all customers 
on the feeder, the algorithm achieved 100% accuracy on the high confidence flagged customers.  
The low confidence customers are flagged for further investigation.  Figure 4-8 above shows the 
histogram of the Combined Confidence Scores for both feeders.   

Table 4-2. Utility #1, Feeder #2 results 

 Confidence Scores  
 CC 

Separation 
Window 
Voting 

Combined Comments 

1 0.143 1 1 Field-verified 

2 0.121 0.929 0.868 Field-verified 

3 0.105 0.951 0.951 Field-verified 

4 0.116 0.965 0.965 Field-verified 

5 0.3 1 1 Field-verified 

6 0.039 0.578 0.463 Low Confidence  

7 0.029 0.5 0.5 Low Confidence  

8 0.002 0.415 0.667 Low Confidence  

 
  
 Eight customers were flagged on Utility #1 Feeder #3; those results are shown in Table 4-3.  
All three high confidence customers were field-verified to be accurately predicted by the algorithm.  
In Utility #1 Feeder #4, 84 customers were identified as potential incorrect phase labels.  Sixty-nine 
of those customers were on a single lateral, which is all of the customers serviced by that lateral, see 
Figure 4-13.  The green lateral shown in Figure 4-13 was identified (and field-verified) to be a Phase 
C lateral, as predicted by the algorithm.  Again, all high-confidence customers, including the lateral, 
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were field-verified by the utility as being accurately predicted by the algorithm.  In each of the four 
feeders investigated, the algorithm was shown to be 100% accurate in the field-verification. 

Table 4-3 – Utility #1, Feeder #3 Results 

 Confidence Scores  
 CC Separation Window 

Voting Combined Comments 
1 0.1 1.0 1.0 Field-verified 
2 0.067 0.92 0.92 Field-verified 
3 0.063 0.92 0.92 Field-verified 
4 0.099 0.6 0.4 Low Confidence  
5 0.064 0.9 0.45 Low Confidence 
6 0.018 0.56 0.56 Low Confidence 
7 0.011 0.5 0.5 Low Confidence 
8 0.054 0.75 0.5 Low Confidence 

 

 

Figure 4-13 - Google Earth image of the lateral identified in Utility #1, Feeder #4 

A parameter tuning analysis was also conducted using the Utility #1 datasets.  The 
parameters of window size and filter criteria were examined, and a wide range of those parameters 
are acceptable and produce the same results shown here.  Thus, the algorithm is not significantly 
sensitive to those parameters.   

4.2.6. Summary of Sensor-based Phase Identification 

This section presents a novel methodology for the phase identification task that leverages 
voltage magnitude data from AMI meters and additional, medium-voltage sensors providing 15-
minute voltage measurements per phase.  Although the feeder in this work uses IntelliRupter® 
sensors, this method generalizes to other, similar grid sensors.  Correlation coefficient analysis is 
leveraged to provide a predicted phase for each customer along with easily interpretable confidence 
metrics for each prediction.  The proposed method is shown to achieve significantly improved 
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performance over the algorithm only using substation data. This is particularly important in the case 
where there are voltage regulators on the feeder.  The separation between AMI meters and the 
substation data by the voltage regulator renders correlations with the substation unusable.  Using the 
additional grid sensors, combined with customer AMI data and correlation coefficient analysis, 
provides a straightforward, interpretable solution to the phase identification task.  The utility field-
verified all 6 customers predicted to be incorrect on the feeder in question, providing excellent 
evidence of the efficacy of this methodology.  This utility is also in the process of implementing this 
method into full-scale usage in their service area.  This work resulted in this publication [35]. 

4.3. Ensemble Spectral Clustering Phase Identification 

The ensemble spectral clustering phase identification algorithm is designed to use solely the 
voltage timeseries data from customer AMI meters; optionally it can also leverage the existing phase 
labels.  This algorithm went through several stages of development; the following section presents 
the final version of the algorithm and the results using that final algorithm version.  This work 
produced the following publications [13], [36], [40], [41]. 

4.3.1. Methodology 

Figure 4-14 shows a flowchart representation of the proposed algorithm.  The proposed 
methodology uses only voltage time series measurements from AMI meters, i.e. a single stream of 
data.  That data is transformed in two ways.  First, the voltages are converted into a per-unit 
representation using the ideal mean for the time series.  Second, the time series are converted into a 
“voltage difference” representation by taking the difference of adjacent measurements of the time 
series.  This results in a time series where the values represent the change in voltage at each time 
step.  The remainder of this section is structured as follows.  First, there are brief descriptions of the 
spectral clustering algorithm and clustering ensemble, which have a significant role in the phase 
identification method.  Second, the phase identification algorithm itself is described in detail.  

4.3.1.1. Spectral Clustering Process 

Clustering, as a group of methodologies, is considered an unsupervised machine learning 
technique. This means that labelled data points are not required to use the method.  K-means and 
hierarchical clustering are two other examples of unsupervised machine learning methodologies.  
[42] provides an in-depth description of the spectral clustering methodology.  The implementation 
used in this research is the Python Scikit Learn implementation [43]. 

In general, spectral clustering calculates (or accepts as input) a pairwise affinity matrix 
between samples, computes the eigenvectors, and then clusters the data into a user-defined number 
of clusters using the eigenvectors.  A Laplacian matrix is computed from the affinity matrix; this 
matrix will be approximately block-diagonal and from there the eigenvectors are computed.  A 
subset of the eigenvectors is then used for the clustering step.  In the Scikit Learn implementation 
there are two choices for the clustering step, either “k-means” or “discretize”.  Spectral clustering 
provides a non-linear dimensionality reduction of the input data, which differentiates it from other 
conventional clustering algorithms. 

The proposed phase identification algorithm uses slightly different versions of spectral 
clustering in two locations.  As shown in Figure 4-14, spectral clustering is used in Step 2.  In that 
instance of the spectral clustering algorithm, the voltage time series data is used as input and the 
spectral clustering algorithm uses a radial basis function kernel to calculate the pairwise affinity 
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matrix.  The k-means spectral clustering option is used for the clustering step.  More details on k-
means can be found in [44].  Please see Section 4.3.2 for a discussion of the number of clusters. 

In Figure 4-14 Step 4, spectral clustering is used again.  The requirements for the clustering 
in this step are different from the requirements in Step 2, thus a different parameterization of 
spectral clustering is used.  The primary differences are that there is a precomputed affinity matrix 
available and a different number of clusters is used.   The co-association matrix generated by 
previous steps in the phase identification algorithm is used as input as a “precomputed affinity 
matrix” and the spectral clustering algorithm proceeds directly to calculating the Laplacian matrix 
and the eigenvectors.  The “discretize” option is used for the clustering step.  This option produced 
better results during testing than the k-means version of spectral clustering.  K-means is known to 
be sensitive to initialization and we believe this to be the key factor in the “discretize” option 
achieving better performance in this final clustering step.  This method turns the clustering into an 
optimal discretization problem; more details can be found in [45].   

Spectral clustering is applied in this paper using a cluster ensemble technique.  A cluster 
ensemble is the aggregation of a number of distinct clustering instances for use in a final “consensus 
clustering” algorithm.  In particular, this work uses a co-association matrix method for combining 
the results of individual clustering instances.  For an overview of cluster ensemble techniques please 
see [46].  The work in [47] demonstrates a cluster ensemble methodology using spectral clustering in 
the image segmentation domain.  That work leverages similar principles to the work demonstrated 
here; however, the algorithm and implementation differ significantly.  The cluster ensemble 
technique corresponds to Steps 3 and 4 in the following section.   

 
Figure 4-14. Spectral clustering phase identification methodology flowchart 

4.3.1.2. Phase Identification Algorithm 

This section describes the phase identification algorithm in detail, and the numbered sections 
follow the steps shown in the Figure 4-14 flowchart.   

First, the available historical data (voltage timeseries for each customer) are divided into 4-
day periods or “windows” and all customers with missing data during that period are removed from 
that window.  This process accomplishes several goals.  It allows the use of all available historical 
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data, only requiring a subset of the data for computation at one time.  The window approach gives a 
method for dealing with missing data within the dataset.  The ensemble nature of the window 
approach leverages the power of ensemble methodologies and helps account for variations in the 
dataset due to seasonal variability, customer load variability, or other factors.  This step was based on 
research in [13], [37].  In each of steps 2 and 3 of the algorithm, only a single window is considered.  
See Section 4.3.2 for a more detailed discussion of the window size parameter.  

Second, the remaining customers within that window, the ones with complete data during 
that window, are clustered using the spectral clustering algorithm.  Six, twelve, fifteen, and thirty 
clusters were chosen for use during this step.  This step returns a set of cluster labels from each 
clustering instance.  The results from all four clustering instances are used for Step 3.  See Section 
4.3.2 for a discussion of the number of clusters used in this step.  Foundational research for this step 
can be found in [13], [48]. However, both of those works use only a single value for the number of 
clusters.   

Third, the cluster label information from Step 2 is then used to populate a co-association 

matrix.  A symmetric 𝑛 × 𝑛 matrix 𝐴 was created and initialized to zeros as a pre-processing step, 

where 𝑛 is the total number of customers and 𝐴𝑖𝑗 = 𝐴𝑗𝑖 is the weight between customers 𝑖 and  𝑗.  
This weight represents the affinity between those customers; customers with larger affinities will 
have been clustered together in Step 2 more often than customers with low affinities.  The matrix is 
updated with the spectral clustering results from each window.  Each cluster produced by the 
spectral clustering algorithm is represented as an adjacency matrix, which is used to increment the 
corresponding field in the co-association matrix.  This step is shown in Figure. 4-15 and the update 
step is shown in Figure. 4-15.  For example, if customers 1 and 2 were clustered together, then the 
field in the matrix, row 1 and column 2 (as well as row 2 column 1) would be incremented to a larger 
weight.  In practice, each update is done in two cells of the co-association matrix due to the 
symmetry of the matrix.  Thus, in each window, customers which are clustered together are updated 
to have stronger weights in the co-association matrix.  At this stage the algorithm repeats steps 1-3 
for the subsequent window of data, as shown in the Figure 4-14, and the windows on the left side of 
Figure. 4-15.   After all data has been processed in this way, meaning all available windows have 
been used, the result is a co-association matrix that contains the pairwise clustering information 
from all the instances of spectral clustering.  An alternative way of viewing this matrix is as a 

histogram, which counts the number of instances where a customer 𝑖 was clustered with a customer 

𝑗.  This step represents a novel contribution of this algorithm. 

Finally, once all available data have been used, the co-association matrix is normalized to 
account for the influence of missing data on the matrix.  This is necessary because each cell in the 
co-association matrix may have received a different number of increments due to customers being 
removed in windows because of missing data.  A count is maintained through all available windows, 
counting the number of windows where each pair of customers was present in the window, meaning 
those customers could have been clustered together. This count is accumulated in a symmetric 
matrix of the same size as the co-association matrix.  Each cell in the co-association matrix is 
divided by the corresponding cell in the count matrix to form a normalized version of the co-
association matrix; this is shown on the right side of Figure 4-16.  The final step uses the normalized 
co-association matrix as input to another spectral clustering algorithm for partitioning of the 
customers into final clusters representing the phases; this is shown in Figure 4-17.  After the final 
clusters have been obtained, there are two choices in terms of finishing the phase identification task.  
If utility labels exist, and the majority are deemed accurate, the final clusters could be labelled using a 
majority vote of the utility labels contained within those clusters. However, this does require most of 
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the labels to be accurate.  Another possibility is to end the method at the determination of those 
clusters and leave the final determination of phase labels for the utility.  This could either be done by 
comparing to known substation phases or via manual verification.  The actual final number of 
clusters used in this step may depend on the characteristics of the feeder in question.  Please see 
Section 4.3.2 for a more detailed discussion of the number of final clusters.  Step 4 also represents a 
novel contribution of this algorithm.  The use of the cluster ensemble with the co-association matrix 
is one of the key differentiators between the proposed method and the work in [13].  This 
significantly increases the robustness of the algorithm and removes the reliance on existing utility 
phase labels. 

 

 
Figure. 4-15. Create adjacency matrix based on the results of a window clustering using 5 clusters 

 
Figure 4-16. Updating the co-association matrix with the results of each individual window 

clustering and then normalizing the co-association matrix by dividing by the matrix tracking the 
customer presence in each window 
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Figure 4-17. Final cluster assignment of which customers are on the same phase as each other.  

This is followed by the optional step of using the utility phase labels for the final phase 
assignment 

4.3.1.3. Previous Version of the Algorithm 

This algorithm went through one major developmental revision over the course of the 
project.  The version described above is the final, and most robust, version of the algorithm.  The 
final version was shown to produce more accurate phase identification results, see Figure 4-29 in 
Section 4.3.4 for an example of this.  In the previous iteration, the same window ensemble is used, 
however instead of building a co-association matrix, each cluster (in each window) provides a “vote” 
for the predicted phase of the customers in that cluster using the majority vote of the original utility 
labels for the customers in the cluster.  This provides a set of votes for each customer from each 
window.  The final predicted phase is the majority vote from all the predicted phases from all 
windows.  This version of the algorithm resulted in a conference publication [13].  This version is 
also the version used by CYME in their comparison work in Section 12.2.1. 

4.3.2. Parameter Tuning Discussion 

In the course of conducting the parameter tuning research for the spectral clustering phase 
identification algorithm, a general methodology for parameter tuning was developed.  This 
methodology was demonstrated on the spectral clustering algorithm but could be applied in other 
situations where clustered algorithms have been used.  The algorithm is based on an analysis of the 
silhouette score metric.   

4.3.2.1. Silhouette Score Methodology 

The silhouette score is used for the interpretation and validation of clusters of data. The 
index provides a measure of how well objects lie within their cluster. The silhouette coefficient is 
calculated using Equation (4-1), 

 𝒔(𝒊) = 
𝒃(𝒊)−𝒂(𝒊)

𝐦𝐚𝐱 (𝒂(𝒊),𝒃(𝒊))
 (4-1) 

Where b is the single linkage distance and a is the mean intra-cluster distance.  The silhouette 
calculation produces a coefficient between -1 and +1, with values closer to one indicating that a 
sample I is well clustered, and negative values indicating that a sample i could reasonably be placed 
in a different cluster [49] 

The silhouette score is a common metric used in silhouette analysis. It is calculated by taking 
the average of all silhouette coefficients. The silhouette score acts to quantify the overall behavior of 
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the clustering.  Thus, the silhouette score has higher values for clusterings that contain dense, widely 
separated clusters. 

 
Figure 4-18. Parameter selection methodology flowchart 

The silhouette coefficient plot provides a visual tool for analyzing clustering and is an 
important part of silhouette analysis. In the silhouette coefficient plot, the silhouette coefficients are 
plotted by cluster. The x-axis of the cluster in the silhouette plot refers to the magnitude of its 
silhouette coefficient. Clusters with greater widths have samples with larger silhouette coefficients. 
The y-axis of a cluster in the silhouette plot indicates the number of samples it contains.   

The silhouette score is one way of summarizing the silhouette coefficient information that 
characterizes a clustering. The accompanying silhouette coefficient plot provides meaningful 
information about the quality of each cluster. Step 4 in Figure 4-18 involves inspecting the behavior 
and shape of the silhouette plots produced in the parameter sweep.  Clusters with below-average 
silhouette scores, wide fluctuations in the size, and a large proportion of negative silhouette 
coefficients usually indicate a poor clustering.  

4.3.2.1.1. Selecting Parameters Using the Silhouette Score 

The proposed methodology can be used for parameter selection in contexts where a pairwise 
distance matrix is calculated, and some type of clustering can be defined. This method is 
demonstrated here to set the number of clusters in the spectral clustering phase identification 
algorithm. This method is first demonstrated using five utility datasets. 

In Steps 2-3 in Figure 4-18 phase identification is performed, and the silhouette score and 
silhouette plots are generated for each iteration of the different algorithm parameters in phase 
identification. As a final step, the best phase identification algorithm parameter is selected using the 
silhouette score.  Further visual analysis can also be conducted using the silhouette coefficient plots. 
Wide fluctuation in cluster widths, and significant proportions of negative values, and other 
abnormal behavior can be easily seen by visual inspection.  

4.3.2.1.2. Choosing the Window Size 

To accommodate missing data, the spectral clustering ensemble approach performs phase 
identification using a sliding window of data for each customer. Customers with missing data in each 
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window are discarded.  Selecting the window size is also an important parameter in optimizing the 
performance of the phase identification algorithm. Selecting the window size involves a trade-off 
between an increased silhouette score/better clustering and the number of customers to be 
discarded due to missing data.  Silhouette score analysis also provides insight into setting this 
parameter.  

4.3.2.2. Parameter Tuning Results 

The parameter-tuning methodology was applied to two datasets from the Utility #1 
described in Section 3.2.1, three datasets from Utility #2 described in Section 3.2.2 in addition to the 
synthetic dataset described in Section 3.1. 

Table 4-4 contains the silhouette scores calculated for all datasets during the parameter 
sweep.  In each case the silhouette score peaks and then begins decreasing, allowing for a 
straightforward interpretation of the best parameter. 

Only the downstream customers were used in the Utility #1, Feeder #1. Selecting four 
clusters was shown to be the best choice based on the proposed silhouette score parameter tuning 
method. Four clusters had the highest overall silhouette score, and this choice can be confirmed by 
visual inspection of the silhouette coefficient plots. 

 
Figure 4-19. Plot of silhouette coefficients using 4 clusters in for Feeder #1 on Utility 1.  The red 

line indicates the overall silhouette score. 

The proposed method, when applied to the Feeder #1 from Utility #2, showed the optimal 
number of clusters to be 12.  The “goodness” of the clustering can be visually confirmed by the 
silhouette coefficient plot shown in Figure 4-20. This conclusion makes sense when considering the 
three voltage regulators on this feeder.  
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Figure 4-20. Plot of silhouette coefficients for the chosen number of clusters in Utility 2, Feeder 

#1. The red line indicates the overall silhouette score 

Table 4-4. Silhouette scores from cluster sweep of each dataset 

N
U

M
B
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UTILITY DATASET 

 
UTILITY 1  
FEEDER #1 

UTILITY 1 
FEEDER #2 

UTILITY 2 
FEEDER #3 

UTILITY 2 
FEEDER #1 

UTILITY 2 
FEEDER #4 

SYNTH 

3 0.376 0.33 0.687 0.354 0.354 0.560 
4 0.576 0.402 0.688 0.443 0.444 0.630 
5 0.497 0.498 0.699 0.515 0.513 0.668 
6 0.390 0.562 0.706 0.596 0.597 0.692 
7 0.387 0.620 0.708 0.665 0.674 0.704 
8 0.208 0.616 0.721 0.727 0.735 0.579 
9 - 0.657 0.712 0.793 0.784 - 

10 - 0.684 0.714 0.833 0.772 - 
11 - 0.692 - 0.853 0.776 - 
12 - 0.700 - 0.860 0.776 - 
13 - 0.663 - 0.823 0.790 - 
14 - 0.627 - 0.829 0.772 - 
15 - - - 0.817 0.652 - 

 

In addition, the methodology used to select the window size parameter to be used in the 
phase identification algorithm. Selecting the parameter involves a trade-off between the number of 
customers lost due to missing data and a higher silhouette score. Figure 4-21 shows the silhouette 
score (solid lines) and number of customers not predicted due to missing data (dashed lines) as the 
window size changes for each utility dataset. We hypothesize that the two different curve shapes are 
related to the characteristics of the missing data in each dataset.  
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Figure 4-21. Silhouette score and the number of customers not predicted vs. the window size for 

the utility datasets 

A parameter sweep of the window size was performed on the synthetic data with two 
different missing data injections, and varying percentages of missing data injected. In the first type of 
data injection, single measurement points were removed uniformly at random up to the percentage 
of data missing.  In the second type of data injection, a missing data interval from 1 missing point to 
48 contiguous missing data points was chosen uniformly at random and then injected into a dataset 
location chosen uniformly at random until each customer had the specified percentage of missing 
data.  These two types of missing data injection simulate different distributions of missing data.  For 
example, single missing values might be indicative of missing data due to communication failure, 
whereas longer missing periods might be indicative of short outages.   

Figure 4-22 shows a plot comparing the silhouette score and the number of customers not 
predicted as the window size changes. The synthetic results mirror the results obtained using the 
utility data. 

 
Figure 4-22. Silhouette score and the number of customers not predicted vs. the window size for 

the synthetic dataset. 
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4.3.2.3. Parameter Tuning Summary 

This section presents a methodology for selecting parameters for distribution system model 
calibration algorithms utilizing distance matrices and demonstrated using a spectral cluster ensemble 
phase identification algorithm. The proposed methodology leverages the silhouette metrics to select 
parameters to optimize the clustering algorithm. This method was used to select the number of 
clusters, and window size in the spectral clustering phase identification algorithm.  This work 
resulted in the following publication [40]. 

4.3.3. Ensemble Spectral Clustering Synthetic Data Results 

This section contains the results for experiments conducted on a synthetic dataset #1, 
discussed in Section 3.1.1 where the ground truth labels are known.  This allows for rigorous testing 
and manipulation of the dataset to create a more realistic test environment.  The synthetic dataset 
allowed simulation of baseline results with ground truth phase labels for all customers and voltage 
timeseries free of measurement noise or other data issues.  Realistic data issues were later added to 
the dataset for testing purposes.   

Two types of data manipulations were used to further test the algorithm and simulate more 
realistic data conditions.  The first type of data manipulation concerns AMI data collection methods 
such as the measurement interval, and meter resolution.  Other data manipulations were related to 
possible data issues such as meter bias, measurement noise, and missing data.  A combination of 
these factors was combined to create a test case by injecting uniformly distributed measurement 
noise up to 0.02% of the mean, injecting uniformly distributed meter bias of up to 0.02% of the 
mean, and by removing 0.2% of the measurements to simulate missing data. The AMI data 
collection methods used were 15-min average measurement interval, 0.1V resolution measurements, 
6 months of available data, and AMI meter penetration of 100%.  Furthermore, a set of customers 
was chosen to intentionally force their phase labels to be incorrect to simulate model errors.  
Various levels of mislabelling were chosen to test the effects of the quantity of mislabelled 
customers on the algorithm performance.   

Figure 4-23 shows confusion matrices corresponding to testing the algorithm with 25% of 
the phases mislabeled.  The top half of the figure shows the distribution of phases that were 
intentionally mislabeled for this simulation, and the bottom half of the figure shows that the 
algorithm was able to correctly identify all customer phases with 100% accuracy.   

Table 4-5 shows the results of testing to determine the robustness to measurement noise of 
the proposed algorithm.  Measurement noise is simulated as uniformly distributed noise up to a 
maximum value (positive and negative) of the percentage shown in the left column.  For reference, 
American National Standards Institute (ANSI) standards define accuracy classes of 0.1, 0.2, and 0.5, 
[50].  The ANSI values reference error in real power measurements, however the voltage noise 
injected here does directly contribute to error in the real power measurements. These results use the 
dataset characteristics described in 4.1, testing varying levels of measurement noise.  The values 
shown are the averaged results of five independent simulations.  We can see that the algorithm is 
relatively robust to measurement noise in the dataset.  There are no errors in phase predictions until 
0.65% maximum noise and, at that level of noise, there are not consistent errors.  That is driven by 
the randomness associated with the location and quantity of the noise within each simulation.  
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Figure 4-23. 25% of customers mislabeled confusion matrices.  Red represents mislabeled 
customers and green represents correctly labelled customers 

Table 4-5. Averaged results of five simulations with increasing levels of noise added to the data 

Max Noise 
Percentage 

Number of 
Incorrectly 
predicted 
customers 

Percent 
Accuracy 

Original 0 100% 

0.05% 0 100% 

0.15% 0 100% 

0.25% 0 100% 

0.35% 0 100% 

0.45% 0 100% 

0.55% 0 100% 

0.65% 0.2 99.99% 

0.75% 0.4 99.97% 

0.85% 1.0 99.92% 

0.95% 3.6 99.69% 

1.0% 7.6 99.46% 

 

The proposed algorithm is compared to a phase identification algorithm with a similar 
approach developed in the beginning of this project. For algorithm details see [13]. 

The same experiment shown in Table 4-5 was conducted for the comparison algorithm in 
[29].  Those results suggest that the measurement noise should be <0.25% (approximately 
corresponding to the 0.2-meter class).  The results shown in Figure 4-24 demonstrate considerable 
improvement, up to ~0.65% maximum noise before errors begin to occur.   

Figure 4-24 and Figure 4-25 show the results of the testing on the synthetic dataset for both 
the algorithm in [13], listed as “Comparison Method” as well as the proposed algorithm.  In both 
figures, the results shown are from a Monte Carlo simulation consisting of 500 individual 
simulations, where the only difference between each simulation is which customers were chosen to 
be mislabelled.  The minimum, maximum, and mean percentages from the 500 simulations are 
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shown for the comparison algorithm.  For the proposed algorithm, the results for all three metrics 
(min, max, mean) are identical so only one line is plotted.  The x-axis of Figure 4-24 shows the 
percentage of customers that have been injected with phase label errors for the purposes of testing, 
and the y-axis shows the percentage of those mislabelled customers that have been corrected.  For 
example, for the minimum accuracy of the comparison method at 35% of customers mislabelled the 
method was able to correctly identify ~90% of customer phases; 35% of 1,369 customers is 479 
customers.  Therefore, 48 of those 479 customers remained incorrect after the algorithm completed.  
In contrast, the proposed algorithm retains 100% accuracy for all 500 simulations.  Note the 
unevenness of the line corresponding to the minimum percentage of customers corrected (solid blue 
line) in Figure 4-24.  This demonstrates the sensitivity of the comparison method to the 
configuration of customers who are mislabelled within the model.  The proposed algorithm removes 
that sensitivity.  Figure 4-25 shows the overall accuracy for all customers for the same Monte Carlo 
simulation.   

Using the proposed algorithm, the dependence on the utility phase labelling has been 
removed and this algorithm achieves excellent performance under the test conditions.  At some 
point, with enough phase label errors in the utility model, the ability to assign predicted phases in the 
last step of the model will degrade.  However, the clusters themselves will still represent correct 
phase clustering.  It will simply be a matter of correctly assigning those clusters to the appropriate 
phase, and that could be done as post-processing by the utility.  

 
Figure 4-24. Percent of mislabeled customers corrected 
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Figure 4-25. Overall percent accuracy proposed method versus comparison method 

4.3.4. Ensemble Spectral Clustering Utility Data Results 

These results use Feeder #3 from Utility #2 described in Section 3.2.2.  Previous work 
suggests that the quantity of incorrect phase labels for this feeder is ~9%.  Therefore, the utility 
phase labels are used to make the final phase assignment.  The following results reflect using that 
approach.  

Validation of the results on the utility dataset is challenging as there are not ground truth 
labels for this feeder.  [13] presents a two-stage validation methodology that combines validation 
using topology information and validation using publicly available Google Earth and Google Street 
View imagery.  There are extensive details and images in [13] documenting the validation for that 
method.  Although only a subset of customer phase labels can be verified due to issues such as 
availability of imagery, tree cover, underground cabling, etc., there does exist a subset of customers 
for which the Google Earth imagery is reasonably conclusive for phase connectivity.  Three novel 
examples using Google Earth satellite views and Street View are shown below as instances of the 
proposed algorithm making correct predictions. 

The proposed algorithm predicted that 143 customers were incorrectly labelled in the utility 
model of this feeder, out of a total of 1,096 customers.  This represents ~13% of the customers.  
Those figures do include 41 customers who were labelled as being present on the feeder, but their 
phase was labelled as “unknown.”  Excluding those customers gives a prediction that 112 customers 
were incorrectly labelled out of 1,055.  This represents ~10.6% of the customers.  The inclusion or 
exclusion of those customers changes the results slightly for the other customers on the feeder.  
Following are two examples where the results of the proposed algorithm can be validated using 
Google Earth imagery. 

Looking at Figure 4-26, the left-hand image shows a transformer that was labelled in the 
utility model as Phase A but was predicted by the algorithm to be on Phase C.  We can see the 
connection from the transformer connecting to the left-hand medium voltage wire at the top of the 
image.  Continuing up the street, the next image shows the next transformer labelled as Phase C; this 
transformer is both labelled in the utility model and predicted by the algorithm as Phase C. 
However, this transformer is connected to the same left-hand medium voltage wire.  Although not 
shown here for space reasons, continuing south on the street from the transformer in question, the 
next transformer, which serves 5 customers is labelled (and predicted) as Phase C.  This transformer 
is also connected to the same medium voltage line.  This strongly indicates that this transformer 
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represents an error in the original utility model and a corrected phase label predicted by the 
proposed algorithm. 

 
Figure 4-26. Example of an incorrect phase label that was corrected on Utility 2, Feeder #3 

Figure 4-27 and Figure 4-28 show another example of the proposed algorithm correcting 
errors within the original model.  Figure 4-27 shows the original labelling. All the customers shown 
are labelled to be on Phase A, which is served by the Phase A medium voltage line coming from the 
right-hand side of the image.  All these customers were predicted to be on Phase B by the algorithm.  
Figure 4-28 shows the version of the labelling predicted by the algorithm.  This result can be fully 
verified within Street View.  The Phase A medium voltage line stops at the intersection on the right-
hand side and does not continue down the street. In fact, the Phase B line coming from the bottom 
right of the image turns the corner and serves all six of the customers shown.   

 
Figure 4-27. Original utility phase labels for a transformer on Utility #2, Feeder #3 

 



 

74 

 
Figure 4-28. Phase labels as predicted by the phase identification algorithm and verified in Google 

Street View for a transformer on Utility #2, Feeder #3 

Figure 4-29 shows an example of a case where the phase predictions from the method 
presented here show an improvement on the earlier version of the algorithm [13].  The earlier 
algorithm version is described in Section 4.3.1.3.  The Google Earth imagery clearly shows that the 
final method located and corrected a set of customers that remained as errors in the utility model. 
This method also maintained the correct label for a customer that was labelled correctly in the 
model predicted incorrectly in the comparison method.  Figure 4-29 shows an image with subfigures 
in each of the four quadrants.  Home icons represent customers, light-blue hexagons represent 
transformers, red lines show Phase A lines, and blue lines show Phase C lines.  The original labelling 
in the utility model is shown in the upper-left quadrant.   In the upper-right image, showing the 
comparison algorithm predictions, two homes have changed phase. The one marked in yellow 
changed from C to A as did one marked in purple.  The purple home that changed was a correct 
change. However, the customer marked in yellow was a correct label by the utility that was 
incorrectly predicted to be on a different phase.  The yellow customer is actually on Phase C.  The 
bottom quadrants are identical.  In these quadrants, the proposed algorithm predictions and the 
actual labelling verified in Street View are shown.  In addition to correctly labelling the customer 
marked in yellow, two customers to the right of this customer (orange) are also on Phase C, which is 
a change from A to C.  Those two incorrectly labelled customers in the original model caused the 
previous version of the algorithm to misclassify the customer marked in yellow. Conversely, the final 
algorithm was able to determine the correct configuration.   
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Figure 4-29. The purple house was correctly predicted by both algorithms.  The two orange 

houses were predicted incorrectly by the earlier version of the algorithm but correctly by the final 
algorithm.  The yellow house was correct in the utility model, but it was predicted incorrectly by 

the earlier version and correctly by the final algorithm version.  Customers from Utility #2,  
Feeder #3 

There are a number of other examples on the utility feeder that were verified using the Google 
Earth imagery method not included in this report for space considerations.   

 

4.3.5. Confidence Score Development for Commercial Implementation 

 This section details several refinements to the spectral clustering phase identification 
algorithm that were necessary to implement the algorithm in a commercial/utility setting.  That 
implementation is detailed in Section 12.4.     
 Two key issues for commercial implementation of the spectral clustering phase identification 
algorithm are the issues of quantifying confidence in individual predictions and providing guidelines 
for setting algorithm parameters.  Differences in the algorithms are such that different confidence 
metrics are required for the spectral clustering ensemble versus the confidence metrics used for the 
sensor-based method.   
 For the confidence metric, we are using a modified version of the Silhouette Coefficient.  
The Silhouette Coefficient is a well-established clustering analysis method that we have modified to 
be ‘phase-aware’ in this domain.   The classic Silhouette Coefficient is defined as follows: 
 

𝑠 =  
(𝑏 − 𝑎)

𝑚𝑎𝑥(𝑎, 𝑏)
 

 Where 𝑎 is the mean distance between a sample and all other points in its same cluster and 𝑏 
is the mean distance between a sample and all other points in the next nearest cluster. 
 

 Our modification is to require that the ‘next nearest cluster’ for the 𝑏 value be a cluster 
predicted to be a different phase from the current cluster’s phase.  This effectively makes the Modified 
Silhouette Coefficient a measure of how likely a particular customer was to be assigned a different 
phase for its final prediction.  The lower the Modified Silhouette Coefficient, the less confident the 
final phase prediction.   
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 Figure 4-30 shows a histogram of the Modified Silhouette Coefficients for our synthetic 
dataset.  The red arrow indicates a customer that is located on a different feeder that was added to 
the synthetic dataset for testing.  Note that the customer has a much lower Modified Silhouette 
Coefficient, which demonstrates the metrics efficacy as a confidence score.  As a guideline, any 
customer phase prediction with a Modified Silhouette Coefficient less than 0.2 should be considered 
low confidence. 
 

 
Figure 4-30 - Histogram of Silhouette Coefficients - red arrow marks a customer on a different 
feeder 

 Additionally, for commercial implementation, it is important to be able to provide 
reasonable guidelines for algorithm parameters (such as the window size in this case) and the 
amount of data required for the algorithm to perform well.  We performed a parameter sweep for a 
large number of possible values from the window size ranging from 48 samples to 500 samples per 
window.  Figure 4-31 shows the histogram for the Modified Silhouette Coefficients for the 48-
sample case and the 384-sample case.  Note that the Modified Silhouette Coefficients are much 
lower overall for the 48-sample case.  The overall results of the parameter sweep indicate that the 
window size should be fixed at 384 samples, regardless of the total number of datapoints contained 
in the dataset.  This test also demonstrates the usage of the Modified Silhouette Coefficient metric, 
not just as a confidence score for individual predictions, but also as an indication of the algorithm’s 
overall effectiveness given a set of parameters or a particular dataset. 
 

 
Figure 4-31 - Histogram of Modified Silhouette Coefficients for two window size values, 384 (left) 
and 48 (right) 
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 The second key question for a commercial implementation of the algorithm is, ‘How much 
data is required for the algorithm to perform the phase identification task?’  For this question, we 
leveraged the Adjusted Rand Index metric.  The Adjusted Rand Index quantifies the similarity 
between two instances of cluster assignment by comparing the number of pairs of customers 
clustered together in both clustering instances.  This allows us to measure the consistency between 
two distinct runs of the phase identification algorithm.  We would expect identical (or nearly so) 
results from two runs of phase identification on the same data under the same parameters.  
However, we know that there are minimum data requirements for the algorithm to function 
correctly and consistently.  Using a dataset with too few datapoints would result in the phase 
identification algorithm potentially producing different results with each run due to the co-
association matrix not being adequately populated.  The Adjusted Rand Index allows us to quantify 
these effects.  A sweep was conducted changing the number of datapoints available in the dataset in 
the range 1920 points (20 days with 15-min interval data) to 35040 points (1 year with 15-min 
interval data) using a 20 run Monte Carlo simulation for each value for the number of datapoints.  
An average Adjusted Rand Index was calculated over the Monte Carlo to quantify the effects on the 
phase identification results.  Figure 4-32 shows the results of this test.  On the blue y-axis is plotted 
the average Adjusted Rand Index, and on the red y-axis is plotted the average number of incorrectly 
identified customers.  If the number of available datapoints is too small the algorithm performance 
begins to degrade.  The navy dashed line at 11520 shows the recommended minimum number of 
datapoints for the algorithm.  Note that the algorithm may continue to produce acceptable results 
for datasets with fewer datapoints, but we do expect some level of degraded performance. 
 
 
 

 
Figure 4-32 - Sweep of the number of available data points plotted with the average Adjusted Rand 
Index and the average number of incorrect customers 

 

4.4. State Estimation-Based Distribution Transformer Phase Identification 

Accurate monitoring of transmission systems has been achieved through power systems 
state estimation [51]. However, distribution system state estimation (DSSE), however, is not a 
mature technology, still facing many technical challenges, such as lack of visibility due to low level of 
sensing, insufficient communications infrastructure to collect data from smart meters, high system 
complexity, uncertainty in parameters and system topology, and unknown load behavior exacerbated 
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by DERs [52].  With the increasing level of telemetered data from AMI in association with data 
streams from supervisory control and data acquisition (SCADA) systems, several power utilities 
might soon have enough metered data to monitor their systems with DSSE. In this scenario, 
however, uncertainty in parameters and topology can still harm the precision of state estimates in 
spite of measurement redundancy and system observability [53]. 

We have investigated the robustness of static DSSE to errors in topology. Namely, we have 
investigated how well the DSSE performs under errors in phase identification of single-phase 
distribution transformers. The results of this research were originally published in [54]. Phase 
identification of single-phase transformers is a challenging task and errors in phase labels of such 
transformers are common in practice [36]. Topology errors can lead to significant discrepancies in 
the estimates of power flows, which in its turn can lead to significant errors in state estimates.  
Hosting capacity analyses leverage those models and they are important for utilities to determine the 
amount and location of solar PV a given distribution feeder can support before updates are 
necessary. These methods usually rely on power flow-based (PF) steady-state or quasi-steady state 
simulations, which are very sensitive to errors in parameters. 

4.4.1. Distribution System State Estimation 

The foundation of the DSSE problem is described by the measurement Equation (4-2), 
which relate the system states with measurements and errors in measurements. 

 𝐳 = 𝐡(𝐱) + 𝐞 (−) 

where 𝐳 ∈  ℝ𝑚  is the vector of measurements, 𝐱 ∈ ℝ𝑁 is the vector of state variables, 𝐡:ℝ𝑁 →
 ℝ𝑚(𝑚 >  𝑁) is the measurement function that maps the states to the measurements, and 𝐞 ∈  ℝ𝑚 

is vector of independent, zero-mean Gaussian measurement errors with 𝜎𝑖 as the standard deviation 
of the i-th measurement.  

In our formulation, the vector of states contains real and imaginary parts of the nodal 
voltage phasors plus capacitor bank statuses (on or off) and voltage regulator tap positions. The 
measurements are composed of voltage and real and reactive power injection measurements from 
smart meters connected in low-voltage secondary distribution, SCADA measurements of substation 
voltage and power injections into the distribution grid, capacitor bank statuses, and position of load 
tap changers (LTCs) in voltage regulators. It is assumed that all are sampled every 15 minutes. 

A weighted least-squares static state estimator (WLS-SE)6 is used to solve this problem [51]. 

The resulting nonlinear program has the goal of finding the state estimate, 𝐱̂, that minimizes the 
weighted sum of the squares of the residuals, defined as the difference between the measurements 
and the measurement function, weighted by the standard deviation, as shown in Equation (4-3). 

 min
𝐱̂
𝐽(𝐱̂) = ∑ (

𝑧𝑖−ℎ𝑖(𝐱̂)

𝜎𝑖
)
2

𝑚
𝑖=1  (−) 

where 𝐽(𝐱̂) is the objective function of the WLS-SE. If the assumption of additive Gaussian noise 

and perfectly known parameters and topology holds, 𝐽(𝐱̂) should follow a 𝜒2 (chi-squared) 

distribution with 𝑚 − 𝑁 degrees of freedom. This problem can be solved iteratively using the 
Gauss-Newton algorithm by assuming the statuses of capacitor banks and tap positions are 

 
6 Due to the large time steps between measurement scans and unknown state dynamics of the distribution system, a 
dynamic state estimator was not used. 
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continuous variables. After the estimator converges these variables are discretized again to their 
closest discrete value. 

4.4.2. Detecting Phase Label Errors 

To detect errors in phase labels we have proposed a branch 𝜒2 test. This is a modified 

version of the goodness of fit 𝜒2 (or 𝐽(𝐱̂)) widely used in power system state estimation for bad data 
detection of measurements [51]. Traditionally, this goodness of fit test is applied to all measurements 
or pseudomeasurements considered in the state estimation process, given an expected false-alarm 

rate defined by a level of significance 𝛼. If the 𝐽(𝐱̂) score is under a threshold, the state estimate is 
accepted as a correct result. Otherwise, the alternative hypothesis is accepted, and it is understood 
that the model poorly fits the data (measurements), therefore an error must exist in measurements or 
model (e.g., topology, parameters). 

In this modified version of the 𝜒2 test, we apply Equation (4-4) to all measurements and 
pseudomeasurements (or virtual measurements) downstream of single-phase service transformers. 
These pseudomeasurements are zero-injection real and reactive power injections on buses where no 
loads nor generators exist used to provide additional topological information to the DSSE and 
improve observability and redundancy of measurements. 

 𝐽𝑏(𝐱̂) = ∑ (
𝑧𝑖−ℎ𝑖(𝐱̂)

𝜎𝑖
)
2

𝑖∈Ω𝑏  
, ∀𝑏 ∈ Ω𝑇 (−) 

where Ω𝑇 is the set of all single-phase transformers and Ω𝑏 is the set of all measurements and 

pseudomeasurements downstream of transformer 𝑏. Because under normal circumstances 𝐽𝑏(𝐱̂) 
should follow a 𝜒2 distribution with 𝜈 degrees of freedom, the hypothesis test is designed with a null 

hypothesis 𝐻0 of 𝐽𝑏(𝐱̂) following a 𝜒𝜈
2 distribution and the alternative hypothesis 𝐻1 stating otherwise, 

as shown in Equation (4-5).  

 
𝐻0 ∶   𝐽𝑏(𝐱̂) ≤ 𝜒𝜈,1−𝛼

2  ( 𝐽𝑏(𝐱̂)~𝜒𝜈
2)

𝐻1 ∶   𝐽𝑏(𝐱̂) > 𝜒𝜈,1−𝛼
2  ¬( 𝐽𝑏(𝐱̂)~𝜒𝜈

2)
 (−) 

Branches whose 𝐽𝑏(𝐱̂) score fails a 𝜒2 test, i.e., 𝐻1 is accepted, are flagged as incorrectly 
labeled. In a real-life application, those flagged branches could be subject to further investigation to 
determine their correct phase connection or a method like [53] could be used to try to infer the 
correct phase connection. Another alternative for correcting the phase label is to re-run DSSE with 

alternative phases and selecting the one that has the lowest 𝐽𝑏(𝐱̂) and 𝐽(𝐱̂) scores.DSSE converged 
in all 200 tests. It required between 7 and 8 iterations to converge. 

4.4.3. Numerical Validation 

To investigate how well the DSSE performs under errors in phase labeling, we have 
designed a Monte Carlo (MC) experiment where the performance of the DSSE to assess voltage 
magnitude of phases was compared to the performance of a power flow (PF) method under phase 
label errors. These simulations were performed on OpenDSS using a fixed system condition, so the 
load level and status of voltage control devices (status of capacitor banks and LTC position) are the 
same for all tests run in the paper. We have limited the scope of the study to errors in labels of single-
phase service transformers connected to three-phase buses only. Because the measurements used in the DSSE 
from the load are in the low-voltage secondary system of the service transformer, any phase errors 
will directly translate into errors in the DSSE phases. 
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Two benchmarks were used to evaluate the precision of the results obtained by the DSSE. 
The first is simply the use of additive noise in the AMI and substation voltage measurements. The 
second is the use of a conventional PF method to estimate voltage in the load buses based on noisy 
power measurements obtained from AMI. This second benchmark tries to emulate the common 
practice of using PF methods in distribution studies to evaluate the performance of a given system 
in a predefined scenario. The PF method used is an unbalanced three-phase load flow obtained by 
adding phase label errors to the source code of the OpenDSS circuit file. Note that the voltage 
measurements are not used in the unbalanced three-phase load flow, only the noisy power 
measurements are inputs. 

The OpenDSS model of EPRI Circuit 5 test system has 595 transformers, including 3 single-
phase voltage regulators, and 94 single-phase service transformers connected to three-phase buses. 
We have selected 5 levels of errors in phase identification of single-phase transformers: 0% (no 
errors), 1%, 5%, 10%, and 33% of incorrect labels of phases of single-phase transformers. For each 
scenario, we have run 20 OpenDSS simulations where single-phase transformers connected to three-
phase buses were chosen at random and reassigned to an incorrect phase until the percent of 
incorrect labels was reached. We have assumed that all load and generator (solar PV) nodes are 
metered, and they report voltage magnitude, real and reactive power to the DSSE. Furthermore, we 
assumed that the state estimator has also access to voltage magnitude and real and reactive power 
flow measurements from the substation. 

All meters that monitor the substation, loads, and solar PV nodes are assumed to be class 
0.5. Meter class defines the maximum percent error of each measurement, and this meter class error 
drives the ability to accurately model the distribution system. We have modeled measurement errors 
as an additive Gaussian random variable with a standard deviation equal to one-third of the meter 
class. Under this model, the noise will rarely be larger than the meter class. This type of model 
provides a compromise between the Gaussian noise model considered in the WLS-SE formulation 
and the meter model. 

4.4.4. AMI Voltage magnitude prediction 

  The metric we have chosen to evaluate the results is the root means square of the 𝑛|𝑉| =

1385 true voltage magnitudes obtained from the simulation (|𝑉|𝑖
𝑡𝑟𝑢𝑒, without errors) versus estimated 

measured or estimated (|𝑉|𝑖
𝑒𝑠𝑡, state estimator and power flow) voltage magnitude: 

 |𝑉𝑟𝑚𝑠𝑒
𝑒𝑟𝑟 | = √

1

𝑛|𝑉|
∑ (|𝑉|𝑖

𝑡𝑟𝑢𝑒 − |𝑉|𝑖
𝑒𝑠𝑡)2

𝑛|𝑉|
𝑖=1 

.  All voltage magnitudes are in per unit. 

The results summarized in Figure 4-33 show that the results of the DSSE are much more 
consistent (lower variance) than the results of the power flow method for all cases. The meter error 
boxplots are shown to provide a baseline on errors due to noise. It is reasonable to assume that 
estimation errors inferior to noise level of voltage meters are accurate enough. We can see that 
DSSE root-mean-square error (RMSE) of voltage magnitude error estimates are consistently smaller 
than noise level for of up to 10% of incorrectly labeled single phase transformers. Furthermore, the 
DSSE’s median RMSE is lower than power flow for all cases, except the first where there is no 
phase label error. From these results it is possible to confirm that the DSSE is a more robust 
method for voltage magnitude estimation than the power flow-based method. 
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4.4.5. DSSE versus PF-based voltage estimation: 10% case 

The analysis of voltage magnitude estimation error can also be performed on an individual 
AMI basis. Instead of using the RMSE of all errors, which is a summary metric for characterizing 
the results of a method for an instance of a MC run, we have compared voltage estimation errors at 
the individual meter level. We have selected the 20 MC tests performed in the case where 10% of 
single-phase transformers connected to three-phase buses have incorrect labels and we have 
compared the result of each voltage estimation using DSSE and PF methods. 

 
Figure 4-33. Boxplots of voltage magnitude errors under different single-phase transformer phase 

errors 

 
Figure 4-34. Histogram of voltage magnitude errors of estimates obtained with PF (blue) and DSSE 

(red) for 10% of mislabeled transformers 

The normalized histograms in Figure 4-34 were obtained from the voltage magnitude 
estimation errors of each metered node using the two methods compared to the actual (non-noisy) 
voltage measurement. The results show that DSSE produces voltage estimates with more errors 
concentrated close to zero than the PF-based method, which translates into lower level of error. 
Further, it is possible to see that there are many instances where the PF-based voltage presents 
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significantly large voltage estimation errors, which does not happen as often for the results generated 
by the DSSE. 

4.4.6. Phase error identification using DSSE 

 
Figure 4-35. Boxplot of the accuracy of the 𝑱𝒃(𝐱̂ ) phase error detector for each scenario. 

While detection of errors is trivial7 using a bad data detection method associated with DSSE, 
identification of the sources of these errors is much more challenging, because it can involve, topology, 

parameters or measurements. The effectiveness of the 𝐽𝑏(𝐱̂) test for identifying errors in phase 
labeling of single-phase distribution was also tested in the MC simulations. 

In all cases, the number of average detector errors are far smaller than the number of correct 
predictions, which demonstrates the efficacy of the method for detecting errors in transformer 

phase labels. Further, the small number of high 𝐽𝑏(𝐱̂) scores in correctly labeled branches indicates 
that the mismatch between models used for DSSE and the measurements is quite small, which 
means that we should expect small errors in state estimates in those nodes where we have loads and 
solar PV generation. 

Boxplots for accuracy (ratio between correctly labeled branches over number of all 
branches) of phase error identification is shown in Figure 4-35. The phase error detection method 
presents a very high accuracy in cases where the number of phase errors is low, and the score 
decreases when the number of errors increases. This result highlights the decrease in the 
performance of the DSSE method when subject to larger amounts of topology errors, which in turn 
reduces its ability to correctly predict if a given branch has had its phase correctly labeled. 

4.5. Phase Identification Summary 

This project developed three phase identification algorithms, one that uses only customer 
voltage timeseries data from AMI meters, one that can also leverage additional sensors placed on the 
medium voltage if they are available as well as the AMI voltage timeseries, and one phase 
identification method based on a state estimation approach. 

The results show that the DSSE method is a promising tool not only for distribution 
monitoring but also for the calibration of distribution parameters to improve visibility into DER 

 
7 Given redundancy of 1.23, we have seen consistent detection of errors using Chi-squared method (𝜒2). 
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operations and planning. Further, even under errors in topology, the voltage estimates by DSSE are 
highly accurate. These results show that DSSE can be a much more reliable tool than PF for 
distribution system studies. Also, identification of these phase errors can be achieved through DSSE 
error processing. Even though the results for the identification of phase mislabeling are satisfactory, 
they still leave room for improvement. 

For the AMI-based methods, there were five publications produced related to the first two 
phase identification methods, 3 conference papers [13], [35], [40] and 2 journal articles [36], [41].  
The algorithms were tested using synthetic datasets to thoroughly test robustness under a variety of 
real-world data challenges as well as being tested on several utility datasets.  In the case of the 
sensor-based phase identification algorithm, field verification of the results on two utility feeders 
from Utility #1 demonstrates the effectiveness of the algorithm on utility data and provides high-
confidence in using the algorithm. Utility #1 is also in the process of implementing the sensor-based 
method for widespread usage in their system.   
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5. SECONDARY SYSTEM TOPOLOGY AND PARAMETER 
ESTIMATION 

5.1. Parameter Estimation 

The parameter estimation task is defined as estimating the parameters of the secondary 
network between customers and transformers.  Looking at Figure 5-1, there are two possible 
secondary networks, shown in blue and red, for the customer at the bottom of the figure.  This task 
seeks to estimate the wire types and wire lengths between each customer and their service 
transformer.  Accurate secondary networks are critical for grid planning task and DER integration 
tasks such as hosting capacity analysis.   

 
Figure 5-1. Parameter Estimation illustration 

5.1.1. Methodology 

The overall objective of distribution system secondary circuit topology and parameter 

estimation (DSPE) is to determine the topology, resistance (R), and reactance (X) parameters of a 

secondary circuit (shown in red in Figure 5-2) by leveraging AMI measurements of voltage (V ), real 

power (P), and reactive power (Q) (shown in blue in Figure 5-2). This paper focuses on typical 
North American split-phase secondary circuits that can be perfectly represented (under appropriate 
assumptions) with single-phase equivalent circuits. More details on split-phase secondary circuit 
modeling can be found in [55]. 

 
Figure 5-2. Secondary circuit topology and parameter estimation problem [56] 

We follow the linear regression parameter estimation (LRPE) method for secondary circuits 
described in [57] and [28], [58], [59].  The LRPE method utilizes the linear approximation of voltage 
difference between two customers connected in parallel: 
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|𝑉1| − |𝑉2| ≈ 𝐼𝑅2𝑅2 + 𝐼𝑋2𝑋2 − 𝐼𝑅1𝑅1 − 𝐼𝑋1𝑋1         (5-1) 
 

Where 𝑉1  and 𝑉2   are the voltages measured at customers 1  and 2, 𝐼𝑅1  and  𝐼𝑅2  are  the  real  

currents (𝐼𝑅 =  𝑃 𝑉⁄ ) and 𝐼𝑋1  and 𝐼𝑋2  are the reactive currents (𝐼𝑋 = 𝑄 𝑉⁄ ) flowing to each 

customer 𝑃 is the measured real power and 𝑄 is the measured reactive power. This linear 
approximation typically has negligible error [60]. By convention, we assign customers 1 and 2 such 

that the voltage is, on average, higher at customer 1 than customer 2 (i.e., mean (𝑉1) ≥ mean (𝑉2)). 
Many utilities do not know the secondary circuit topologies. 

In [56], we apply linear regression topology and parameter estimation (LRTE) algorithm to 
generate the entire secondary circuit models, including topology, using only the measurements. The 
algorithm processes one secondary circuit at a time (e.g., the circuit containing all customer on a 
single transformer). For each meter pair on that circuit, the algorithm solves the linear regression 
problem based on a slightly modified version of Equation. (5-1): 

 

𝑉1 − 𝑉2 = 𝐼𝑅2𝑅2 + 𝐼𝑋2𝑋2 − 𝐼𝑅1𝑅1 − 𝐼𝑋1𝑋1 + 𝐸     (5-2) 
 

where E has been added to account for a possible offset (bias error) in the meter voltage 
measurements. Note this equation applies to both the situation where the wires between the 
transformer (or some other upstream node) and the two customers are parallel and when they are in 

series: for series connections, 𝐼𝑅1 and 𝐼𝑋1 will be found to be zero by LRTE. The values of 𝑅 and 𝑋 

are recorded as the parameters for that meter pair, but the value 𝐸 is not recorded. 

The meter pair with the best fit (as determined by the highest Pearson correlation coefficient: 

𝑅2value) when using linear regression is assumed to be the true topology. The method then proceeds 
to estimate the remaining secondary circuit parameters by proceeding from the tree leaf nodes 
towards the tree root node. That is, the two customers found to be the best pair create a virtual node 
at their meeting point. This virtual node is then run through LRTE with the remaining meters on the 
circuit until the full circuit topology is found. 

5.1.1.1. Step 1:  Transformers with Multiple Customers 

To compute the parameters and topology of all customers on a feeder, we use the three-step 
process that follows. First, we determine the topology and parameters of the secondary circuits of 
transformers with more than one customer by pairing the customers on the same transformer with 
one another. Next, we pair customers who are the only customers on a transformer with other such 
customers to derive the parameters for these single customers. Finally, we pair transformers with 
multiple customers with one another, using the virtual nodes found in the first step, to determine if 
there is additional impedance between the final virtual nodes and the transformers. Combined, these 
three steps derive the secondary circuit topology and parameters for all customers connected to the 
feeder. The three steps are described in detail in the following sections. 

For transformers with multiple customers connected, all possible pairs of customers on the 
same transformer are evaluated. For example, for transformers with 3 customers, all 3 possible 
combinations of customers pairs (1 and 2, 2 and 3, 3 and 1) are evaluated. AMI data for voltage and 

real and reactive power, are used to solve for 𝑅1, 𝑋1, 𝑅2, and  𝑋2   using Equation 5-2. 

To understand how well the linear regression fits the data, we computed the Pearson 

correlation coefficient (𝑅2) of the fit.  
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Once 𝑅2 values were computed for all customer pairs, the pair with the highest 𝑅2 value was 
assigned as the actual topology.  If this pair was found to be connected in parallel, then a new virtual 
node, representing the point where these two parallel lines connect, was created. The voltage at the 
virtual node was found by adding the voltage drop to the measured voltage: 

 

𝑉𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑛𝑜𝑑𝑒 = 𝑉1 + 𝐼𝑅1𝑅1 + 𝐼𝑋1𝑋1      (5-3) 
 

Based on the convention previously mentioned in Section 5.1.1, mean(𝑉1) ≥ mean(𝑉2). 
Thus, Equation 5-3 ensures that the volt- age at the virtual node is, on average, higher than the 

voltage at each of the customers. Other methods for computing 𝑉𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑛𝑜𝑑𝑒 , such as averaging the 
voltage drop found across each customers 1 and 2, does not guarantee that the virtual node voltage 
is higher than the customer voltages, which could lead to problems in later parameter calculations 
involving the virtual node. Real and reactive power consumption at the virtual nodes were found by 
summing the real and reactive power of the two customers. 

As a second iteration, all remaining customers (those not contributing to the virtual node) 
were again paired with one another and also were paired with the virtual node. Again, the pair with 

the highest 𝑅2  value was assigned as the actual topology, and a virtual node was created. This 
method was repeated until all customers were included in the topology.  We note that this linear 
regression is very fast, taking less than 0.1 s on a typical laptop circa 2016. Because of the iterative 
nature, the number of linear regressions that must be calculated increases with the number of 
customers. However, total runtime remains modest even for transformers with many customers; the 
linear regressions for all pairs of a 20-customer transformer, for example, can be run in about 2 
minutes. Additionally, this process only needs to be run once: DSPE derived parameters will 
continue to be valid unless there is a system configuration change. 

For most customers, the voltage fluctuations depended heavily on the real current draw and 
only weakly on the reactive current. That is, the reactive current was typically only responsible for 
explaining a small fraction of the variance in the voltage drop, in part because the real and reactive 
power draws were often well-correlated. Therefore, we have more confidence in the derived 
resistance values than reactance values. In some cases, including when negative reactance is found, it 
may be best to use the found resistance and then assume a reasonable X/R ratio to determine the 
reactance. 

5.1.1.2. Step 2: Transformers with Only One Customer 

On transformers with a single customer, Step 1 will not work: we only have one voltage 

measurement (at the one customer), and so cannot solve for 𝑅 and 𝑋 between two voltage 
measurements using Eq. 5-2. Instead, we find a nearby transformer that also has a single customer 
by finding the shortest latitude/longitude distance to another single-customer transformer on the 
same phase. Because of the high voltage level on the primary system, the per unit resistance on the 
primary voltage system between two nearby transformers is much smaller than the per unit 
resistance on the low voltage secondary system from transformer to customer, as per resistance is 
inversely proportional to voltage squared. 

For example, on a 12-kV system, 900 feet of wire has the same per unit resistance as 
approximately 1 foot of wire on the low-voltage system.  Thus, the primary voltage side of two 
nearby service transformers can be assumed to be identical with little impact to the estimated 
resistances. Thus, two customers on nearby transformers (who are each the only customer connected 



 

87 

to their transformers) can be compared in the same fashion as described in Step 1 as though they are 
on the same transformer. 

However, following this method means that we have included the transformer resistance and 
reactance in the parameter estimation. Utilities typically have access to the kVA rating of 
transformers, and hence the transformer resistance can be fairly accurately estimated using the values 
based on National Electrification Association specifications. There are no United States standards 
for transformer impedances, but we used a typical value of 2% impedance for all transformer sizes. 
The transformer resistance and reactance are subtracted out from the estimated parameters to find 
the customer resistance and reactance. An additional benefit of this method is that including the 
transformers in parameter estimation can validate or identify errors in the transformer sizes in the 
utility models. Specifically, the one noted time when a negative value resulted for customer 
resistance, inspection found this was clearly a typographical error in transformer kVA, which was 
labeled as 1 kVA but was in fact 10 kVA. 

5.1.1.3. Step 3:  Pair Multi-Customer Transformers With One Another 

The impedances found in Step 1 are not guaranteed to be the complete impedances of the 
secondary circuit because the final virtual node found may not be located at the transformer and 
there may be additional wiring between the virtual node and the transformer leading to additional 
impedance. To account for this possibility, we paired transformers with multiple customers with one 
another. This is similar to Step 2, though instead of using voltage and power measurements at single 
customers, we used the calculated voltage and power at the final virtual nodes found in Step 1. 

In most cases, the virtual node from Step 1 was at the transformer, such that after 
subtracting out the transformer impedance, essentially zero remaining impedance was found. In 
some cases, slightly non-zero impedances were found (e.g., a resistance of 0.002Ω), which are likely 
due to slight variation of transformer impedance from the assumed values. 

In some cases, though, the virtual node from Step 1 was away from the transformer. For 
these cases, the additional impedance of the wiring between the transformer and the virtual node 
must be accounted for and added to the secondary topology found in Step 1. 

5.1.2. Results 

5.1.2.1. Results on Synthetic Data 

The experiment design and results for different cases have been summarized below. 
Corresponding trends can be observed in Figure 5-3 for error in pairing transformers and Mean 
Absolute Error (MAE) of all resistance estimations.  The pairing transformers algorithm results 
shown are for an initial meter-to-transformer pairing algorithm based on the parameter estimation 
algorithm.  The final version of the meter-to-transformer pairing algorithm is described in detail in 
Section 6. 

1) Sampling Time Interval: The 1-minute granularity time series measurements are grouped by 
the new interval size and then averaged (or the last reading is taken for instantaneous voltage 
measurements) to obtain the new timeseries measurement for 5, 15, 30 and 60 minutes. 
Observations:  Figure 5-3a shows that when the data is perfect, i.e., no noise is added, the 
time interval does not impact accuracy. Averaged voltage data performs better than its 
instantaneous counterparts for larger intervals. 
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Data Resolution: Each measurement for the required time interval data set is rounded to the 
desired resolution. The maximum resolution provided by the simulation is 10mV and 0.1W. 
This corresponds to 2 and 4 decimal points each. 
Observations: At least 0.1V and 0.1kW resolution (1 decimal point each) was required to 
maintain reasonable levels of accuracy as shown in Figure 5-3b. Finer resolution beyond that 
do not result in significant improvement. 

 
2) Time Synchronization: A maximum offset from 0-4 minutes was added to each meter at the 

1-minute interval resolution, and its impact was studied for the different time intervals. 
Observations: As the reporting time interval increases, the algorithm becomes more robust 
to time displacement errors (Figure 5-3c). This assumes the quantity of data is the same. 

 
3) Quantity of Data: The impact of quantity of data was studied by utilizing data from different 

numbers of months. 
Observations: A small and steady increase in the accuracy was observed when more data is 
utilized. Figure 5-3d shows a 2-3% improvement in performance was observed between using 
1 month and 1 year of perfect (noiseless) data. 

 
4) Meter Bias: For each meter a bias error is chosen at random and added to each measurement 

of that meter. The bias ranged from 0-2% of the mean at intervals of 0.5% and sampled 
uniformly between the negative and positive of the maximum bias level. 
Observations: Figure 5-3e reveals that bias does not impact linear regression or correlation 
methods. For example, in the former it is absorbed as constant noise and only impacts the 
intercept and not the slope of the line. 

 
5) Uniform Noise: Noise is injected into each meter reading at random within the range [-Max, 

+Max]. The maximum noise level is varied from 0 to 1% of the nominal at steps of 0.1% and 
the noise is distributed uniformly between the negative and positive of the maximum level. 
Observations: Noise noticeably affects the accuracy of the algorithm as seen in Figure 5-3f. 
Averaged and larger time intervals (15 minutes) tend to be more robust to noise; 0.35-0.55% 
noise in voltage data is a reasonable threshold. For smaller time intervals (5min) a significant 
increase in error is seen beyond   the 0.35% threshold. For larger time intervals, while the 
increase in error is more linear the accuracy drops below 95% beyond the recommended noise 
range. 

 
6) Missing Data: Random data points from the data sets were dropped after averaging to the 

required time intervals. This can be caused due to failure in the communication network, 
packet drops, outages etc.  

Observations: Missing data does not impact the algorithm performance in both cases if 

sufficient data is used (here, 4-6 months). This is possibly because linear regression and 

correlation can perform well in the presence of missing data. 

7) Unknown Power Factor: Often, smart meters do not record kVAr, and there is no power 

factor information available. Many algorithms based on AMI data, require kVAr readings. To 

get around this, random power factors were employed. Additionally, the value of knowing the 

type of cable (here, X/R ratio= 0.304) was explored. 
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Observations: Knowledge of the cable type used by the utility is extremely powerful. Figure 

5-3h compares the results of DSPE when kVArh was measured (indicated by 1) vs when 

kVArh was not measured but the cable’s X/R ratio was utilized (indicated by 0). Using a fixed 

X/R ratio, i.e. constant line slope in the linear regression formulation, the algorithm performs 

as well as the original case. 

 

 While Figure 5-3 compares the impacts of testing a range of individual error cases, these 

scenarios might not provide sufficient insight into optimal AMI capabilities as many of these errors 

occur simultaneously. Thus, to mimic realistic data with reasonable error levels, the following errors 

were injected into the 1-minute interval base data set. The noise levels conform with meter standards 

such as ANSI C12. 

• Data Resolution – 0.1 V 

• Meter Bias – 0.2% 

• Meter Precision (Noise) – 0.2% 

• Time Synchronization Issues — 1 min displacement for 20% of meters 

The results from the simulations with multiple errors simultaneously injected show similar 
overall trends to the simulations of the errors in isolation from Figure 5-3.  Table 2-3 (in Section 2.4) 
shows combined recommendations for topology estimation algorithms using smart meter data based 
on the results from testing the AMI data parameters and errors in isolation as well as comparing 
with the results from injecting errors simultaneously. 
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Figure 5-3. Algorithm Accuracy Results when varying: 1) Reporting Type and Measurement 

Interval, b) Data Resolution, c) Time Synchronization, d) Quantity of Data, e) Meter Bias, f) Uniform 
Noise, g) Missing Data, and h) Unknown Power Factor 

5.1.2.2. Results on Utility #2 

In this section, we present results of DSPE applied to data from Utility #2. DSPE-found 
topology and parameters are compared to the utility secondary model. To compare parameters, 
DSPE resistance is compared to model distance (following conductors in the model) using typical 
resistances per distance for different wire types (Appendix A in [61]). For example, aluminum #2 
American Wire Gauge (AWG) triplex has a resistance of 0.058Ω per 100ft (round-trip resistance for 
a 240 V load). 

Figure 5-4 shows results for a transformer for Utility 2, Feeder #1 with two customers. 
DSPE results (Figure 5-4a) show a parallel configuration, with similar resistances for the two 



 

91 

customers. The utility secondary model (Figure 5-4b) confirms a parallel configuration and similar 
distances (and hence expected resistances) from the transformer to each of the customers. This 
relationship between DSPE resistance and utility secondary model distance from transformer to 
customer is plotted in Figure 5-4c,  and shows that DSPE results are consistent with the secondary 
model distances, assuming #2 AWG wiring, which is indeed commonly used by this utility for 
secondary systems. 

One value of DSPE: resistances from transformer to customer cannot be calculated from 
secondary topology alone (even if that is available from a utility); accurate wiring type is also 
required. DSPE, however, resolves the topology and parameters without any need for the wire type 
as input, and should be accurate for all possible wire types. 

 
 

 
Figure 5-4. (a) DSPE results for a transformer with two customers on Utility #2, Feeder #1. (b) 

Satellite map showing utility secondary model for connections of customers to this transformer.  
(c) Scatterplot of the DSPE resistance (y-axis) versus the utility secondary model distance (x-

axis).  Dashed lines show the resistance of different wire types. 

DSPE was run for all customers on Utility 2 Feeder #s 1, 2, and 3. Summary results, 
showing the distribution of DSPE resistances found, are shown in Figure 5-5. On all three feeders, it 

is most common to have customer resistances around 0.05Ω, which is consistent with about 100 ft 
of #2 wire. However, even though this is most common, there are several customers varying 

significantly from this value: resistances of 0.15Ω, three times the 100 ft assumption, were still 
common. This shows the value of DSPE on a feeder-wide basis, as it can be used to determine 
customer-specific parameters rather than relying on assumptions, which may, on average be accurate 
but which on a customer-by-customer basis may significantly under (or over) estimate the 
resistance.  The impact of errors in the resistance and reactance parameters, such as from the errors 
that result from assuming 100 ft of #2 wire, is partially dependent on the power draw of each 
customer. 
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Figure 5-5. Distribution of customer resistances (x-axis) across each of the three Utility 2 feeders 

Customers with high power draw and significant differences between actual resistance and 
modeled resistance will have large discrepancies between measured and modeled voltage.  An 
extreme example can be seen in Figure 5-6. Customer 541 on Feeder #1 is a dairy barn with high 
power draw (up to 40 kW) and low DSPE resistance between the transformer and customer meter. 
The 100ft of #2 wire assumption overestimates the voltage drop, resulting in a large underestimation 
of the customer voltage.  

 
Figure 5-6. Measured voltage and calculated voltage based on DPSE parameters and a 100 ft #2 
wire assumption for customer 541 on Feeder #1.  The resistance values for each method and the 

MAE compared to the measured voltage are shown in the 

5.1.2.3. Results of the Sensitivity Analysis 

We applied filters to the input data to test the sensitivity of DSPE results to input data quality 
of voltage, real power, and reactive power AMI measurements. We first compared different amounts 
of input data to DSPE.  For example, for transformer 233, the DSPE resistances of both 
customers when considering only 2,000 data points was within 5% of the value found when 
considering all 17,023 data points. 2,000 data points corresponds to approximately 21 days of 15-
minute resolution data. That is, DPSE could have been accurately applied to transformer 233 after 
less than a month of data collection. Other transformers had similar results: of 25 transformers with 
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two customers that were evaluated for sensitivity to the amount of data, all but three had converged 
to less than 5% difference from full data when 8,000 data points were considered (less than 3 
months  of 15-minute resolution data). When this difference threshold was relaxed to 10%, all 25 
test transformers had converged by 6,200 data points (about 2 months of 15-minute data). 

Next, we examined the sensitivity of DSPE results to varying resolutions of voltage, real 
power, and reactive power measurements. The actual resolution of the measurements was 0.1 V, 
0.04 kW, and 0.04 kvar; worse resolutions were simulated by rounding the data to different intervals. 
The DPSE results with these worse resolutions were compared to the results with full resolution to 
determine the impact of the worse resolution. 

The sensitivity to voltage resolution was small. For transformer 233, results within 5% of the 
full resolution case were obtained for voltage resolutions as poor as 1 V. 20 of the 25 two-customer 
transformers evaluated for sensitivities needed voltage resolution of only 1 V to maintain DSPE 
results with 5% of full resolution data; and all 25 were within 10% of full resolution data when using 
only 1 V resolution voltage. 

Real power resolutions of 0.5 kW or less resulted in greater than 5% deviations in DPSE 
resistance values versus full resolution. Over the 25 test transformers, 18 of 25 resulted in less than 
5% deviation from full resolution data when using 0.5 kW resolution power and 23 of 25 resulted in 
less than 10% deviation. Reactive power resolutions of worse than 0.5 kvar similarly led to greater 
than 5% deviations from full resolution results. However, accurate DSPE results did not depend on 
having reactive power measurements at all.  W hen no reactive power measurements are used, DSPE 
results are very similar (less than 3% difference) to results when using full resolution reactive power 
measurements. Similarly, over the 25 test feeders, the difference between using no reactive power 
measurements at all and using full resolution reactive power measurements was always less than 
10%. This is likely caused by the high correlation between real and reactive power and is a significant 
result as it demonstrates that DSPE can be accurate even when no reactive power measurements are 
available.  Additional sensitivity analyses were performed to understand the impact of measurement 
errors to DSPE results. Adding stochastic errors to the AMI measurements introduced stochastic 
differences in DSPE results.  However, for added stochastic measurement errors ranging from 0% 
to 10% of average measured voltage, real power, or reactive power, DSPE results were still within 
5% of the results with no stochastic errors added.  Constant bias errors in measurements (i.e., if 
voltage measurements are 2V too high over all timesteps) have no impact on DSPE results. 

5.2. Summary of Parameter Estimation 

Distribution system parameter estimation (DSPE) results agreed well with imagery and the 
utility secondary model for the customers examined. When applied over entire feeders, significant 
variations were seen from the simple assumption that all customers have 100 ft of #2 wire, 
demonstrating the value of DSPE. Sensitivity analysis showed that the DSPE method is robust: 
modest amounts of data (around 3 months of 15-minute resolution data) and measurement 
resolutions (1 V, 0.5 kW) were sufficient to derive accurate parameters. For this set of mostly 
residential customers, reactive power measurements were not found to be necessary, but this may 
change for other customers with less correlated real and reactive power consumptions.  The DSPE 
method can be leveraged to identify and fix errors in the utility geographic information system (GIS) 
data. It can also be leveraged to automatically create accurate and detailed secondary system models 
based on AMI measurements while minimizing the need for costly manual labor and field 
inspections.  As a result, the presented practical DSPE method can help utilities to greatly increase 
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the accuracy and detail of their distribution grid models to enable high DER penetrations.  This 
work resulted in several publications [32], [62], [63]. 
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6. METER-TO-TRANSFORMER PAIRING 

6.1. Task Overview 

The meter-to-transformer pairing task is defined as grouping customers by their service 
transformer using customer AMI data.  For example, the goal is to determine if the customer in 
Figure 6-1 is connected to the transformer and customers on the left, or the transformer and 
customer on the right. In this case, a two-stage methodology was developed that leverages customer 
voltage, real power, reactive power timeseries, and the existing service transformer labels. In the first 
stage, errors in transformer labeling are flagged using pairwise correlation coefficients calculated 
from the voltage timeseries of each customer.  In the second stage, the results from pairwise linear 
regression, i.e., the mean-squared-error (MSE) fit value and the reactance distance between 
customers, are used to assign new customer groupings to the customers on the flagged transformers.  
Figure 6-2 shows a flowchart of the methodology with the two stages marked with brackets. 

 

 

Figure 6-1. Meter-to-transformer pairing illustration 
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6.2. Methodology 

 
Figure 6-2. Meter-to-transformer pairing methodology flowchart 

6.2.1. Methodology Overview 

The first stage of the methodology is to flag errors on a per-transformer basis.  In Step 1, 
Pearson correlation coefficients are calculated between each pair of customers.  The total number of 
correlation coefficients would be the number of customers squared divided by two (as order does 
not matter).  This number could be further reduced if computation time became a problem by only 
calculating the pairwise correlation coefficients for customers labeled on the same transformer.  As a 
pre-processing step, the voltage timeseries are converted into per-unit representation and the 
difference taken between adjacent measurements in time.  This results in a timeseries that represents 
the change in voltage at each timestep, measured in per-unit.  These pre-processing steps are based 
on the literature and prior work in the phase identification task.  To account for missing values in 
the data, individual 4-day “windows” of data are considered and any customers with missing data 
during that time period are discarded.  Once the entire dataset has been processed in this way, each 
pair of customers will have several correlation coefficients, one from each window where they were 
both present.  The mean of all the correlation coefficients is taken to be the final value.  In steps 2 
and 3, each transformer is inspected independently.  The correlation coefficients for all customers 
labeled on that transformer are inspected to verify if all those customers are well correlated with 
each other; if any customers are poorly correlated with other customers, then that transformer is 
flagged.  This operation is repeated for all transformers.  Setting the threshold for classifying “poor” 

correlations is a critical question for this method.  This threshold is referred to as 𝛽 in Algorithm 
6-1.   We propose a ranking system for the flagged transformers.  By using multiple values for this 
threshold, a ranking of flagged transformers is created, with transformers containing extremely 
poorly correlated customers flagged first.  This prioritizes the transformers that are more likely to 
contain errors in labeling. 

The second stage of the methodology is to re-assign the customers in each flagged 
transformer into their correct transformer groupings.  This is one of the key contributions of this 
paper because most algorithms are not able to identify the correct transformer when errors are 
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identified.  Identifying the correct grouping is achieved using the results of linear regression, Step 4.  
Equation 6-1 shows the formulation of the regression problem, and Figure 6-3 shows a visual 
representation of the formulation.  The regression is done for each pair of available customers.  This 
is ordinary least squares (OLS) regression formulation, using the Scikit-learn implementation in 

Python [43].  On the left side is the voltage difference between the two customers (𝑣), and on the 

right side is the real power (𝑝), reactive power (𝑞), and the regression coefficients (𝑟) and (𝑥).  In this 

case, the regression coefficients directly correspond to the electrical resistance, in the case of (𝑟) and 

the electrical reactance, in the case of (𝑥).  This can be seen for the two example customers shown in 

Figure 6-3 where the 𝑟 represents the electrical resistance between each customer and the closest 

point of electrical connection (purple box) and 𝑥 represents the reactance between each customer 
and the closest point of electrical connection.  Further details on this formulation can be found in 
[27]. This formulation produces a pairwise measure of the regression fit, MSE was chosen in this 
case, as well as coefficient values corresponding to the resistance and reactance “distances” for the 

pair of customers.  The “reactance distance” is defined as the sum of the two 𝑥 terms in Figure 6-3.  

Likewise, the “resistance distance” is defined as the sum of the two 𝑟 terms.  The MSE value is used 
as a “goodness of fit” metric for the pairwise regression.  Although not a traditional “goodness of 
fit” metric, the MSE is a measure of the error on the regression fit between customers and can thus 
be used to quantify the “goodness” of the regression fit.   The MSE formula is shown in Equation 2, 

where 𝑛 is the number of timesteps available and 𝑣 is the difference in voltage between customers, 
shown on the left side of Equation 6-1. 

𝑣1 − 𝑣2 =
𝑝1

𝑣1
∗ 𝑟1 + 

𝑞1

𝑣1
∗ 𝑥1 −

𝑝2

𝑣2
𝑟2 −

𝑞2

𝑣2
∗ 𝑥2    (6-1) 

 

𝑀𝑆𝐸(𝑉, 𝑉̂) =  
1

𝑛
∑ (𝑣𝑖 − 𝑣𝑖)

2𝑛
𝑖=0     (6-2) 

 

 
Figure 6-3. Linear regression model to calculate the measure of fit (MSE), reactance distances (x), 

and resistance distances (r).  The box represents the closest point of electrical connection 
between the two customers. 

There are two situations where the regression fit will be good, and Figure 6-4 illustrates 
those cases.  On the top, the pairwise regression was between two customers serviced by the same 
transformer, and the point of electrical connections (purple box) is on the low-voltage side of the 
transformer.  On the bottom, the two customers are each serviced by their own transformer and the 
closest point of electrical connection is on the high side of the transformers.  These two cases can be 
distinguished from one another using the reactance distance between the pair of customers.  
Because transformers have higher X/R ratios than lines, crossing over two transformers will result 
in significantly higher calculated reactance values than in the case shown on the top.  The reactance 
threshold to differentiate between these two cases is thus set at 0.046 Ohms based on the known 
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reactance of two transformers in this model.  The reactance threshold parameter is defined as 𝛾 in 
Algorithm 6-1.   

 
Figure 6-4. The regression fit is good in two cases.  The top case shows the regression between 
two customers on the same transformer and the bottom case shows the regression between two 

customers each being the only customer served by a transformer. 

In the case where the regression fit is poor (high MSE values), there are again two situations.  
These situations are demonstrated in Figure 6-5.  On the top, the pair of customers are connected to 
different phases.  On the bottom, the pair of customers are serviced by different transformers that 
also serve other customers.  The regression fit is poor in this case due to the influence of the other 
customers on those transformers not considered in the physics-based regression model used.  Both 
these cases can be identified by the poor fit, and they are eliminated from consideration as possible 
pairs of customers on the same transformer.  Thus, any pair of customers with a high MSE value is 
not considered a candidate to be labeled on the same transformer.  The MSE threshold to 

differentiate between the cases shown in Figure 6-4 and Figure 6-5 is defined as 𝜇.   

In Step 5 from Figure 6-2, each of the customers on the flagged transformers is considered 

for re-assignment to a new transformer grouping.  If a customer has a low correlation coefficient (𝛽) 
relative to other customers in its original transformer grouping, then it is re-assigned.  Otherwise, the 
original transformer label is retained.  If it is to be re-assigned, then the remaining pairwise reactance 

distances (pairs with MSE values lower than the threshold 𝜇) are examined.  The customer is then 
assigned a new transformer grouping with customers having reactance distances less than the 0.046 

Ohms threshold, 𝛾.  If no such customers exist, then that transformer is considered to have only 
that one customer.   
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Figure 6-5. The regression fit is poor in two cases.  On top, the regression is between two 

customers connected to different phases, and on the bottom, the regression is between two 
customers served by different transformers that also serve other customers. 

Algorithm 6-1. Algorithm description where β is the correlation coefficient (CC) threshold, μ is the 
MSE threshold, and γ is the reactance distance threshold 

Stage 1: 

For each original transformer group 

   If any CC < 𝛽 

      Flag transformer 

   Else 

      Transformer group is considered good and no action is taken 

Sort flagged transformer list by lowest CC found 

 

Stage 2: 

For each flagged transformer       

   For each customer labeled on the flagged transformer 

      If the majority of CC with other customers in the transformer group < 𝛽 

         Calculate pairwise regression with all other customers 

         If any (MSE < 𝜇) and ((𝑥1 + 𝑥2) < 𝛾) 

            Assign new transformer grouping to that set of customers 

         Else 

            Customer is on a transformer by itself 

      Else  
         Customer retains original transformer label    

 

6.2.2. Setting the MSE Threshold Parameter 

A key parameter in this methodology is the MSE value which is considered ‘high’ (𝜇) to 
discard customers in the situations described in Figure 6-5.  The MSE value produced by the 
pairwise linear regression is primarily determined by if the physical connection is correct for the 
regression fit between the two customers.  However, the underlying characteristics of the dataset 
also contribute to the range of the MSE values.  Testing has shown that measurement noise will 
shift the MSE values to be higher or lower overall, depending on the level of measurement noise.  
We propose to use the minimum MSE value to set the MSE threshold parameter correctly.  The 
minimum MSE value is the lowest across all pairs of all customers, meaning the MSE for the “best 
fit” pair.  This gives an indication of where the acceptable range of values occurs for a particular 
dataset.  Figure 6-6 demonstrates this fact for three different levels of injected measurement noise.  
For this type of testing, measurement noise up to a +/- maximum value was injected uniformly at 
random to each measurement in the dataset.  The three cases shown in Figure 6-6 are as follows: 
The clean dataset, no measurement noise injected, is shown in blue.  The medium noise injection, 
shown in green, is 0.1% maximum of the nominal voltage value, which is 240V in this case.  
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Maximum noise values of 100W and 100Var were chosen for active and reactive power respectively.  
The largest noise injection, shown in purple, is 0.2% maximum for the voltage, 200W for real power 
and 200VAR for reactive power.  The American National Standards Institute (ANSI) defines meter 
accuracy classes of 0.1, 0.2, and 0.5 [50].  Those meter standards were the drivers behind choosing 
those particular values for the noise injection. The stars mark the minimum pairwise MSE value for 
the dataset, and the lines indicate the acceptable range for the MSE value determined to be the 
“high” threshold.  This means that for a given case, any MSE value on the line will correctly discard 
the pairwise scenarios shown in Figure 6-5.  

 
Figure 6-6. Example of the acceptable values for the MSE threshold (𝝁) based on three different 

injected measurement noise scenarios.  Stars mark the minimum MSE value for each case and the 
dashed lines between the vertical markers mark the acceptable range to filter customer pairs 

based on the MSE threshold. 

Figure 6-6 shows the shift to the right in MSE values as the measurement noise in the 
dataset increases, meaning that the acceptable MSE values are higher if the overall noise in the 

dataset is increased.  This demonstrates that there is not a universal value of 𝜇 that could be found.  

Thus, a method of setting the value of 𝜇 based on the characteristics of the dataset must be used.  
Notice that in each case, the minimum MSE value (star marker) is just before the acceptable range.  
Even in the 0% and 0.1% there is slight separation between the minimum MSE value and the 
acceptable range.  Also notice that the acceptable range is relatively large in each case, approximately 
0.1.  We propose using the knowledge of the minimum MSE as a starting place to set an MSE 
threshold within the acceptable range.  For example, by taking the minimum MSE value and adding 
a small factor to it.  Thus the “good” and “poor” regression fits described in Figure 6-4 and Figure 
6-5 are defined in this manner.  In the results shown in the following section, we used 0.01 as the 

additive factor to determine 𝜇.  This type of heuristic does need further verification using utility 
datasets.  However, it is demonstrated to work well in the simulations presented in this work.   

This methodology results in a set of transformer labels that contain both original 
transformer labels and new customer groupings.  Due to the large number of possible 
configurations, it is not possible in most cases to map the new transformer groupings to original 
transformer designations.  One example of this is the case where four customers were originally 
labeled on one transformer and the results show that two customers are serviced by one transformer 
and two customers by another transformer.  In this case, there is no way to determine which pair 
should retain the original label using the given information.  There are many such other examples.  
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However, the groupings of customers produced by the proposed methodology will match the 
customer groups served by a particular transformer.  Therefore, the new transformer groupings 
must be assigned physical transformer names as a post-processing step.   

6.3. Synthetic Results 

The methodology proposed above was validated on the synthetic dataset described in 
Section 3.1.1.  Using this type of data ensures that a detailed analysis of the results using ground 
truth transformer labeling can be accomplished.   

To simulate customers with incorrect transformer labels in the results below, a specified 
percentage of customers had their transformer labels altered to an incorrect label.  The incorrect 
labeling and the choice of customers to mislabel were done uniformly at random.  Measurement 
noise and missing data issues were also injected into the dataset for a subset of the results shown 
below.  The measurement noise and missing data injections were done uniformly at random.  

The primary metric reported in this section is “transformer accuracy.”  In the context of this 
paper, transformer accuracy is defined as the percentage of transformers that have the correct group 
of customers assigned to them (i.e., the transformer groupings) divided by the total number of 
transformers in the system.  This metric requires that, for a particular transformer grouping to be 
considered accurate, the group must contain all customers actually serviced by that transformer and 
also not contain any customers not serviced by that transformer.   

The remainder of the results section is divided into two subsections.  In the first subsection, 
results for the error flagging stage are discussed.  Then in the second section, results for the end-to-
end method are discussed.   

6.3.1. Transformer Error Flagging 

A key question for the error flagging stage of the method is the issue of false-positive results.  
One main goal of algorithms using AMI data for algorithmic validation of distribution system 
models is to ensure that there are few false-positive results, as false positive results would be 
introducing novel errors into the model.  It is difficult to determine a broad heuristic for the 
correlation coefficient threshold in the error flagging step.  Our testing has shown that threshold is 
highly dependent on the measurement noise in the dataset and that will vary according to particular 
feeders, similar to the way that the MSE threshold was affected by the measurement noise in Figure 
6-6.  However, by ranking the flagged results according to the correlation coefficient, utilities can be 
assured that they are working on the transformers that are the likeliest to contain errors.  Figure 6-7 
shows the number of transformers flagged for two different simulations, one a baseline without any 
measurement noise (blue) and one with 0.1% maximum measurement noise (green).  In both cases, 
the same 10% of customers were injected with incorrect transformer labels.  The red, dashed line 
represents the true number of transformers that contain label errors and should be flagged.  Marked 
with arrows is the range of thresholds for which all transformers with errors were flagged and no 
transformers were flagged incorrectly.  In the noise case, the threshold range is shifted to the left and 
is from 0.51 to 0.56 and for the baseline case it is 0.67 to 0.83.  Those ranges will be different 
depending on the noise level as well as which customers are labeled incorrectly.  This figure omits 
customers that were labeled as being the only customer serviced by a transformer because the 
flagging methodology will not consider those customers.   
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Figure 6-7. Ranked flagged transformers showing true positives (TP), false positives (FP), and 
correlation coefficients (CC) β for two different noise injections (green line and blue line).  The 

dashed red line represents the actual number of transformers that should be flagged. 

6.3.2. Full Methodology Results 

The first set of simulations tested the algorithm's robustness by adding measurement noise 
and missing data to the dataset.  Table 6-2 details these results.  In both cases, 10% of customers 

were randomly given incorrect transformer labels.  The correlation coefficient threshold, 𝛽, used 
was 0.7.  In practice, the ranking methodology should be applied here. Which customers are 
mislabeled has an effect on the algorithm’s accuracy.  To better quantify the results, a 500 run Monte 
Carlo simulation was conducted, and the results were averaged.  In the first simulation, measurement 
noise was added uniformly at random in the range +/- 0.1% for voltage, +/- 100W for active 
power, and +/- 100VAr for reactive power.  In the second simulation, 0.1% missing data was added 
in addition to the measurement noise.  The injected noise and missing data were kept consistent for 
each run.  The customers with incorrect transformer labels were chosen randomly for each Monte 
Carlo simulation to isolate the effects of which customers were mislabeled.  The noise case had an 
average accuracy of 99.5%.  The second case with both noise and missing data shows a slight 
decrease in transformer accuracy over the noise-only case, about 2 additional incorrect transformers 
on average.   

Table 6-2. Monte Carlo simulation testing different mislabeled customers in each run with a fixed 
measurement noise and missing data injection over 500 runs 

Mislabeled Customers 

Changing with each Monte 
Carlo (500 runs) 

Average 
Transformer 
Accuracy 

Average 
Incorrect 
Transformers 

Noise Added 99.5% 2.95 

Noise & 0.1% Missing Data 

Added 
99.1% 5.2 

 

Next, a smaller Monte Carlo simulation composed of 10 runs was conducted where the 
measurement noise, missing data, and mislabeled customers were re-selected randomly for each run.  
This simulation tests the random effects induced by all three sources of randomness, and the results 
are shown in Table 6-3.  The reason for decreasing the number of Monte Carlo simulations for this 
test case is due to the increased processing time necessary to calculate the pairwise regression for 
each new injection of noise and missing data.  That resulted in an average accuracy of 99.4%.  These 
simulations demonstrate the algorithm robustness against measurement noise and missing data. 
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Table 6-3. Monte Carlo simulation testing injected measurement noise, missing data, and 
mislabeled customers in each of the 10 runs 

Noise/Missing 
Data/Mislabeled Customers 

Changing with each Monte 
Carlo (10 runs) 

Average 
Transformer 
Accuracy 

Average 
Incorrect 
Transformers 

Noise & 0.1% Missing Data 

Added 
99.4% 3.7 

 

The next set of simulations demonstrates the accuracy of the algorithm as the percentage of 
mislabeled customers increases.  This is shown in Figure 6-8.  Even with very high levels of 
mislabeled customers, the accuracy remains high.  At 50% of customers mislabeled, the average 
transformer accuracy is >97.5%.  Recall that the transformer accuracy is the percentage of 
transformer groupings that are correct.  The injection of incorrect labels is done as a percentage of 
customers rather than transformers, thus the reason the percentage of mislabeled customers on the 
x-axis does not precisely match the transformer accuracy shown by the red line. 

 
Figure 6-8. Transformer accuracy with different percentage of customers with incorrect 

transformer labels.  The predicted transformer groupings are shown in blue and the original 
transformer groupings with injected errors are shown in red. 

Note that as more customers are mislabeled, the algorithm results in larger numbers of 
transformer groupings that must be mapped back to a particular physical transformer.  An 
interesting result is that there is little dependence on the number of incorrectly labeled customers on 
algorithm accuracy.  The small number of incorrect customers are mainly due to the influence of 
customers labeled as being the only customer served by a transformer.  Recall that the error flagging 
portion of the algorithm, Steps 1-3 in Figure 6-2, is unable to flag customers who are labeled as 
being the only customer serviced by a transformer.  That method relies on the ability to compare 
correlation coefficients between customers labeled on the same transformers; thus, customers 
labeled by themselves are necessarily omitted.  That type of error is passed through the algorithm 
without changes.  Additionally, the majority of the errors shown in these results come from 
customers who were labeled as the only customer serviced by a transformer in the original labeling.  
As the overall percentage of errors increases, the number of that type of customer also increases.  If 
a customer is erroneously labeled on a transformer with other customers but is in fact the only 
customer on a transformer, stage 2 of the algorithm can correct that error.  It might appear that 
stage 2 of the algorithm could correctly account for customers served by a single customer 
transformer without omitting them, however in practice those customers have proven more difficult 
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to deal with.  Thus, in this work, they are omitted by the nature of the way the error flagging step 
works. 

6.3.3. Comparison to Other Methods 

These results were compared with two other algorithms for the same task.  The linear 
regression methodology from [38] was implemented, as well as the correlation coefficient 
methodology from [32], [38].   

The linear regression methodology from [38] is as follows.  A pairwise OLS regression is 
calculated between all customers, similar to the regression described in Section 5.1.1.  The pair of 

customers with the highest coefficient of determination (𝑅2) are considered to be serviced by the 
same transformer, and they are combined into a virtual metering point.  Then the pairwise 
regression is done again between the new virtual metering point and all other customers.  This 

process is repeated until all remaining 𝑅2 values are below some threshold.  Even with omniscient 
knowledge of the mislabeled customers, we were unable to find a threshold that produced good 
results on this dataset.  For the noise case shown in  

Table 6-2, this method had extremely low accuracy due to the virtual metering points not 
performing well in the regression.  In many cases, the virtual metering points caused the predicted 
transformer labeling to become one large grouping. 

The correlation coefficient method from [32] is similar to a second method proposed in [38].  
In this method, the pairwise correlation coefficients are calculated as discussed in Section 6.2.1.  The 
“window” method is used here as well to provide a better comparison with our proposed method, 
although that was not used in [32], [38].  The authors in [32] also add a distance-based filtering 
aspect to the method; that is also omitted here as that requires additional topology information that 
the proposed method assumes is unavailable or untrustworthy.  Once the correlation coefficients 
have been calculated, any pairs of customers who have a higher correlation coefficient than a chosen 
threshold are considered to be on the same transformer.  Again, choosing that threshold is quite 
difficult, and it is unclear how that threshold could be determined in practice.  Using the omniscient 
knowledge of the ground-truth, we chose the best threshold to give a comparison to our proposed 
method.  In the noise-added test case, the best results for the correlation coefficient only method 
were 97.6% transformer accuracy (14 incorrect transformers), compared to 99.5% transformer 
accuracy with the proposed method. 

6.4. Utility Results for Utility #2 

The utility dataset used in this work is described in Section 3.2.2.  There are not ground truth 
labels for this dataset, thus the following example is shown as a proof-of-concept that the proposed 
method works given real data.  The reactive power measurements for this dataset were determined 
to be unreliable, thus the results shown below rely on stage 1 of the methodology shown in Figure 
6-2 and analysis of Google Earth imagery.  In the absence of ground truth labels, publicly available 
Google Street View images can be used to validate certain algorithm predictions.   

Figure 6-9 shows satellite imagery of two transformers and four customers, and the original 
model shows that all four customers are connected to the southern (bottom) transformer.  However, 
this transformer was flagged by stage 1 of the algorithm, and inspection of Google Street View 
imagery confirms the configuration in Figure 6-10.  Two customers are connected to the south 
transformer and two are connected to the north transformer.  Table 6-4 shows the pairwise 
correlation coefficients for this set of four customers, and the two groupings of two can be clearly 
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seen.  Note that the correlation between Customer 1 and Customer 2 is only 0.77, demonstrating 
that real data can often contain factors that lower the correlation coefficients even between 
customers on the same transformer.  The algorithm also correctly identified several other known 
transformer labeling issues on this feeder that had been previously identified in other work.      

 
Figure 6-9. Original utility labeling for transformers on Utility #2, Feeder #3 

 
Figure 6-10. Actual labeling verified using Google Earth imagery for transformers on Utility #2, 

Feeder #3 

Table 6-4. Correlation coefficients for the customers shown in Figure 6-9 and Figure 6-10 
 

Cust #1 Cust #2 Cust #3 Cust #4 

Cust #1 1 0.777 0.434 0.575 

Cust #2 0.777 1 0.344 0.446 

Cust #3 0.434 0.344 1 0.958 

Cust #4 0.575 0.446 0.957 1 

 

6.5. Meter-to-transformer Pairing Summary 

This work developed a two-stage algorithm based on correlation coefficient analysis and 
physics-based linear regression for the task of grouping customers by service transformer, and it 
leverages the increasing proliferation of AMI data.  The two-stage method achieves >99% accuracy 
in the presence of measurement noise and missing data on a feeder with 1379 residential customers 
and 10% of those customers having incorrect transformer labels.  The method also provides a clear 
improvement upon two other similar methods in literature.  This work produced 2 conference paper 
publications [64], [65].   
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7. MEDIUM-VOLTAGE RECONFIGURATION DETECTION 

7.1. Task Overview 

Power Distribution Systems typically have a radial topology, but very often they are 
equipped with switching devices such as tie switches, sectionalizers, IntelliRupters, and circuit 
breakers that allow the system topology to be reconfigured or sections of the system to be 
connected to nearby feeders.  For example, in Figure 7-1, we would like to know which direction the 
current is flowing on this street and what the states of the switches (triangles) are.  This capability 
allows improvements in reliability and continuity of service through fault isolation and load transfer, 
in addition to allowing optimization of system losses, to name a few advantages. Knowing system 
topology is important for power systems operations and planning. For instance, errors in the 
knowledge of distribution system topology might lead to incorrect estimates of solar PV hosting 
capacity. 

Due to frequent system reconfigurations and limited telemetering, the status of those 
switching devices may be unknown or uncertain. Furthermore, maintenance and outages might 
require operating a switch, and it is possible that reporting this action might suffer a delay or not 
happen at all. Errors in communication or telemetering temporary unavailability can lead to 
unaccounted system reconfiguration. In this chapter, we have proposed methods that leverage field 
data (e.g. SCADA, AMI) for detecting distribution system reconfiguration and identifying the new 
system topology by identifying the status of the switching devices. 

 

Figure 7-1. Topology Detection illustration 

7.2. Medium-Voltage Topology Reconfiguration Detection and Identification 

As a result of a collaboration with Texas Tech University, we have developed a method for 
Distribution System Topology Identification (DSTI) using time-series data from voltage 
measurements. The goal of this method is to determine which distribution grid switches are closed 
and which ones are open in real-time. We have compared two machine learning approaches to 
predict the topology of the distribution grid using two classifiers. The first is a one-versus-all Linear 
Discriminant Analysis (LDA) classifier and the second is a Regularized Diagonal Quadratic 
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Discriminant Analysis (RDQDA) classifier. Based on knowledge of the number of radial topology 

that a given system has and labeled voltage magnitude measurements (𝐕𝑡) from known time-stamps 

(𝑡), the classifier is trained with trend vectors (𝛅𝑡), which are features extracted from the voltage 
measurement data streams that represent the change in voltage that occurred in between voltage 

measurement scans, so we have 𝛅𝑡 = 𝐕𝑡 − 𝐕𝑡−1.  

It is important to highlight that this method relies on some simplifying assumptions. First, 
we consider that the voltage time-series measurements are synchronized. We expect that small 
synchronization errors relative to the 15-minute sampling rate would not greatly harm the 
performance of the classifier as long as all voltage measurements are taken either before or after the 
topology transition occurred. We also assume that the topology of the system is always radial, and all 
customers are being served. Therefore, the scenario of interest in this paper is when a distribution 
grid reconfiguration has been successfully completed. We consider that if a power outage has been 
captured by a scan of voltage measurements (e.g., all meters downstream of a switch are not 
responding) then it becomes a power outage location problem, which is outside the scope. 

To validate the performance of the DSTI algorithms, multiple simulations in OpenDSS 
using the IEEE 123-bus test feeder were run using the proposed approach. This system has 5 radial 
topologies, therefore there exist 20 possible topology transitions (see Figure 7-2). Additionally, there 
are 5 classes that represent unchanged topology between measurement scans. In total there are 25 
possible switch transitions that represent the classes for the topology change classification problem. 
We consider that the classifiers are trained and run with data streams from 91 voltage measurement 
devices co-located with system loads. 

 
Figure 7-2. IEEE 123-bus test feeder showing its eight switches. 

The sequential time simulation is yearlong to show the DSTI approaches robustness not 
only to load variations throughout a day but also seasonal load variations. For each time series, a 
random switching event is programmed to occur, and the voltage measurements collected are used 
to either train the algorithm or predict the current topology of the distribution system. The training 
of the one-versus-all LDA classifier was constructed using 3 months (January through March, 8,639 
trend vectors) of voltage magnitude measurements collected at 15-minute intervals from the 91 
nodes of the test system that contained a load.  During the 3-month training, a total of 600 switching 
events occur randomly spanning the entire 25 possible switching events. The remaining 9 months of 
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data were used for validation (26,399 trend vectors) during which 150 switching events occur 
randomly also spanning the 25 possible switching events.  

The amount of noise added to the voltage measurements was determined based on the 
meter class. Two different classes of electric meters were established: no noise and class 3, which 
have an error of 0% and 1% of true value, respectively. To model this random error as a Gaussian, it 
was assumed that the standard deviation of the noise corresponds to a meter class of 3, so 99% of 
random noise realizations fall within the tolerance of the meters. 

Three yearly trials were performed to average the effects of random noise. For each trial, 150 
switch changes are randomly made throughout the 26,399 trend vectors over the 9 months 
validation period. In the case without noise, the classifier was able to correctly predict the topology 
transition for 100% of the time, which shows its robustness to load variations. When Gaussian noise 
is added, the classifiers can correctly predict the class of the topology transition more than 98% of 
the time in all three trials. The results of the classifiers with noisy data is summarized in Table 7-1. 

Table 7-1. LDA and RDQDA simulation results with noise  

Trial # 

LDA – Noise modeled as error Class 3 Meter error RDQDA – Noise modeled as error Class 3 Meter error 

Correct Incorrect % Correct False Positive Correct Incorrect % Correct False Positive 

1 148 1 98.7 2 147 3 98.0 10 

2 147 2 98.0 1 145 5 96.7 5 

3 147 1 98.0 4 148 2 98.7 8 

 
Another test was run to test the robustness of the classifiers to number of measurements. In 

this second test the number of meters was reduced from 91 to 30 and trained and tested following 
the same approach as before. In this case, the classification accuracy reduced to a minimum of 94%, 
as shown in Table 7-2. This DSTI method was summarized in the conference paper [66]. 

Table 7-2. LDA and RDQDA simulation results no noise and 30 voltage measurements  

Trial # 

LDA – No noise and 30 voltage measurements RDQDA – No noise and 30 voltage measurements 

Correct Incorrect % Correct False Positive Correct Incorrect % Correct False Positive 

1 144 6 96.0 8 147 3 98.0 10 

2 143 7 95.3 15 145 5 96.7 5 

3 141 9 94.0 9 148 2 98.7 8 

 



 

109 

8. REGULATOR AND CAPACITOR STATES AND SETTINGS 

8.1. Task Overview 

Voltage regulators and switching capacitors are widely used by utilities to regulate conditions 
on the grid. While the states and settings of these devices can often be queried and modified 
remotely, they are rarely recorded and stored over time. However, this information is valuable for a 
variety of grid modeling and analysis tasks (e.g., identifying misoperations or device failures, tracking 
total operations for maintenance concerns, calibrating models, etc.).  

In this task, two different approaches were taken to recover the historical states and settings 
of these regulating devices. The first approach uses state estimation algorithms to determine the 
regulator and capacitor states; this approach was tested on two different open-source test circuits 
and different algorithms were tested based on the type and resolution of the available data. The 
second approach applies a variety of data-driven methods directly to the available measurements, 
leveraging a variety of techniques like optimization and machine learning; the effectiveness of this 
approach was quantified in several ways, including its utilization in a reactive power allocation 
algorithm. 

Additionally, in this task, data-driven methods were developed to estimate the states and 
settings of voltage regulators and switching capacitors. Initial approaches were developed and 
applied within a reactive power allocation algorithm (Section 8.3.3) to improve customer reactive 
power modeling. The methods were then generalized for other applications, as detailed in Section 
8.3.1 and Section 8.3.2.  

8.2. Using State Estimation to Track Capacitor and Voltage Regulator States  

One of the solutions for parameter error detection proposed in this report is the utilization 
of the generalized DSSE introduced in 4.4. This method includes variables such as capacitor bank 
statuses and voltage regulator tap positions as state variables in addition to traditional nodal voltage 

phasors. Bad data detection features 𝜒2 for error detection and the largest normalized error method 
for error identification. The states are considered static measurements that are updated once an error 
is detected and the bad data processing method identifies that one of the parameters might be 
incorrect. The DSSE then investigates if a transition has occurred and updates the discrete variable if 
a new suitable discrete value is found. 

With this setup, it is possible to leverage OpenDSS Quasi-Static Time-Series (QSTS) 
capabilities and simulate a series of time-series data obtained from a distribution system that has 
voltage controls and time-varying loads. We have assumed that the error obtained by aggregating 
AMI real and reactive power flow measurements in the secondary sides of distribution system 
transformers is small. Therefore, it is possible to infer the voltages in the primary sides of those 
transformers given voltage magnitude measurements on their secondary windings from AMI data.  

This approach was tested using a modified version of the IEEE 13-bus test system with load 
shapes and capacitor bank regulators, 110 measurements, and 74 state variables, which gives a global 
redundancy index of 1.487. Out of those 110 measurements, only 75 come from meters (20 real 
power injections, 20 reactive power injections, and 35 voltage magnitudes). The remaining are 
pseudo-measurements (15 real power injections, 15 reactive power injections, 2 capacitor bank 
statuses, and 3 transformer tap positions). No line power flows were considered, even though those 
might be available in real distribution systems from reclosers, sectionalizers, and other devices. 
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8.2.1. DSSE with capacitor and transformer tap correction 

Detecting a change in transformer taps is very challenging when voltage measurements from 
AMI are available. Tap changers typically operate by increasing or decreasing one tap position, thus 
changing their transformation ratio by 0.625%. This change is close to the precision class of smart 
meters. Therefore, using any static state estimation method in this scenario will hardly ever detect a 
single tap change with confidence. 

To test if this method would work with higher precision measurements, we have considered 
that the precision of voltage magnitude measurements is equal to 0.1%, while 1% was considered for 
other measurements (capacitor status, tap positions, and real and reactive power injections). These 
values were used both to express the size of Gaussian noise added to each measurement and to 
determine the weights of the WLS. By doing so, we have run a week-worth of state estimations 
(673) with new measurements every 15 minutes. We have observed that the state estimator was able 
to track tap position and capacitor bank statuses very accurately. Among the 8 tap changer 
transitions recorded, the DSSE was able to detect 7 of them in the first time step after they occurred 
and the remaining tap transition was detected and updated with a delay of 1 time step. Capacitor 
bank statuses changed 19 times in the simulation, and in all cases, the DSSE was able to capture the 
transitions when they happened. There was only one false positive for capacitor bank transition, 
which was then corrected in the following time step.  See Figure 8-1 and Figure 8-2 for tap changes 
and capacitor banks switches respectively.   

 
Figure 8-1. Tap changer tracking over 7 days 

 
Figure 8-2. Capacitor bank status tracking over 7 days 

Another criterion for determining if the DSSE has been successful was the error in voltage 
phasor norm when compared to OpenDSS’s result. A successful state estimation is considered if the 
norm of the error of voltage phasors is less than 0.1%. The average L-2 norm of the voltage error 
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was 0.0289%, the maximum error was 0.28% and the DSSE obtained precise results in 98.663% of 
the cases. The DSSE obtained a solution, i.e. converged, in 99.85% of cases. 

Tests with AMI voltage magnitude errors of up to 0.5%show that the DSSE is still capable 
of detecting the correct tap positions after a few time-steps, but not immediately following the 
transition. 

8.2.2. Validation in Larger Test Systems 

The developed DSSE was applied for large systems such as EPRI’s circuit 5 (3,440 nodes). 
The software can run in a few seconds with voltage estimation errors in the order of 0.1%, see 
Figure 8-3. 

To approximate our simulation scenario from a real-life case, we have considered that the 
DSSE has very limited access to measurement data. In this initial analysis, we consider that only (1) 
substation voltage magnitude and power measurements are available, and (2) AMI voltage 
magnitude and power measurements are available for all loads. 

 
Figure 8-3. Reduction of voltage magnitude error with DSSE 

After system reduction, we are left with 5,892 state variables (5,885 real and imaginary parts 
of complex nodal voltages, 4 capacitor statuses, 3 tap positions8) and 7,275 measurements (0 power 
flows, 1,385 real power injections, 1,558 pseudo-measurements9, 1,385 reactive power injections, 
1,385 voltage magnitudes, 4 capacitor statuses, 3 tap positions), which gives a global redundancy 
index (i.e., the ratio between the number of measurements and state variables) of 1.23. This means 
that there are 1,558 nodes that are not directly measured but whose voltage magnitude and angle can be 
estimated with the DSSE. 

To assess the impact of different meter classes on the accuracy of DSSE results, we have 
performed a parametric study in which we have tested meter classes from 0.1 to 2. Because the tests 

 
8 We have added 3 single-phase voltage regulators in the substation and 4 capacitor controllers to our OpenDSS model 
of EPRI’s Circuit 5 feeder so we could test our DSSE with parameter test. 
9 These are simply zero-injection real and reactive power equations added based on the knowledge we have from the 
system. 
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are very sensitive to random noise realizations, we have repeated the test 5 times for each case. The 
results are shown in Figure 8-4. 

 
Figure 8-4. Maximum complex voltage estimation error obtained with DSSE for different meter 

classes 

We can see that for lower accuracy meters (class 1 and 2), DSSE is capable of estimating 
very accurately the complex voltages for all 2,943 nodes of the reduced system, even though only 
1,385 of them are covered by a meter. For higher accuracy meters (classes 0.1 and 0.2) we can see 
that the lack of redundancy of DSSE starts to become a limiting factor for improving complex 
voltage estimation accuracy. 

To assess the impact of increased redundancy for the state estimator, we have run 
experiments where we would add more measurements in the distribution grid. Those were 
performed by assuming it would be possible to obtain information from automation equipment 
installed in the grid such as relays and IntelliRupters. Those would be capable of measuring voltage 
magnitudes and line real and reactive power flows where they were installed (3 to 9 additional 
measurements). In this experiment, we have tested what would be the effect of adding between 1 
(GRL of 1.23) and 2,000 (GRL of 1.9) of those meters. All meters were assumed to be Class 0.5. 
The maximum complex voltage estimation error decreased from an average of 0.18% (only 
substation and AMI meters) to 0.1% (case with 2,000 sensors) while the RMSE of complex voltage 
error was reduced from 0.06% to 0.017%. Therefore, we can conclude that there is little advantage 
of adding many sensors in terms of improving voltage estimation accuracy. The effects of 
redundancy in bad data processing are likely to be significant but they have not yet been studied. 

8.2.3. Leveraging Micro-PMUs for Capacitor and Tap Changer Status Detection 

This project has also partially funded research on the utilization of micro-PMUs to detect 
changes in LTC positions and capacitor bank switching [67]. To simplify the problem of 
simultaneous real-time monitoring of measurements and parameters we have proposed a framework 
that employs high-granularity micro-PMU measurements to obtain temporal decoupling of error 
analysis of measurements and parameters. 

When a recent measurement scan from SCADA and smart meters is available, gross error 
analysis of measurements is performed as a post-processing step of nonlinear DSSE using non-
linear least square estimator (NLSE). In between scans of SCADA and AMI measurements, which 
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are considered to take 15 minutes, a linear state estimator (LSE) using micro-PMU measurements 
and linearized SCADA and AMI measurements is used to detect parameter data changes caused by 
the operation of voltage control devices. The micro-PMU data was assumed to be obtained 120 
times per second, but the data was down sampled to run the least square estimator (LSE) every 100 
ms. We have implemented this simulation in the IEEE 13-bus test system to validate the efficacy of 
this method. We have assumed that the DSSE does not have access to measurements of LTC 
position nor capacitor bank statuses. In addition to that, the distribution system has two micro-
PMUs: one is located in the substation and the other is in the middle of the main feeder. These 
micro-PMUs can measure both nodal voltages and power flows. 

For every execution of the LSE, the variance of the unsynchronized measurements is 
updated according to the uncertainty introduced by load dynamics into the micro-PMU data, which 
are modeled as an Ornstein–Uhlenbeck (OU) random process, as shown in Figure 8-5.  

 

 
Figure 8-5.Time-series of a variable driven by an OU process versus its measurement at t=0. 

Considering this model, we can see that SCADA and AMI data are unlikely to capture 
variations introduced by loads and the measurements become obsolete as time progresses. The 
proposed framework includes an uncertainty accumulation procedure that models the expected 
decrease in measurement trustworthiness as time passes and measurements become more and more 
outdated. This is implemented by increasing the variance of each SCADA/AMI measurement over 
time as a function of the estimated load variation parameters modeled as the OU process. The 
update of variance of unsynchronized measurements can avoid the wrong detection of errors and 
can model the trustworthiness of outdated or obsolete data. Test results highlight that the LSE and 
NLSE processes successfully work together to analyze bad data for both measurements and 
parameters. 

With this load model and temporal uncertainty propagation, we can obtain a reliable model 
for the detection of parameter changes, but it is still necessary to obtain a method for parameter 
change identification. When an error is detected by the chi-squared test, it is assumed that any gross 
errors in measurements were already adequately processed by the NLSE, therefore, the causes of 
parameter errors are assumed to be capacitor banks and LTCs. Because of the discrete nature of 
LTC turns ratio and capacitor bank statuses, a hypothesis test-based approach was used to verify if 
changes in parameters provide a better fit to the data. If the reactive power flowing into the feeder 
has changed in a value that is close to the value of the capacitor bank, then the capacitor bank 
operation is likely to have caused the change in voltage. This leads to the capacitor bank parameter 
change hypothesis. Otherwise, if no large reactive power changes are measured by the micro-PMU 
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in the substation, the micro-PMU downstream of the LTC is used to detect if the voltage has 
increased or decreased, which will create the hypothesis for tap change. A likelihood ratio test is 
then used to verify the correctness of the identification of the parameter error. To obtain the 
likelihood of the alternative hypothesis, i.e., that one parameter has changed, a new state estimation 
is performed with the alternative parameters of the system and then, with the result of this new 
DSSE, the likelihood function is calculated. 

To test the framework’s effectiveness, a sequence of volt/VAr control devices operations 
occurs over 15 minutes (900 seconds), as shown in the bottom plot of Figure 8-6. In the top plot of 
the same figure, we can see the chi-squared score of the DSSE with parameter correction (blue line) 
and without it (orange line). In all cases, when there is a change in the parameters of the system, the 

value of 𝜒2 becomes significantly larger than the detection threshold. When the parameter 
correction is performed, the goodness of fit scores is always smaller than the detection threshold. 

 
Figure 8-6. Time-series of DSSE during LSE phase tracking capacitor and LTC changes. 

This method can allow the DSSE method to decouple the bad data processing of errors in 
measurements and parameters through the use of separate NLSE and LSE. With these innovations 
working together, the proposed DSSE can leverage micro-PMUs to enhance both measurement and 
parameter error detection on distribution grids. 

8.2.4. Conclusion and Lessons Learned 

The DSSE-based methods proposed in this project have shown potential for application in 
the detection and identification of errors in parameters of voltage control devices in distribution 
systems. The methods were validated using data from simulations in OpenDSS and their focus was 
to track changes of the tap position of voltage regulators as well as determine if a given capacitor 
bank was switched on or off at a given moment. The tests considered imperfect conditions like 
noise in measurements, errors in phase connection of transformers (see Section 4.4), and load 
variations. Numerical challenges were constantly found during the development of the state 
estimation algorithm due to details in some transformer models within OpenDSS and the poor 
matrix condition of the Jacobian and Gain matrices used in the solution of the WLS-SE. These 
numerical issues were rooted in system admittances with very distinct magnitudes that came from 
the distribution system models, which led to floating-point calculation errors. These were solved 
totally or partially with the use of system reduction algorithms [68] and the use of the matrix algebra 
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algorithms better suited for the solution of sparse and ill-conditioned linear algebra problems. The 
solution of every problem was hard to diagnose and took a very long time to debug. 

At the same time, many other potential sources of error were not considered, including 
issues in synchronization of smart meter and SCADA data, other sources of topology and parameter 
errors, errors in transformer models and parameters, delays in telemetering system, and very low 
measurement redundancy. When using field data made available to the project, the level of 
redundancy was found to be extremely low, barely allowing the system to be observable. 
Additionally, the combination of the aforementioned challenges with unknown system parameters in 
the secondary of some unusual transformer connections, lack of phase measurements in some three-
phase loads, errors in the system model parameter database, lack of measurement availability and 
potential measurement errors, and potential parameter errors (e.g. transformer off-load tap changer 
positions) have resulted in an unsuccessful application of DSSE to the real data. This result is not 
surprising as the distribution system was not designed to run a DSSE and some potentially incorrect 
system models could not be re-verified. These factors highlight the importance of measurement 
system design and measurement redundancy in the success of the application of DSSE. 

8.3. Using Data-Driven Methods to Track Capacitor and Voltage Regulator 
States 

Estimating the historical tap position states has many practical applications, such as in 
distribution state estimation, identifying interactions with other grid-connected devices [69], [70] or 
misoperations of controllable devices, or tracking total operations that inform maintenance 
decisions [71].  Existing approaches include using downstream measurements to estimate tap 
positions of open-delta regulators [72] or using a voltage sensitivity-based approach to estimate 
excessive tap changes [71], but less work has been presented on generalized methods using low-
resolution measurements, which we address in Section 8.3.1.  

The estimation of historical switching capacitor states has practical applications similar to 
those of the regulator tap position estimation (e.g., distribution state estimation, identifying 
unintended interactions or misoperations of controllable devices, or tracking total operations that 
inform maintenance decisions). Existing approaches for characterizing capacitor banks from 
measurement data include applying a backward Kalman filter to substation measurements [73],  
identifying their location from power quality data [74], and using the slopes of current and voltage 
transient waveforms around the switching events [75], but less work has been published on methods 
to determine their states from low-resolution measurements. This knowledge gap is addressed by the 
proposed methods in Section 8.3.2.  

8.3.1. Regulator Tap Position Estimation 

 To estimate the tap position of a voltage regulator directly using data-driven 
methods, measurements from the nearest upstream and downstream devices are required to assess 
the voltage difference across the regulator. For example, in the dataset from Utility #1 for Feeder 
#1, IntelliRupter measurements were available close to each side of the line voltage regulator. One 
of the interesting challenges using these measurements was that there were several measurement 
types available for each IntelliRupter, including instantaneous values and 15-minute averaged values. 
The plots below show the difference between the voltage measurements of the downstream and 
upstream IntelliRupters for each of these two measurement types. 
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Figure 8-7. Voltage difference across a voltage regulator using averaged (left) and instantaneous 

(right) IntelliRupter measurements 

In both plots, we can see that 1) the various tap positions manifest as horizontal planes, and 
2) there appears to be less “noise” around these planes when using the instantaneous measurements. 
This result is in line with expectations—if the regulator changed its tap position in the middle of the 
15-minute measurement window, the average value reported will appear to be between two adjacent 
tap positions. Because this phenomenon is less of a concern with the instantaneous measurements 
and the horizontal tap position planes were generally consistent between the two measurement 
types, threshold values were selected from the instantaneous measurement data for determining 
regulator tap positions (depicted as red dotted lines on the instantaneous data in Figure 8-7). These 
thresholds were then applied to categorize each data point by tap position. 

However, instead of manually separating the data into different tap position bins, an 
optimization approach was proposed and implemented that would classify the tap position for each 
data point and return an array of all tap positions. Because the objective was to locate the centers of 
the data clusters, the proposed approach attempts to maximize the cosine similarity of the data 
clusters, subject to some constraints, or represented as: 

Objective: 

Maximize 

∑max (𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑡))

𝑇

𝑡=1

 

Constraints: 

 

 For, ∀𝒋 ∈ 𝑱  

 𝑤 =𝑐𝑗 − 𝑐𝑗−1   when 𝑗 > 1 (1) 

 0.25 ≤ 𝑤 ≤ 2 (2) 

 −32 ≤ 𝑐𝑗  ≤ 32 (3) 

Where 𝑥𝑡is the voltage differences at each timestamp t, T is the set of all the time points,  𝑐  
denotes the set of tap positions, J is the maximum number of tap settings possible for a regulator, 
and w is the width between two consecutive tap positions. Usually, regulator tap positions are evenly 
spaced, so the width between each tap is assumed constant, as captured by constraint (1). Constraint 
(2) limits the value of the width, as the width between taps is usually around 0.75 V, and (3) provides 
the total number of positive and negative tap positions expected. While this optimization problem 
can be solved using many different approaches, a grid-search method was applied here, and the 
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results are presented in Figure 8-8. A visual inspection of the results reveals that the method was 
able to successfully identify the centers of the data clusters (i.e., the regulator tap positions). 

 
Figure 8-8. Tap position estimation results from optimization approach 

8.3.2. Switching Capacitor State Estimation 

A process similar to the one used in Figure 8-7 was applied to reactive power measurements 
to separate and categorize the data points by switching capacitor states. The dataset from Utility #1 
for Feeder #1 had two switching capacitors, so we know that there are 4 different states available 
(both on, both off, and each one on by itself). The plots below in Figure 8-9 show the averaged and 
instantaneous reactive power measurements, and a visual inspection of these plots reveals that the 
data generally fall within 4 different horizontal clusters, representing the 4 available combinations of 
capacitor states. Therefore, we were able to manually select threshold values for each state 
combination from the instantaneous measurements (shown as red dotted lines in Figure 8-9), then 
apply those thresholds to generate the time-series profiles of states for each switching capacitor. 

 
Figure 8-9. IntelliRupter reactive power measurements, averaged (left) and instantaneous (right) 

The methodology for estimating capacitor states in Figure 8-9 utilized an empirical approach 
in which the reactive power measurement time series were visually clustered by separating the data 
with horizontal lines. This method worked well for that particular dataset, but there is no guarantee 
that horizontal lines could always be used, as this approach assumes that the discrete capacitor states 
do not result in any overlapping data points. 
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A more generalized approach was applied that incorporated real power measurements as 
well and represented the underlying data as a scatter plot of (P, Q) points, as proposed in [76].  This 
representation removes the time-series component but allows the capacitor states to show up as 
various planes of clustered data. The k-means clustering approach was utilized to identify the 
capacitor state clusters in Figure 8-10 after applying min-max scaling to the raw data and performing 
a principal component analysis (PCA) to reduce the dimensionality of the data. A visual inspection 
of the results reveals that the method was able to successfully identify the clusters, which can then 
be translated back to capacitor states.  

 
Figure 8-10. Switching capacitor state estimation results from the machine learning approach 

8.3.3. Reactive Power Allocation 

To test the effectiveness of the methods for estimating the regulation device states, the 
outputs were utilized in a reactive power allocation algorithm applied on Feeder #1 from Utility #1. 
Modeling customer reactive power consumption is often overlooked or oversimplified by assigning 
a constant power factor to customers based on feeder-head measurements, which results in an 
underrepresentation of daily and seasonal changes in customer loads. Because customer real and 
reactive power consumptions impact the voltages throughout a feeder [77], improving customer 
load modeling would also improve the spatial and temporal calibration of a variety of circuit metrics 
(e.g., evaluating losses in the network). While many energy meters being installed today can measure 
reactive power consumption, that feature is often not utilized. Historically, data from energy meters 
were only used for billing purposes and only considered real power consumption, meaning the 
existing systems may not be well-suited to handle the additional data streams or have the capacity to 
store enough data for modeling purposes. However, there are a variety of new devices being 
installed on distribution grids that can measure reactive power flows and can interface more easily 
with existing utility practices. These devices present an opportunity to apply existing power 
allocation methodologies to allocate reactive power measurements taken throughout a feeder to 
corresponding customer locations. 

The approach developed in this project applies power flow analysis to generate unique 
reactive power profiles for each customer on a feeder using a combination of real power AMI data 
and reactive power measurements from multiple grid locations. First, the feeder is separated into 
various “zones” for which reactive power measurements are available. For each time point, starting 
with the zones furthest downstream from the substation and working backward, reactive power 
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measurements are allocated to the customer locations in each zone according to their share of real 
power consumptions. Then, a power flow analysis is performed iteratively to adjust for the effects of 
network losses. After each zone converges on a solution, the algorithm advances to the next time 
point and starts the process over again until every customer location has been allocated a reactive 
power consumption for all time points.  

This approach was tested on Feeder #1 from Utility #1 (shown in Figure 8-11), for which 
real power AMI measurements were available for all customers, and both voltage and complex 
power measurements were available from 10 IntelliRupters throughout the circuit. The objective was 
for the reactive power allocation algorithm to generate semi-synthetic reactive power profiles for all 
customers.  

 
Figure 8-11. Circuit Plot of Utility #1, Feeder #1 with and without the customer zones identified 

Because the reactive power allocation methodology was going to be applied at each time 
point of the year, we first had to ensure that the regulating devices in the circuit were calibrated. 
That is, the tap position of the voltage regulator and states of the two switching capacitors in the 
circuit had to be determined before the reactive power allocation steps because all these regulating 
devices also influence circuit voltages and power losses. Therefore, the results from the estimation 
methods shown in Figure 8-7 and Figure 8-9 were utilized here.  

After estimating the regulator tap positions and switching capacitor states, all regulating 
devices could be controlled and set manually before the reactive power allocation for each time 
point. Once the regulating devices were set, the reactive power was allocated to the loads in each 
zone using an iterative process until the simulated reactive power values at the zone heads in 
OpenDSS matched the measured values from the IntelliRupters. This process was repeated for each 
zone, starting with the zones furthest downstream and working backward toward the substation. 
The algorithm steps can be summarized as: 

1. Compile the circuit model in OpenDSS 

2. Add monitors to the circuit corresponding with the IntelliRupter locations 

3. Set the states of all regulating devices  

4. Set the real power consumption of all the loads based on their AMI data 

5. Solve the initial power flow 

6. Calculate the per-phase PF of the IntelliRupter at the head of the zone 

IntelliRupter IntelliRupter

7.

6.

5.

4.2.

3.

1.
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7. Calculate the per-phase kVAR required at the corresponding monitor location in the circuit 
model that matches the measured per-phase PF values 

8. Allocate reactive power to any 3-phase loads in the zone based on their share of the total real 
power 

9. Allocate the remaining reactive power to the 1-phase loads in the zone, subject to reasonable PF 
limits (0.75 lagging to 0.95 leading) 

10. Solve the power flow and check for convergence 

11. Repeat Steps 7-10 until the zone has converged 

12. Move on to the next zone and repeat Steps 6-11 until all zones have converged  

13. Move on to the next time point and repeat Steps 3-12 until reactive power has been allocated to 
all loads for all time points 

Overall, the procedure outlined above resulted in unique reactive power time-series profiles 
for all loads and represented different power factor values for each phase of each zone and 
sometimes a different power factor for the 3-phase loads in each zone as well.  

After applying the new load profiles to the customers in the feeder, the accuracy of the 
proposed methodology was then tested by running a yearlong QSTS simulation. Then, the results 
were analyzed using established methods to visualize the output time-series data [78].  Compared to 
the actual IntelliRupter power measurements, the results from the allocation procedure matched 
pretty well. For Zone 5, which is downstream of the voltage regulator and contains the two 
switching capacitor banks, the reactive power allocation results on all phases were within ±5 kVAR 
for nearly 95% of the time points, as shown in Figure 8-12. 

 

Figure 8-12. Comparison of simulation results and IntelliRupter measurements for Zone 5. 

From the QSTS simulation results, the simulated customer voltages could also be compared 
to the actual measured voltages from the available AMI data. The results from this analysis are 
presented in Figure 8-13, which revealed that the average voltage errors for each customer were 
small (RMSE < 0.02 p.u.) but skewed positive, meaning that on average the simulated voltages were 
higher than the measured values. This positive skew can be explained, in part, by the lack of 
secondary modeling present in the OpenDSS circuit model. In other words, the voltage drops across 
the secondaries are not being captured in the circuit model, resulting in slightly higher voltages 
compared to the measured values. 
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Figure 8-13. Comparison of simulated customer voltages and AMI measurements 

8.4. Summary 

Accurate estimations of regulation devices’, like switching capacitors’ and voltage regulators’, 
settings have implications for a variety of grid modeling and analysis tasks. The work in this task 
provided several ways to recover this valuable information from various measurement sources 
available on modern distribution grids. The proposed methods included applying distribution system 
state estimation algorithms to extract regulating device states and data-driven methods that could be 
directly applied to measurement data with limited prior knowledge of the underlying system. The 
approaches were tested on validated open-source feeder models and also on an actual utility feeder 
model with corresponding real-world measurements. Overall, the work presented in this task 
provides a variety of options to extract actionable information on voltage regulators and switching 
capacitors. The proposed solutions are suitable to different measurement types and resolutions 
(both temporal and spatial), making them useful tools for distribution system analyses and 
improving distribution model fidelity. 
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9. PV SYSTEM DETECTION, PARAMETERS, AND SETTINGS 

9.1. Task Overview 

There is an ever-growing number of solar photovoltaic (PV) installations in the United States 
and worldwide. As the cost of these installations decrease [79], the scope of solar PV impacts on 
distribution grids is poised to continue to expand. Notably, the impact of behind-the-meter (BTM) 
solar PV on distribution grids is highly parametric in nature. For example, it is difficult for utilities to 
know the locations of privately interconnected BTM PV in distribution networks, which may change 
rapidly in regions with permissive net metering regulations. These interconnections may cause 
significant changes in the topology of a distribution network, posing a risk to distribution model 
fidelity. Furthermore, as shown in Figure 9-1, it is harder still to know the size, tilt, and azimuth of 
these PVs. These parameters of the PV installations can lead to significant implications for security 
constraint violations, and it is important for utilities to have knowledge of these parameters.  

 

 
Figure 9-1. PV System Identification illustration 

Moreover, the IEEE 1547-2018 standard on smart inverters has specified reactive power 
priority [80]. A wide variety of reactive power control modes for advanced inverters have been 
introduced for the purposes of counteracting the inherent volatility of active power injections of 
distributed PV [81]. The members of this family of control modes have unique impacts of 
distribution grids, and the fragmentation in their implementation further poses a risk to network 
model fidelity for utilities.   

Critically, many utilities do not have complete or up-to-date information on these parameters 
and settings that characterize the impact of the PVs present within their grids. To solve this; in this 
chapter we introduce a number of data-driven modeling algorithms to detect and estimate unknown 
parameters for BTM PV. These algorithms fall into two general categories: 

Model-Derived Methodology 
The first category of PV detection and parameter estimation methods developed in this 

chapter is model-derived. By this, we mean that the estimation or detection method leverages 
physics-informed information from a distribution system model that is already known to the utility, 
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to detect or estimate parameters for unknown PV systems within that model. These methods rely on 
simulated physical quantities from the feeder model, such as line flows of active or reactive power, 
or nodal voltages.  

Furthermore, a common model-derived quantity explored in this chapter are methods based 
on model-derived voltage sensitivity matrices. These matrices capture the normalized changes in 
voltage magnitudes with respect to real and reactive power injections at a set of buses under study in 
the model.  

Data-Driven Methodology 
In contrast with the model-derived methods, several detection and estimation methods 

developed in this chapter are entirely data-driven. By this, we mean that no information from the 
distribution circuit model is included in the algorithm. In these algorithms, the parameters of the PV 
systems are characterized solely from advanced metering infrastructure (AMI) data. 

In this chapter, we consider 𝑀 net load time-series measurements from an AMI sensor for a 
customer with PV that are modeled as: 

𝑝𝑡
𝑛𝑒𝑡 = 𝑝𝑡

𝑛𝑎𝑡 + 𝑝𝑡
𝑝𝑣
+ 𝜖    𝑡 = 1,… ,𝑀 

𝑞𝑡
𝑛𝑒𝑡 = 𝑞𝑡

𝑛𝑎𝑡 + 𝑞𝑡
𝑝𝑣
+ 𝜖   𝑡 = 1, … ,𝑀 

where the error of the sensor is assumed to be distributed according to a standard normal 

distribution, i.e., 𝜖 ∼ 𝑁(0, 𝜎2). The variance of the error is typically on the order of 0.01 for 
modern AMI systems. Note that in this section of the paper we adopt the convention that injections 
from a node into the distribution system are positive and flows from the distribution system into the 
load through the AMI are negative, which simplifies the development of the algorithms greatly. 

The data-driven methods presented in this paper are concerned with learning the parameters 
of the BTM PV systems from these data streams, without concern for the underlying system model. 
These methods have the advantage of circumventing the aforementioned issues in distribution 
circuit model fidelity faced by feeders with high penetrations of distributed PV. 

Overview of Problems and Proposed Methods 
Throughout this chapter, we will present data-driven and model-derived methods in parallel 

for the various detection and estimation problems that are posed. For some problems, we present 
only model-derived or data-driven methods, whereas other problems enjoy both types of solutions.  

9.2. PV Size, Tilt, and Azimuth Estimation 

In this section we present research on deep neural network approaches for estimating PV 
size, tilt, and azimuth using only behind-the-meter data. The methodologies presented are primarily 
derived from the results developed in [82]. 

 

9.2.1. PV Size Estimation 

Data Generation 
Two independent data sets were used to form a synthetic data set for training and testing: 

Load data from a Pecan Street data set and PV generation data from a UMass Trace Repository. The 
load and PV generation profiles from these data sets were combined to obtain the net load data 
using the following equation: 
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𝑁𝑒𝑡𝐿𝑜𝑎𝑑𝑛(𝑙, 𝑝, 𝑠)  =  𝐿𝑜𝑎𝑑𝑙  −  (𝑃𝑉𝑝  ×  𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟𝑠  ×  (1 +  𝑟)) 

where, 𝑟 ∈ [ 0.5, 0.5] is a random constant. Figure 9-2 illustrates the data generation procedure 
when generating data for PV size estimation. 

 
Figure 9-2. Data generation flowchart 

Classification 
After the net load profiles are generated, each customer’s profile is sliced into daily profiles 

and fed into the convolutional neural network (CNN). The output of the CNN is a binary value 
showing whether the CNN has detected a PV output pattern in that daily net load profile or not. 
This is done for all the daily profiles of a customer to obtain daily detected outputs. Once all the 
days are classified as “with PV” or “without PV,” if the number of days for which outputs are 
detected as “with PV” is greater than a threshold (e.g., 200 days out of 365 days), we detect that 
customer as a “with PV” customer and assign a label. 

Simulation 
To have an accurate and computationally efficient PV detection method, it is necessary to 

know how the input data parameters impact the accuracy and computational burden. These 
parameters include the size of training data set (determined by the number of training customers and 
the temporal resolution of data), as well as the mislabeled ratio (the fraction of number of customers 
in training data that are mislabeled). Each of these parameters has a direct impact on the 
performance of the trained classifier. These impacts are simulated by developing parameter sweeps. 
For each parameter value, a 10-fold training and testing was performed. The results were averaged 
over 10 folds. At each fold, a new set of synthetic net load data was generated to train the classifier. 
Once the classifier was trained, a new set of synthetic net load test data was generated to evaluate 
the trained classifier on new unseen data for 1,000 customers. This process was repeated 10 times to 
get an average training and test accuracy. 

Results 

Linear regression (LR) provided a good performance when preprocessing the customer net 
loads and building a model from the minimum and maximum net load per customer. LR is 
considered as a benchmark for analysis. A similar approach was taken in this set of simulations by 
passing the maximum and minimum net loads per customer to the deep neural network (DNN) as 
input. The DNN then predicted the size of the installed PV from these inputs. The simulations were 
conducted using a dataset of 80 training customers, 20 validation customers and 1,000 test 
customers. The DNN was trained for 400 epochs with early stopping implemented. The input 
features were the minimum yearly day and night net load values. When evaluated on this new data 
set, the proposed DNN provides a mean absolute percentage error (MAPE) of 4.578% and mean 
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absolute error (MAE) of 0.246 kW. In contrast, the benchmark LR approach provides a MAPE of 
5.312% and MAE of 0.266 kW.  See Table 9-1. 

Table 9-1. AC PV size estimation error:  1,000 test customers, south facing PV panels, PV tilt 
equals latitude 

LR DNN DNN DNN DNN DNN 

100 Train 
Cust 

100 Train 
Cust 

100 Train 
Cust 

100 Train Cust 
Yearly 

100 Train Cust 
Yearly 

300 Train Cust 
Yearly 

Yearly Yearly Yearly Min/Max Min Min 

Min/Max   
- 

Min/Max 

- 

Min/Max 
Night/Day 

Night/Day 

+ Uniform 

Night & Day + 
Uniform 

Night & Day + 
Uniform 

Training Results 

Median APE (%) 2.1487 1.8433 1.2254 1.4546 1.3786 1.3911 

Mean APE (%) 2.5431 2.3752 1.7969 1.8818 1.8923 1.9342 

Median AE (kW) 0.1158 0.0996 0.0671 0.1671 0.1658 0.1781 

Mean AE (kW) 0.1540 0.1497 0.1204 0.2933 0.2982 0.3097 

Max AE (kW) 2.6666 3.0370 2.1260 2.2966 2.1925 2.4984 

Test Results 

Median APE (%) 2.1396 2.0041 1.4965 1.6930 1.4443 1.4636 

Mean APE (%) 2.5229 2.6097 2.2113 2.2817 2.0868 2.0913 

Median AE (kW) 0.1180 0.1111 0.0841 0.0943 0.0784 0.0820 

Mean AE (kW) 0.1652 0.1704 0.1482 0.1532 0.1457 0.1448 

Max AE (kW) 3.1172 2.9579 3.2354 2.9052 3.1648 4.3770 

 

9.2.2. Tilt and Azimuth Estimation 

Data Generation 

The PV data was generated using irradiance data sourced from NREL Measurement and 

Instrumentation Data Center. The irradiance data is at the coordinates Latitude: 35.41861 North 

and Longitude: 108.08828 West for the year 2012 with a resolution of 1-minute. The irradiance data 
at this location was passed into a simulated PV system using PVLib. The simulated PV panel was the 
CEC module named ‘Yingli Energy China YL270C 30b’. The plane of array ground diffuse and 
direct normal irradiance (DNI) were calculated using the global horizontal irradiance (GHI) data for 
this location. The relative air mass was calculated based on the sun’s zenith angle. The plane of array 
diffuse sky radiation was calculated using the diffuse irradiance, DNI, zenith angle and azimuth 
angle, and also the panels tilt and azimuth. The angle of incidence and plane of array irradiance was 
then calculated. The PV cell and module temperature were calculated using the plane of array 
irradiance, the average wind speed at 3 m and the dry bulb air temperature. The power output of the 
panel was then calculated for the CEC module using the plane of array irradiance and cell 
temperature. This process was repeated to generate PV profiles for PV systems with tilt and 
azimuths randomly distributed between [10,45] degrees and [90,270] degrees respectively. In 
previous quarters, the methodology for generation of net load data was developed and presented.  

Feature Extraction 
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Features are extracted from the net load data that have a relationship with the tilt and 

azimuth. The ratio 𝑅1 = 𝑆𝑢𝑚𝑚𝑒𝑟𝑁𝐿𝑀𝑖𝑛 𝑊𝑖𝑛𝑡𝑒𝑟𝑀𝑖𝑛⁄  was selected to estimate the tilt of the PV 
panel. The maximum daily power generated from a PV varies differently over the course of the year 
depending on the tilt of the panel. If the panel is flat, the maximum daily power output will be in 
mid-summer. Conversely, if the panel is tilted, the maximum daily power will be in the spring and 
fall months, or possibly even a maximum in the winter for significantly tilted systems. The ratios 

𝑅2 = 12𝑝𝑚𝑁𝐿𝑀𝑖𝑛 9𝑎𝑚𝑁𝐿𝑀𝑖𝑛⁄  and 𝑅3 = 12𝑝𝑚𝑁𝐿𝑀𝑖𝑛 3𝑝𝑚𝑁𝐿𝑀𝑖𝑛⁄  are used to estimate the 
azimuth of the installed PV system. These ratios make use of the information that the PV power 
generated throughout the day varies depending on the panel’s azimuth. 

Simulation Parameters 

It was found that a data set of 900 training and 100 validation customers (1,000 in total) was 
necessary to achieve sufficient performance when estimating the tilt and azimuth of customer PV 
systems. All models were evaluated on a separate test data set of 1,000 customers. Each customer 
had a PV system that was configured with a random tilt and azimuth in the ranges [10; 45] and [90; 
270] degrees respectively, where an azimuth of 180 corresponds to due south. A set of simulations 
were conducted that calculated the DNN input feature ratios, using net load data of varying 
resolution: Res = [1, 5, 15, 30, 60] minutes. The simulations investigate how robust is the proposed 
DNN method for tilt and azimuth estimation to imperfect training data. The DNN was trained with 
data sets consisting of [0; 10; 20; 30; 40; 50; 90] % mislabeled customers. Each mislabeled customer 
in this training set has their recorded tilt and azimuth reset to a random tilt and azimuth in the 
ranges [10; 45] and [90; 270] degrees respectively. 

Results 

To estimate the tilt and azimuth of installed PV systems, the three ratios corresponding to 
the minimum summer net load/minimum winter net load, minimum 12pm net load/minimum 9am 
net load, and finally minimum 12pm net load/minimum 3pm net load were calculated for each 
customer over the course of the year. These ratios are plotted in the figures below.  Figure 9-3 
illustrates the relationship between the calculated ratios and the tilt and azimuth. 

.

 
Figure 9-3. Input ratios for tilt and azimuth estimation 

We summarize the research results as follows: 
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1. Deep neural networks can accurately estimate the size of installed PV systems with a MAPE of 
2.09% using only features extracted from net load data, i.e., the minimum overall net load and 
the minimum nighttime net load over one year. This is a lower error than the benchmark linear 

regression approach. Over 85% of PVs have sizes estimated < 4% error using the proposed 
deep neural network. When the PV data is generated using a range of tilt and azimuth values, 

the AC PV size is estimated with a MAPE of 3.98%. 

2. When estimating the tilt and azimuth of PV systems, the proposed deep neural network 
approach significantly improves upon the estimation error when using the benchmark linear 
regression model. The tilt and azimuth MAPE are 10.1% and 2.8% respectively when using the 

proposed deep neural network approach. This corresponds to an absolute error of 2.55◦ and 

4.71◦ respectively. This is a 2.0% and 3.7% reduction in the tilt and azimuth percentage errors 

respectively when compared to linear regression. 

3. A higher net load resolution of one minute improves the accuracy of the DNN when 
estimating AC PV size, however a higher resolution net load data does not lead to an 
improvement in accuracy when estimating tilt and azimuth. A net load data resolution of 1 
minute provides a tilt estimation error that is statistically equal to that observed for a resolution 
of 60 minutes. A resolution of 60 minutes does provide a statistically lower azimuth error than 
1-minute net load data resolution. 

9.3. PV Location Estimation 

This section describes a method that leverages model-derived voltage sensitivities in tandem 
with AMI data streams for estimation of solar PV location in distribution circuits. We first present a 
method to solve this problem for distribution circuits with fixed voltage regulation equipment, 
referencing the results of [83], and then augment the method to be robust against the impact of 
interacting voltage regulation equipment in the distribution circuit, referencing the results of [84]. 

9.3.1. Without Voltage Regulation Equipment 

In this section, we use a voltage sensitivity matrix-based approach for estimating the location 
of solar PV. We follow the perturb and observe the methodology described at the beginning of this 
chapter to form this sensitivity matrix from a distribution circuit model. The injection of PV active 
power at a given location results in changes in the voltage magnitudes. These changes are fairly 
linear and consistent along time periods with solar irradiance variations. Let i be the node (the 

electric point) corresponding to a phase p of bus b. The set  = {1, … , 𝑖, …𝑁} contains all such 
nodes in the system. We denote the change in voltage magnitude of node i with respect to a power 

injection change at a PV location ℓ as: 

 

𝑠𝑖ℓ = 𝜕𝑉𝑖 𝜕𝑃ℓ⁄   

 

The N nodal voltages in the system change due to this power injection. Thus, a vector of 

sensitivities with respect to injection at location ℓ can be written as 𝐬ℓ = 𝜕𝐕 𝜕𝑃ℓ⁄ , where V is the 
vector containing all the node voltage magnitudes in the circuit. Using a distribution circuit model, 

one can obtain the values of the vector 𝐬ℓ for a given location ℓ by the following perturb and 
observe methodology [85]: 
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1. Solve the three-phase unbalanced power flow of the circuit for a baseline condition 
without the PV system, 

2. Solve a second power flow with the PV system installed at location ℓ and all voltage 
regulating equipment (VRE) disabled, and  

3. Record the voltage magnitude differences at each node by comparing the power flows with 
and without PV. 

If the PV systems considered are known to be 3-phase, then the possible locations 
correspond to all the 3-phase buses in the circuit. If the PV systems considered are 1-phase, then the 

space of possible locations corresponds to all the nodes in the circuit. Let us denote by ℒ =
{1, … , ℓ, … 𝐿} the set of all possible PV locations. By solving a power flow for the baseline and one 

power flow with the PV at each location ℓ, one can determine an 𝑁 × 𝐿 sensitivity matrix of node 
voltage changes with respect to PV injections at the L locations:  

 

𝐒 = 𝜕𝐕 𝜕𝑷⁄   

 

We note that the voltages at the slack node do not change, and that the changes in voltages 

at nodes connected by switching devices are identical. The matrix 𝐒 is full rank if the matrix column 
corresponding to nodes in the slack bus and one of each pair of nodes that are terminals of switches 
have been eliminated.  

Estimation Method Using Measured Voltage 

Using AMI data-streams in tandem with the sensitivity matrix, we will show that it is 
possible to use this sensitivity matrix to form a linear regression model to perform the estimation. 

Let us first consider an 𝑁 ×𝑀′ matrix Z that contains the data stream of measured node voltage 
magnitudes at N nodes for a given time horizon H. We are interested in the change of voltage 
magnitudes over time (as a function of the changes of PV injections). By taking the simple 

difference from one measurement scan to the next, we can obtain a matrix of voltage differences 𝐃′ 
of size 𝑁 × (𝑀′ − 1). During, the night the changes in voltage due to solar PV are zero. Thus, we 
select intervals of measurements during the day, where solar PV power magnitude as well as the 
variation in power is likely to be significant. This subset of voltage differences is denoted by a matrix 

𝐃 of size 𝑁 ×𝑀. In the trivial case of a single point, the matrix 𝐃 corresponds to a vector d of size 

𝑁 × 1. The vector d contains the measured changes in voltage magnitude due to the PV injection 

change at a given location ℓ. Thus, the vector d, down-scaled by the size of the PV system must be 

equal to one column of matrix S, the exact column of sensitivities corresponding to that location ℓ. 
In other words, it must be true that if the PV is installed at location ℓ, then:  

𝐬ℓ = 𝜕𝐕 𝜕𝑃ℓ⁄ =
1

𝛼
𝐝 

 

 

The measurements obtained from actual sensors will unavoidably contain errors due to 

sensor class, model inaccuracies, etc. Thus, the scaled vector d will be close to 𝐬ℓ, but not exactly 

equal. Each column of matrix 𝐒 represents the “direction” of the changes in voltage. The location of 
the PV system can then be determined by finding the column that is best aligned with the direction 

of the measured vector d. We want to estimate a vector x such that 𝐒𝐱 = 𝐝. This problem is known 
to have a unique least-squares solution:  
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𝐱̂ = (𝐒𝐓𝐒)−1𝐒𝐓𝐝  

 

Because the columns of 𝐒 are linearly independent,  (𝐒𝐓𝐒)−1 is computable. The vector 𝐱̂ is 

the projection of d onto the subspace 𝐒. It is the minimization of the components of 𝐝 − 𝐒𝐱, such 

that ‖𝐝 − 𝐒𝐱̂‖ ≤ ‖𝐝 − 𝐒𝐱‖, ∀𝐱 ∈ ℝ𝐿. To incorporate not only one point, as in vector d, but more 
information available from the data stream, one can obtain a metric that captures the changes in 

voltage magnitude for a given period during the day. A suitable metric is the sum of the 𝑀𝑝𝑜𝑠 

positive values of changes in voltage from matrix 𝐃. Thus instead of vector d, we use the following 
vector: 

𝐝̅ =
1

𝑀𝑝𝑜𝑠
∑𝑝𝑜𝑠(𝒅𝑡)

𝑇

𝑡=1

  

 

If we have a single vector of voltage magnitude deviations d obtained from the difference of 

voltage measurements at two points in time, resulting on an estimated value 𝐱̂. The vector of 
estimated voltage differences at each node is given by:  

 

𝐝̂ = 𝐒𝐱̂  

 

The normalized residuals of the voltage differences 𝑑𝑖 are assumed to have a normal 

distribution 𝑟𝑖 ~ 𝑁(0,1) , where:  𝑟𝑖 = (𝑑̂𝑖 − 𝑑𝑖) 𝜎𝑖⁄ . Voltage meters and smart meters usually have 

an error of less than 1%. In this paper, we assume that 𝜎𝑖 = 0.01. The least squares solution 𝐱̂ 

minimizes the sum of  the squares of  𝑟𝑖: 

 

∑𝑠𝑖
2(𝐱)

𝑀

𝑖=1

= 𝜒2 ≥  𝜁 =∑𝑠𝑖
2(𝐱̂)

𝑀

𝑖=1

 

 

 

We note that the value of  𝜁 can alternatively be computed as: 
 

𝜁(𝐱̂) = [𝐒𝐱̂ − 𝐝]𝑇𝛀−1[𝐒𝐱̂ − 𝐝]  

 

where 𝛀−1 is a diagonal matrix with entries 1 𝜎𝑖⁄ . The probability that the above event 𝜒2 

≥  𝜁, is given by the chi-square distribution: 

 

Pr [𝜒2 ≥  𝜁]  =  1.0 – Pr [𝜁, 𝜈]  

 

where 𝜈 = 𝑀 − 𝐿 is the number of degrees of freedom. 𝑃 =  Pr[𝜒2 ≥  𝜁] represents the 

confidence level of the PV injection being at the estimated location. The smaller the value of 𝜁, the 
better the estimation will be. If a data stream is used instead of a single difference measurement, 

then the vector 𝐝̅ should be used in the above equations.  

In summary, the goodness of  fit is determined by the following process: 
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1. Compute the estimate 𝐱̂ using vector 𝐝̅  

2. Compute the objective function 𝜁 

3. Compute the probability Pr[𝜒2 ≥  𝜁]  

Results 

We utilized the IEEE 13 bus distribution system, which operates at 4.16 kV, has unbalanced 
loading, is relatively short and is highly loaded. This circuit also has a single voltage regulator at the 
substation, overhead and underground lines, shunt capacitors, and one in-line transformer. The circuit 
topology is presented in Figure 9-4. This IEEE 13 bus system contains buses that have 1, 2, and 3 
phases. It has a total of 32 nodes (bus-phase combinations). It is assumed that meters that can measure 
the voltage magnitude are located at each one of the 32 circuit nodes. The loads are provided with the 
same load time profile. 

 
Figure 9-4. Diagram of the IEEE 13 bus system 

The PV profile is based on irradiance data provided by NREL and represents the actual 
irradiation values observed on January 1, 2011 in Oahu, Hawaii. The PV profile is applied to the PV 
systems at one specific location. The PV profile selected has a 10-second resolution for one day, 
which represents a total of 8,640 data points. It is observed that highest values of PV irradiance as 
well as the highest changes in the PV profile occurred between 11 am and 1pm. For the simulations 
in the next two sections, all the voltage regulating equipment were fixed.   

Estimation with 3-Phase PV System 

The estimation process starts with determining the matrix S by connecting PV systems 
sequentially at each 3-phase bus and recording the changes in voltage magnitude in the 32 nodes in 
simulation. We assume that the injection of PV power has a power factor of 1.0. This matrix has a 
size of 5 locations times 32 nodes. Figure 9.4 (top) illustrates the columns of the sensitivity matrix S. 
Each one of the bar series for the five locations represents a unique signature on how the power 
injection at those locations changes the voltages in each one of the 32 circuit nodes. In order to be 
able to obtain solution for the estimates, S must be full rank. 

We conducted the test by using only the voltage measurements in the time range from 11 am 
to 1 pm, because this is the time of the day when solar PV output is usually the highest. We assume 

a 5-minute (300 seconds) resolution of voltage measurements. To form vector 𝐝̅, we selected sub-

intervals of 10 minutes. With this vector 𝐝̅, we computed the estimate of vector 𝐱̂ for each interval. 
The voltage variation caused by solar PV variation during an interval allows us to pinpoint the 
location of the PV.  
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As an example of the expected relation between the voltage sensitivities and measurements 
vector, let us consider the voltage measurements in the range from 12:50 pm to 1:00 pm.  Figure 9-4 

(top) represents the expected changes in voltage magnitude (the matrix 𝐒), while Figure 9-5 (bottom) 

presents the actual vector 𝐝̅ obtained using the equations above. We observe that the shape of the 

vector 𝐝̅ is closely resembles the shape of the column of matrix S corresponding to location number 
3. Thus, the PV must be located at location 3.  

 
Figure 9-5. Representation of the sensitivity matrix S (top) and vector 𝐝̅ (bottom) 

The size of the PV system modelled to generate the matrix S is 1000 kW. Table 9-2 presents 

the values of the estimated vector 𝐱̂ for the estimated locations versus actual locations during the 
time period from 11:30 to 11:40am. The high values in the diagonal indicate that the estimation is 
correct. Specifically, a high value close to 1.0 means that the PV system is highly likely to be located 
at that bus, while a value closer to zero means that the PV is highly unlikely to be located at that bus. 

Table 9-2. Values of  𝐱̂ for estimated and actual locations from 11:30 a.m. to 11:40 a.m. 

Estimated Location 
Actual Location 

633 671 675 670 680 

633 1.138 0.0205 0.0205 0.0205 0.0205 

671 0.0401 1.158 0.0401 0.0401 0.0401 

675 0.0173 0.0173 1.135 0.0173 0.0173 

670 0.0069 0.0069 0.0069 1.125 0.0069 

680 -0.0316 -0.0316 -0.0316 -0.0316 1.086 

 
 The goodness of fit for the results of both estimations are presented on Table 9-3. 
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Table 9-3. Statistical results for 3-phase PV estimations 

PV Location 633 671 675 670 680 

Simulation 1: from 11:30 am to 11:40 am 

𝜁 0.0517 0.0517 0.0517 0.0517 0.0517 

Pr[𝜒2 ≥  𝜁] 0.9997 0.9997 0.9997 0.999 0.999 

Simulation 1: from 12:20 pm to 12:30 pm 

𝜁 0.0047 0.0047 0.0047 0.0047 0.0047 

Pr[𝜒2 ≥  𝜁] 1.0 1.0 1.0 1.0 1.0 

  
We repeat similar estimations for thirty different ranges between 11 am and 1 pm. We obtain 

the values of the estimated voltage differences 𝐝̂ = 𝐒𝐱̂. We then compute the objective function of 
the estimation, i.e., the sum of the normalized residuals. Figure 9-6 presents the value of the 
objective function for the thirty estimations developed in this manner. This value of the objective 

function 𝜁(𝐱̂) is compared with the value of the 𝜒2 function at 95% confidence for M-N degrees of  
freedom, which is equal to 40.11. In all the estimations, the objective function is significantly smaller, 
indicating a good fit. This shows that the algorithm works seamlessly over a range of  different time 
points in the day.  

 
Figure 9-6. Objective function for 30 trials in different intervals 

Estimation with 1-Phase PV System 

For the simulation of 1-phase PV systems, we assume a granularity of 150 s, and 
measurement vectors are computed using 5-minute time intervals. We used a PV size of 2,000 kW 
for these simulations. These new values have been selected to test the method’s robustness for 
varying values of timestep and PV size. There are 32 1-phase nodes in the system. As with the 3-
phase analysis, we avoid the slack bus, one of the two buses at the ends of the switch, and the 
regulated buses to have a total of 20 possible PV locations to be analyzed. For the 1-phase analysis, 
we perform the same analysis for each PV location. We conduct the test for each phase separately 
for phases A, B and C to reduce error in the calculations. It is assumed that the phase information 
available to the utility is reasonably accurate.   

The goodness of fit values for the 1-phase PV location estimation are presented in Table 
9-4, which shows the strong performance of the method.  
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Table 9-4. Statistical results for 1-phase PV estimations 

Phase A B C 

Loc 𝜁 Pr[𝜒2 ≥  𝜁] 𝜁 Pr[𝜒2 ≥  𝜁] 𝜁 Pr[𝜒2 ≥  𝜁] 

611     1E-05 1.00 

632 3E-04 1.00     
632   5E-04 1.00   

633 3E-04 1.00 5E-04 1.00 1E-05 1.00 

645     1E-05 1.00 

646   5E-04 1.00 1E-05 1.00 

652 3E-04 1.00     
670 3E-04 1.00 5E-04 1.00 1E-05 1.00 

671 3E-04 1.00   1E-05 1.00 

675 3E-04 1.00 5E-04 1.00 1E-05 1.00 

680 3E-04 1.00 5E-04 1.00 1E-05 1.00 

 

Conclusion 

A method has been described for the estimation of the location of 3-phase and 1-phase PV 
systems in distribution circuits. The method is based on voltage measurements and their differences 
across time and assumes an accurate distribution circuit model and fixed controls of voltage 
regulating equipment. The numerical results indicate that the method is highly accurate for both 1-
phase and 3-phase PV systems location estimation. For the case of a 1-phase system, the estimation 
must be conducted for each phase separately. 

9.3.2. With Voltage Regulation Equipment 

Impact of VRE on Sensitivities 

In the presence of VRE, the impact of VRE actions and the PV power injection both 
produce changes in voltage magnitude in the circuit nodes and in some change the sensitivity 
columns may not be independent vectors. To illustrate this, let us consider Figure 9-7, where the 
sensitivities of voltage with respect to VRE action and PV injections are independent from each 
other, and hence their impact can be added to the S matrix. However, situations are found in which 

𝒔𝒕𝒂𝒑𝒔 or  𝒔𝑪𝒂𝒑 are linearly dependent on the columns of matrix S. This situation corresponds to 

Figure 9-8, where a voltage change that is due to a VRE action can be expressed in terms of the PV 

sensitivity column vectors. In such case, the Gramian of S becomes singular and (𝐒𝐓𝐒)−𝟏 cannot be 
computed. Therefore, an approach must be developed that can estimate PV injections, tap changes, 
and switching capacitor actions regardless of the structure of VRE sensitivities. 
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Figure 9-7. Illustration of VRE impact independent from sensitivity factors 

 
Figure 9-8. Illustration of VRE impact when it depends on PV sensitivity vectors 

Proposed Method 

The method extends the principles used so far for PV location and injection estimation by 
first determining whether a VRE actions is present in the voltage magnitude measurement data 

stream. We reference [83, p.] throughout this section for describing this method. Let us define 𝑑̂𝑉𝑅𝐸 
as the estimation of the changes in voltage due to VRE actions in a distribution circuit. The correct 

estimation of the PV injections would discount the effect due to the VRE in changes in voltages 𝑑: 

𝑥̂ =  (𝑺𝑇𝑺)−1𝑺𝑻(𝑑 − 𝑑̂𝑉𝑅𝐸) 
 

To estimate 𝑑̂𝑉𝑅𝐸 , it is necessary to know how VRE actions impact the estimation. The 
change in voltage due to a tap change will have components that are usually related to those PV 
location sensitivities in conflict with the VRE. The changes in voltage occur in fixed amounts, 
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proportional to the number of taps changed. It is possible to obtain an estimation of a voltage 

changes due to VRE, 𝑑𝑉𝑅𝐸  by simulating VRE actions in the distribution circuit and performing an 

estimation for the resulting voltage changes. Let us denote the result of this estimation by 𝑥̂𝑉𝑅𝐸 .  We 
have that: 

𝑥̂𝑉𝑅𝐸 =  (𝑺𝑇𝑺)−1𝑺𝑻𝑑𝑉𝑅𝐸 
 

This particular estimation vector corresponds to a single VRE device. A matrix 𝑿𝑉𝑅𝐸  can be 
formed when considering all the VRE devices in the circuit: 
 

𝑿𝑉𝑅𝐸 = (𝑺
𝑇𝑺)−1𝑺𝑻𝐷𝑉𝑅𝐸 

 

where 𝐷𝑉𝑅𝐸 = [𝑑𝑉𝑅𝐸1,  … , 𝑑𝑉𝑅𝐸𝐾] so that  𝑿𝑉𝑅𝐸 = [𝑥̂𝑉𝑅𝐸1 ,  … , 𝑥̂𝑉𝑅𝐸𝐾]. Each vector 𝑥̂𝑉𝑅𝐸 of 𝑿𝑉𝑅𝐸 

is the expected footprint that a tap change will leave in the estimation. Once 𝑿𝑉𝑅𝐸   has been 
determined using simulation, it can be used to determine the presence of tap changer actions, if the 

resulting estimation vector is similar to 𝑥̂𝑉𝑅𝐸 .  

When a change in voltage contains the impact of VRE and PV for a given point in time, the 
resulting estimation vector will contain components associated with both the PV location and the 

expected estimation 𝑥̂𝑉𝑅𝐸 :  

𝑥𝑃𝑉+𝑉𝑅𝐸  = (𝑺
𝑇𝑺)−1𝑺𝑻𝑑 

 

The matrix 𝑿𝑉𝑅𝐸 can now be used to determine whether any VRE action took place by 
performing a second estimation on the resulting estimation vector: 
 

𝑣 = ((𝑿𝑉𝑅𝐸
𝑇 𝑿𝑉𝑅𝐸)

−1𝑿𝑉𝑅𝐸
𝑇 ) · 𝑥𝑃𝑉+𝑉𝑅𝐸  

 

The resulting vector 𝑣 will provide non-zero values for those components associated with 
the VRE devices that operated at that specific point in time. For example, if 2 step changes occurred 

for a certain voltage regulator, the resulting 𝑣 component may be 2.03. For devices that didn’t take 

action at that point in time, a value close to 0 will appear. A non-linear filter 𝜙 needs to be applied 

to remove the values close to zero and to obtain integer components from 𝑣. Once a VRE action is 

detected, the impact on the voltage is computed by multiplying by 𝑿𝑉𝑅𝐸 – which leads to the 

estimation components of tap change – and finally by 𝑺, which leads to the estimated voltage 
increase due to that VRE action: 

 

𝑑̂𝑉𝑅𝐸 = 𝑺 · 𝑿𝑉𝑅𝐸 · 𝜙(𝑣) 
 

With the subtraction of the impact of VRE on voltage increments it is not only possible to 
predict the location of PV systems, but also the action taken by controlling devices. Putting together 

these formulas in 𝑥̂ =  (𝑺𝑇𝑺)−1𝑺𝑻(𝑑 − 𝑑̂𝑉𝑅𝐸), the formulation of the method now becomes: 

 

𝑥̂ =  (𝑺𝑇𝑺)−1𝑺𝑻 (𝑑 − 𝑺 · 𝑿𝑉𝑅𝐸 · 𝜙(((𝑿𝑉𝑅𝐸
𝑇 𝑿𝑉𝑅𝐸)

−1𝑿𝑉𝑅𝐸
𝑇 )(𝑺𝑇𝑺)−1𝑺𝑻𝑑)) 
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For clarity purposes, the following nomenclature is used. The number of nodes being 
monitored is called N, which is also the dimension of the measurement vector; L is the total number 
of possible PV Locations (number of columns of S matrix) and K is the total number of VRE 
devices in the circuit. The matrices and vectors in the formula above are defined as follows: 

• 𝑺 is the sensitivity matrix. It has a size of N x L. 

• 𝑑 is the measurement vector: [𝑑1, … , 𝑑𝑁]
𝑇 . 

• 𝑿𝑉𝑅𝐸 includes all the estimation vectors due to VRE devices. It has a size of L x K. 

• 𝑣 is the vector of estimated VRE actions. Hence its dimension is equal to the number of 

total VRE devices in the circuit: [𝑣1, … , 𝑣𝐾]
𝑇 . 

This is the general formulation used to estimate PV injections for a given point in time 
considering VRE actions. The number of tap changes can also be predicted by looking at the term 

 𝜙(((𝑿𝑉𝑅𝐸
𝑇 𝑿𝑉𝑅𝐸)

−1𝑿𝑉𝑅𝐸
𝑇 )(𝑺𝑇𝑺)−1𝑺𝑻𝑑). 

 

Numerical Results 

In this section the resulting estimations from the IEEE123 test feeder are analyzed. 
Consider the estimation output for 16 different simulations within the time window 11:35 to 11:40 
pm, taking the VRE sensitivity vectors as dependent from the vectors in S. The simulation with PV 
systems at nodes 36.1, 40.1 and 37.1 included a tap change at this point in time. The time resolution 
is 300s (5 min). In each simulation, a 1-phase 100 kW PV system was placed. 
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Figure 9-9. Heatmap plot of results of PV location estimation for various PV case scenarios.  The 

PV injection estimations are accurate and have a high confidence level, and consider the action of 
discrete voltage regulation equipment. 

Conclusion 

A method has been developed and tested for estimating the correct PV system location for 
changes in voltages under the action of VREs. The accurate PV injections and high confidence levels 
corroborates the results of the analysis. 

9.4. BTM PV Control Setting Estimation Methods 

Advanced solar PV inverter control settings may be out of date or completely unavailable in 
distribution circuit models, and the manual entry process for the collection and maintenance of 
these data is highly prone to error [2]. This is of particular importance as the deployment of BTM 
PV systems expands, as these systems are operated under a large variety of control settings in 
accordance with the IEEE 1547-2018 standard [80].  The wide variety of possible control settings of 
a BTM PV advanced inverter results in a scenario where the control settings may be unknown or 
uncertain to a distribution engineer. The algorithms developed in this section seek to address this 
issue by allowing an engineer or utility to reconstruct these settings from the net load data without 
any input from the customer or the solar installer. The methods presented are primarily data-driven, 
with varying degrees of reliance on a distribution system model. 

9.4.1. Voltage Sensitivities 

A distribution circuit’s voltage sensitivity matrices can be used to estimate BTM PV control 
settings, in a similar manner to how they were used to estimate the location of unknown BTM PV in 
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the previous sections of this chapter. In this chapter of the report, for the sake of brevity, we will 
assume that voltage regulating equipment (VRE) settings are held fixed. However, the sensitivity-
based methods for estimating the control parameters of BTM PV can be utilized in contexts where 
VRE state changes occur by using results from Section 9.3.2, and by referencing related works on 
sensitivity-based estimation including VRE, such as [83], [86]. 

  

Figure 9-10. Voltage sensitivity matrices (interpolated to highlight independence) corresponding 
to real (left) or reactive (right) power.  each matrix captures the normalized changes in node 

voltage at each observable bus to changes in the power injections 

As described in Section 9.3., the voltage sensitivity matrices for a distribution feeder can be 
understood as a static, model-based quantity that is fixed inter-temporally for the distribution system 
under analysis. Constructing this matrix is straightforward, provided a distribution circuit model is 
available. The procedure for constructing these matrices is outlined in Algorithm 1 in [87]. Notably, 
we will also utilize the voltage sensitivities to reactive power injections; which, assuming circuit 
parameters are held fixed and injection magnitudes are normalized, can be used to construct 
independently estimated real and reactive power injection states. This enables the estimation of the 
power factor control setting of a BTM PV system with solely voltage magnitude measurements. The 
distinction has been noted in the literature [87], [88], and we leverage this distinction later in this 
chapter. 

9.4.2. Control Curve Regression 

To reconstruct the control settings of the BTM PV, an additional solution, which is intuitive 
and easily interpretable, is to filter the historical AMI data to expose the control setting. This can be 
achieved by empirically locating “extreme” historical observations that are likely to well-approximate 
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the control curve response. 

 

Figure 9-11. Example of filtering historical AMI dataset (left) to expose an unknown BTM Volt-VAR 
characteristics curve (right).  True PV reactive power response shown as dashed black/orange.  

All samples are reactive power as a function of PCC voltage. 

Depending on the control setting under study, the choice of what makes an AMI 
measurement “extreme” differs. In systems with Volt-VAR control, selecting the subset of 
observations with smallest net real power demand yields a subset of the observations that are a good 
approximation for the control curve, shown in Figure 9-9. Note that with Volt-VAR control, the 

goal is to estimate a vector of parameters 𝛩 = [𝜃1, … , 𝜃4] = [(𝑉1, 𝑄1),… (𝑉4, 𝑄4)].  

For estimating fixed power factor control, filtering the historical AMI measurements with 
respect to the highest historical point of common coupling (PCC) voltage measurements yields a 
subset of the observations that are a good approximation for the control curve, shown in Figure 
9-12. The precise details of this filtering procedure are available in Algorithm 1 of [87]. 

To perform the filtering, as a first step, we can simply filter out all the nighttime data points, 
and solely focus on the daytime observations for performing our estimation. However, the customer 
load will likely still produce reactive power during the daytime. In this case, the data should be 
further preprocessed to remove the influence of the customer’s load reactive power. Ideally, the final 
process will approximate the response of the PV inverter. This technique is often known as “solar 
disaggregation,” and we will describe this in the subsequent section. 

 

 

Filtering 

F
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Figure 9-12. Example of filtering historical AMI datasets to expose fixed non-unity power factor 
control (left) and unity power factor control (right) curves.  True PV reactive power response 

shown as orange.  All samples are reactive power as a function of real power 

9.4.3. Reactive Power Disaggregation 

A fundamental problem to be solved to achieve estimate unknown solar PV inverter control 
settings from AMI data is the so-called “solar disaggregation” problem. In summary, this problem is 
concerned with separating the additive time-series contributions of the “native” power demands of 

the customer 𝑝𝑡
𝑛𝑎𝑡, 𝑞𝑡

𝑛𝑎𝑡 and the PV real and reactive power contributions 𝑝𝑡
𝑝𝑣
, 𝑞𝑡

𝑝𝑣
 from net load 

time-series real and reactive power measurements from the AMI 𝑝𝑡
𝑛𝑒𝑡 , 𝑞𝑡

𝑛𝑒𝑡 at each timestep 𝑡.  

 

Figure 9-13. Left:  Scatterplot of 1 year of daytime vs. nighttime native reactive power 
measurements at 1 week granularity for 678 loads in the feeder without PV.  Right:  Probabilistic 

reactive load model 

Various solutions have been proposed for the problem of active power disaggregation of 
solar and native customer demand from net load measurements in the literature [89]. To achieve the 
reconstruction of inverter control settings, it is necessary to generalize these methods to the problem 
of reactive power disaggregation, by forming a probabilistic load model for the native reactive power 
consumption of loads without BTM PV in the distribution system, as illustrated in Figure 9-13. 

 By disaggregating the native and PV reactive power signals from the net load AMI signal, it 
is possible to reconstruct the setting given constraints on the structure of the control curve. 
Imposing the constraints allows the reactive power disaggregation problem to simultaneously 
provide a maximum likelihood estimate for the BTM PV’s unknown control curve. Precise details of 

this method are available in[90]. At a high level, we seek the solution Θ̂ to the maximum likelihood 
estimation (MLE) problem of the form: 

max
Θ
𝑝(𝒒𝑛

𝑛𝑒𝑡 , 𝒒𝑑
𝑛𝑒𝑡|Θ) 

where 𝒒𝑛
𝑛𝑒𝑡 , 𝒒𝑑

𝑛𝑒𝑡   are M-dimensional vectors of net nighttime and daytime reactive power 

measurements from the AMI at the bus of interest, 𝑝 is the approximate joint probability 
distribution of nighttime and daytime native reactive power observations at loads in the feeder without 

BTM PV, and Θ is a parameter vector for the control curve. The estimated joint probability 

distribution 𝑝 is often called a generative distribution. The use of this methodology for 
disaggregation is described further in [89], [90].  

Probabilistic 
Load Model 
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9.4.4. Sparse Time-series Sampling 

The control setting estimation methods in the previous sections suffer from several common 
pitfalls of data-driven methods, such as significant data input requirements, or the need for manual 
parameter tuning. The voltage sensitivity-based method requires a distribution system model, the 
disaggregation method requires a large amount of historical data from other customers without PV, 
and the control curve regression method requires the tuning of a filtering parameter. 

To resolve this issue, an additional contribution of this chapter leverages recent results in 
sparse sampling [91], [92], which allows an engineer to extract the control setting of a BTM PV 
system from AMI data with a greatly reduced number of measurements. In addition to the benefits 
of this method outlined in the previous paragraph, this method is valuable in scenarios where 
computational cost and AMI data integrity are of concern. 

 
Figure 9-14. Diagram of the Sparse Time Series Sampling Control Setting Estimator using the 

singular value decomposition  

The sparse time-series sampling method for reconstructing DER control settings relies on 
the sparse sensor placement for reconstruction  algorithm implemented in [91]. The method hinges 
upon constructing a low-rank matrix of candidate control curves using the singular value 
decomposition (SVD). The candidate curves are constructed such that they meet the respective 
standard of the control curve type under study, such as the IEEE 1547-2018 standard for the case of 
the Volt-VAR curve or fixed power factor control curves. The mathematical formulation of this 
algorithm is available in [93]. The low-rank basis matrix is then used to extract the BTM settings via 
the QR decomposition. The general pipeline of the algorithm is illustrated in Figure 9-14. 

9.5. BTM PV Power Factor Control Setting Estimation 

9.5.1. Unity and Nonunity Power Factor Control Characteristics 

Control settings for BTM PV can be understood in terms of a control curve, also known as a 
characteristics curve. For fixed power factor control, this control curve is a simple line in the 
complex power plane fixed at the origin. Therefore, for both unity and nonunity power factor 
control, the reactive power response of the PV system can be entirely characterized by the slope of 

this line, i.e., 𝑞𝑡
𝑝𝑣
=

Δ𝑞

Δ𝑝
𝑝𝑡
𝑝𝑣

 at each timestep 𝑡. Therefore, the goal of this section of the report is to 

estimate 
Δ𝑞

Δ𝑝
 from AMI data.  
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Figure 9-15. True power factor control settings vs. estimated setting via control curve regression 

(left), and an example of an estimated nonunity power factor control curve (right). 

9.5.2. Estimation Using Control Curve Regression 

Provided that full access to the AMI data for a customer with BTM PV is available, a 
regression approach combined with the filtering methodology described in Section 9.5.2 can be used 
to recover the power factor control setting of BTM PV, as depicted in Figure 9-15. Using ordinary 
least-squares regression or a robust regression method such as Huber regression or L1 norm 
approximation, an engineer can reconstruct unity or nonunity power factor control curves with a 
high level of accuracy. The precise details of the filtering methodology and the various regression 
methods available for fitting the control curve are available in [87]. 

9.5.3. Estimation Using Voltage Sensitivities 

If an engineer has access to a distribution system model that can be reasonably assumed to 
be accurate, this model can be used to construct an “interleaved” sensitivity matrix composed of 
alternating columns of voltage magnitude sensitivities to real and reactive power as described in 
Section 9.5.1. Access to this sensitivity matrix is valuable because it significantly reduces the data 
input requirements to estimate the power factor control settings of BTM PV. This interleaved 

sensitivity matrix is defined as an 𝑁 × 2𝐿 matrix of real numbers, where 𝑁 is the number of 

measuremed nodes in the distribution circuit and 𝐿 is the number of buses under study that may 
potentially have BTM PV. The structure of this matrix is: 

𝑺𝑃𝑄 =

(

 
 

𝜕𝑉1
𝜕𝑃1

𝜕𝑉1
𝜕𝑄1

⋯
𝜕𝑉1
𝜕𝑃𝐿

𝜕𝑉1
𝜕𝑄𝐿

⋮ ⋮ ⋱ ⋮ ⋮
𝜕𝑉𝑁
𝜕𝑃1

𝜕𝑉𝑁
𝜕𝑄1

⋯
𝜕𝑉𝑁
𝜕𝑃𝐿

𝜕𝑉𝑁
𝜕𝑄𝐿)

 
 

 

Using voltage meters in the system that give the engineer access to voltage profile data 𝑣𝑖(𝑡) 

at any bus at the buses 𝑖 = 1, … ,𝑁, we define a 𝑁 × 1 column vector 𝒅̅ as a containing samples of 

voltage differences Δ𝑣𝑖 at each node during timepoints with high voltage difference due to volatile 

BTM PV injections, as described in [83], [83], [87]. The 𝑺𝑃𝑄 matrix and the 𝒅̅ vector form a least-

squares regression problem, which allows the engineer to estimate the contributions of real and 
reactive power injections from the candidate buses in the power system.  

The estimation of the injection state vector can be found through any choice of linear 
regression model. In this least-squares case, a closed form solution is available as: 
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𝒙̂ = (𝑺𝑷𝑸
𝑻 𝑺𝑷𝑸)

−𝟏
𝑺𝑷𝑸
𝑻 𝒅̅ 

this solution is described in [83], [87]. Furthermore, the underdetermined nature of the linear system 
formed results in many scenarios where regularization can be used to improve the estimation, such 
as the well-known least absolute shrinkage and selection operator (LASSO) or ridge regression, 

which places tunable penalties on the ℓ1 and ℓ2 norms of the estimation vector  𝒙̂, respectively. 
Further details of these alternative, regularized methods for the problem of power factor estimation 
using voltage sensitivities are available in [87], and a classic overview of regularized linear models is 
available in [94]. 

The estimation vector can be used to form an estimate for the power factor control setting 
of the inverter-based DER(s), using the definition of the power factor and the estimated injections 

𝑃̂𝑙, 𝑄̂𝑙 at the 𝐿 under study. The power factor estimate at bus 𝑙 is therefore: 

pf̂
𝑙
=

𝑃̂𝑙

√𝑃̂𝑙
2 + 𝑄̂𝑙

2

 

An example of the results of this method for the IEEE 13 bus feeder are shown in Figure 

9-15, where the true 3-phase injection state is 𝑆633 = 150 + 𝑗100 𝑘𝑉𝐴 and 𝑆671 = 25 + 𝑗45 𝑘𝑉𝐴. 
In addition, we show a bootstrap confidence interval for the estimation formed by resampling the 
sensitivities entries at random, to characterize the precision of the estimator. 

 
Figure 9-16. Sensitivity-based estimation for a BTM PV system with fixed power factor control 

(left) and bootstrap confidence interval plot for entries 0,1,6 and 7 of the vector (right) 

9.6. BTM PV Volt-VAR Control Setting Estimation 

9.6.1. Volt-VAR Control Characteristics 

A BTM PV system with an advanced inverter operating under Volt-VAR control schedules 
the reactive power injection or absorption of the inverter according to one of several control states. 
The active state is determined according to a “control curve” or “characteristics curve” as defined by 
the IEEE 1547-2018 standard. This curve can be described through a vector of parameters or 
“knots,” which are pairs of reactive power and PCC voltage values. We can write this vector of 

parameters for the control setting as 𝜃 = [(𝑉1, 𝑄1), … , (𝑉4, 𝑄4)], and find the best-fit control curve 

𝜙𝜃(𝑣𝑡
𝑝𝑐𝑐
) which describes the PV reactive power response 𝑞𝑡

𝑝𝑣
.   
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Figure 9-17. An example Volt-VAR characteristics curve (left) and the set of IEEE 1547-2018 

compliant parameters that are estimated by the algorithms in this section (right) 

 

𝑞𝑡
𝑝𝑣
= 𝜙𝜃(𝑣𝑡

𝑝𝑐𝑐) =

{
 
 
 

 
 
 

𝑄1  𝑣𝑡
𝑝𝑐𝑐

≤ 𝑉1
𝑄2 − 𝑄1
𝑉2 − 𝑉1

(𝑣𝑡
𝑝𝑐𝑐

− 𝑉1) + 𝑄1 𝑉1 < 𝑣𝑡
𝑝𝑐𝑐

< 𝑉2

0 𝑉2 ≤ 𝑣𝑡
𝑝𝑐𝑐

≤ 𝑉3
𝑄4 − 𝑄3
𝑉4 − 𝑉3

(𝑣𝑡
𝑝𝑐𝑐

− 𝑉3) + 𝑄3 𝑉3 ≤ 𝑣𝑡
𝑝𝑐𝑐

≤ 𝑉4

𝑄4 𝑣𝑡
𝑝𝑐𝑐

> 𝑉4

 

 

IEEE 1547-2018 defines four of these knots, and the overall structure of the control curve, 
as well as the range of possible values simulated in this report, is shown in Figure 9-17. The goal of 
this section of the report is to introduce and describe various methods to estimate these control 
curve states or knots solely from net load AMI data. As with power factor control setting estimation, 
a challenge with this problem is how to separate the BTM PV and native demand contributions to 
accurately recover the control curve. In the subsequent sections, we will present several methods for 
solving this problem and accurately recovering the BTM control setting with a high degree of 
accuracy. 

9.6.2. Estimation Using Control Curve Regression 

Volt-VAR control settings of BTM PV can be directly estimated with non-linear least-
squares regression by directly solving the following optimization problem numerically. 

min
Θ
∑(𝑓(𝒒𝑛𝑒𝑡)𝑡 − 𝜙Θ(𝑣𝑡

𝑝𝑐𝑐))
2

𝑡

 

Here, 𝑓(𝒒𝒏𝒆𝒕)𝑡 represents the output of the AMI data filtering method at timestep 𝑡 
described in the previous sections. Note that this optimization problem can be solved with the 

additional constraint that  Θ̂ satisfies the IEEE 1547-2018 standard or can be solved entirely 
unconstrained. We can then compute the mean absolute percentage error and the residuals of the 
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estimated parameters Θ̂ against the true parameters of the BTM system. The results of this method 
are summarized below in Table 9-5. Additional details on the implementation of this algorithm and 
its performance are available in [90]. 

Table 9-5. Summary of estimation performance for activated Volt-VAR control parameters from 
using constrained and unconstrained regression for 701 customers with BTM PV. 

Algorithm Type Volt-VAR Parameter MAPE (701 
Customers) 

 
Unconstrained 

Regression 

𝑉3 5.331% 

𝑉4 0.308% 

𝑄4 9.701% 

 
IEEE 1547-

Constrained Regression 

𝑉3 0.425% 

𝑉4 0.206% 

𝑄4 2.870% 

9.6.3. Estimation Using Reactive Power Disaggregation  

The disaggregation method described in the introduction section of this chapter, which is 
achieved via a machine learning algorithm to probabilistically model the behavior of the loads on the 
feeder without PV, allows the user to simultaneously disaggregate the native reactive power time-

series 𝑞𝑡
𝑛𝑎𝑡 and PV reactive power time-series 𝑞𝑡

𝑝𝑣
 from the measured net load AMI reactive power 

time-series 𝑞𝑡
𝑛𝑒𝑡 at each timestep 𝑡, as shown in the left-hand side of Figure 9-18.  

Simultaneously, the data-driven disaggregation model allows the engineer to find a maximum 
likelihood estimate for the control curve, as shown in the righthand side of Figure 9.17. These two 
problems are complementary in nature, and their precise formulation is available in [90]. 

 
Figure 9-18. Example reactive power disaggregation results from the time-series perspective (left) 

and the curve fitting perspective (right). 95% confidence interval bands shown in right. 

9.6.4. Estimation Using Sparse Time-series Sampling 

To use the sparse time-series sampling method to reconstruct the Volt-VAR control curve, 

an engineer must specify the number of permitted time-series samples 𝑃 that are then optimally 
selected using the cost-constrained QR decomposition described in [91]. This is achieved by forming 
a physics-based design matrix of candidate control curves evaluated over the data stream of the 

observed control variable. For 𝑁 candidate Volt-VAR control curves with 𝑀 time-series 
measurements, this matrix is structured as below. 
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𝚿 = [

𝜙Θ1(𝑣1
𝑝𝑐𝑐
) ⋯ 𝜙Θ𝑁(𝑣1

𝑝𝑐𝑐
)

⋮ ⋱ ⋮
𝜙Θ1(𝑣𝑀

𝑝𝑐𝑐
) ⋯ 𝜙Θ𝑁(𝑣𝑀

𝑝𝑐𝑐
)
] 

The optimal low-rank design matrix  𝚿𝒓 ∈ ℝ
𝑀×𝑅  to extract the temporal patterns is then 

found through the truncated singular value decomposition (SVD), as described in [93]. The 

algorithm then selects an optimal linear measurement matrix 𝑪 ∈ ℝ𝑃×𝑀 that allows us to extract 

𝑝 timesteps where the estimation problem is well-conditioned. The injection state estimation can 
then be related to the design matrix and measurement matrix via the following linear system. 

𝒙̂ = 𝚿𝒓𝒂̂ = {
(𝑪𝚿𝒓)

−1𝒒𝑛𝑒𝑡 𝑖𝑓 𝑃 = 𝑅

(𝑪𝚿𝒓)
 †𝒒𝑛𝑒𝑡 𝑖𝑓 𝑃 > 𝑅

 

Where † is the Moore-Penrose pseudoinverse and 𝒒𝑛𝑒𝑡 is the 𝑀-dimensional net reactive 
power time-series seen by the AMI. 

 

Figure 9-19. A set of candidate Volt-VAR curves as a function of PCC voltage and time (left) and 
the results of the sparse time-series sampling method of reconstructing the control curve 

response (right). 

Referencing [91], a relationship between the low-rank design matrix 𝚿𝒓 sampled by the 

measurement matrix 𝑪 can be formed with the QR decomposition. This relationship has one of the 

following forms, depending if the number of measurements 𝑃 = 𝑅 or if 𝑃 > 𝑅: 

{
𝚿𝒓
𝑇𝑪𝑇 = 𝑸𝑹 𝑖𝑓 𝑃 = 𝑅

(𝚿𝒓𝚿𝒓
𝑇) 𝑪𝑇 = 𝑸𝑹 𝑖𝑓 𝑃 > 𝑅

 

In the case of Volt-VAR, the candidate control curves are evaluated over the measured PCC 
voltage time-series to provide a range of possible reactive power responses that could be responsible 

for the unknown contribution of 𝑞𝑡
𝑝𝑣

 to 𝑞𝑡
𝑛𝑒𝑡. These columns of the data matrix are then reordered 

into a chronological time-series, and the preferred filtering variable within the AMI data is used a 
cost constraint. In the case of Volt-VAR, this was found to be the real power time-series, as 
discussed in the previous control curve regression section. The optimal samples selected are 
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therefore the 𝑝 timesteps measured by the AMI so that |𝑞𝑡
𝑝𝑣| > |𝑞𝑡

𝑛𝑎𝑡|. An example of this process 

is illustrated in Figure 9-19. The selected samples can then be input into the control curve regression 
procedure. 

9.7. Summary of Completed Work 

This chapter has presented a set of physics-based, data-driven methods for the detection and 
estimation of the many parameters that characterize the impacts of BTM PV on distribution grids. 
The presented algorithms provide a variety of methods for predicting unknown BTM PV 
characteristics under varying data input requirements, and with varying levels of dependence on 
feeder models. The diversity and scope of the algorithms presented allows for engineers and utilities 
to achieve the characterization of BTM PV in many analysis scenarios faced by industry. 

The use cases of the algorithms can be broadly grouped into “model-derived.” or “data-
driven.” Model-derived algorithms in all cases incorporate information from both the distribution 
feeder model; specifically, they use model-derived sensitivity matrices. Therefore, the algorithms that 
fall into this category require access to a distribution feeder model that is assumed to be accurate. In 
contrast, “data-driven” algorithms denote algorithms that only require AMI data inputs to 
accomplish the designated task. These data input categories, the algorithms, and their use cases can 
be summarized as follows: 

1. Model-derived algorithms  

a. Location estimation of BTM PV in distribution feeders 

i. Section 9.3.1 – Location estimation without VRE impacts 

ii. Section 9.3.2 – Location estimation with VRE impacts 

b. Power factor estimation of BTM PV in distribution feeders 

i. Section 9.5.3 – Power factor estimation from voltage magnitudes 

2. Data-driven algorithms 

a. Estimation of BTM PV size, tilt, and azimuth 

i. Section 9.1 – Estimation of PV size 

ii. Section 9.2 – Estimation of BTM PV tilt and azimuth 

b. Estimation of BTM PV control characteristics 

i. Section 9.4 – Summary of methods for varying AMI data access scenarios 

ii. Section 9.5 – Power factor estimation  

iii. Section 9.6. – Volt-VAR control setting estimation  

The presented algorithms provide a suite of methods for characterizing the impacts of PV 
on distribution feeders. The varying scenarios and data input requirements considered allow the 
methods to be robust to a number of practical scenarios that may be faced by utilities and engineers, 
including cases where accurate distribution feeder models may not be available.  This work resulted 
in several publications [82], [83], [83], [84], [87], [90], [93]. 
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10. LOAD MODELING 

10.1. Task Overview 
Accurate load modeling within distribution planning tools is critical for effective system 

planning and equally important as the accurate representation of lines, transformers, voltage 
regulation equipment, and other utility assets. Growing penetration of distributed energy resources 
(DER) require distribution planners to assess a broader range of system conditions beyond peak 
load using increasingly detailed assessment methods such as quasi-static time-series (QSTS) power 
flow simulations and hosting capacity (HC) analyses. These assessments require more granular and 
accurate load models. Advanced Metering Infrastructure (AMI), and other modern utility 
measurement data streams, provide unprecedented visibility to distribution system loads and other 
conditions. However, it is not clear how conventional utility distribution load modeling practices, 
which are focused on representing peak load conditions based on limited measurement data, should 
evolve to address the emerging needs while effectively leveraging the increased visibility to loads 
provided by AMI and other emerging data streams. 

The objective of this task was to develop and evaluate improved, yet practical, distribution 
load modeling methods through leveraging AMI and other emerging data streams as illustrated in 
Figure 10-1. To this end, this task involved seven (7) research areas focusing on different aspects of 
distribution load modeling. The scopes of the seven research areas are summarized in Table 10-1 
and discussed in more detail in the following sections. 

 
Figure 10-1. Emerging data streams for load modeling 
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Table 10-1. Distribution load modeling research areas addressed in this task 

Report 
Section 

Load Modeling 
Research Area 

Scope of the Research Area Publication 

10.2 Industry Survey 

This research involved conducting an industry survey of the state-of-the-
art utility load modeling practices to: 1) Identify what data utilities have 
available and use for distribution load modeling, 2) Recognize the 
ongoing methods and practices commonly applied in the industry, and 3) 
Detect research and development needs to support future load modeling 
practices.  Report ID:  3002020036 

[95] 

10.3 
Spatial and 

Temporal Load 
Modeling 

In this research area, active and reactive power load modeling methods 
were developed and evaluated for improved spatial (across the feeder at 
a given time) and temporal (diverse feeder load conditions over time) 
representation.  Report ID:  3002015283 

[33] 

10.4 
Load Modeling 
with BTM PV 

This research area investigated practical methods to model loads and PV 
generation on distribution feeders with high penetration of net metered 
behind-the-meter (BTM) PV systems that mask the utility load 
measurements.  Report ID:  3002018983 

[96] 

10.5 
Phase-Specific 
Load Modeling 

The objective of this research area was to assess how well conventional 
utility load modeling methods represent highly unbalanced loading 
conditions, and how the methods can be improved to better represent 
such conditions.  Report ID: 3002019861 

[97] 

10.6 
Voltage Sensitive 

Load Modeling 

In this research area, a new method was developed for estimating 
system-wide parameters of voltage-sensitive load models. In this 
research area, the impacts of commonly used voltage sensitive load 
models and model parameters were also analyzed.  Report ID:  
3002021211 

[34] 

10.7 
Reactive Power 
Load Modeling 

The objective of this research area was to 1) develop a method to 
disaggregate capacitor bank reactive power generation from feederhead 
reactive power measurements, and 2) investigate the accuracy of 
different reactive power load modeling methods and propose approaches 
to improve them.  Report ID:  3002022354 

[76] 

10.8 
Load Modeling in 

DMS 

This research area assessed the load modeling and power flow 
simulation of a commercial DMS and compared them to those of a 
distribution planning software.  Report ID:  3002021516 

[98] 

 

This task was performed by EPRI as a part of EPRI’s on-going Enhanced Distribution Load 
Modeling effort, which has the objective of developing improved spatial and temporal distribution 
load modeling methods leveraging AMI and other emerging data streams. The roadmap of the effort 
is illustrated in Figure 10-2. 

https://www.epri.com/research/products/000000003002020036
https://www.epri.com/research/products/000000003002015283
https://www.epri.com/research/products/000000003002018983
https://www.epri.com/research/products/000000003002019861
https://www.epri.com/research/products/000000003002021211
https://www.epri.com/research/products/000000003002022354
https://www.epri.com/research/products/000000003002021516
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Figure 10-2. Roadmap of EPRI’s on-going distribution load modeling research effort 

10.2. State-of-the-Art Industry Survey 

This research area is discussed in detail in an EPRI Technical Report [95]. 

In this research area, EPRI conducted a survey on distribution load modeling with utilities 
that participate in EPRI’s Distribution Operations and Planning program. The survey, which 
consisted of 25 carefully selected questions, had three key objectives: 

1. Identify what data utilities have available and use for distribution load modeling 

2. Recognize the ongoing methods and practices commonly applied in the industry, and 

3. Detect research and development needs to support future load modeling practices. 

Figure 10-3 summarizes the key areas of the survey. Responses were collected from 42 
distribution system planners in North America and internationally (the geographic spread is 
illustrated in Figure 10-4). The participants represent 26 companies across 31 states in the United 
States, in addition to 5 companies from Canada, South Africa, and South Korea. In this way, the 
survey results illustrate the diversity of conditions that are currently experienced by distribution 
engineers to represent load and generation conditions in their systems. 
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Figure 10-3. The key areas of the load modeling survey 

 
Figure 10-4. The geographic spread of the responses 

The key findings from the survey were as follows: 

• Data availability and usage varies based on respondents and data types 

o AMI penetration levels range from 0% to 100% of the customers with 15-minutes being the 
most common AMI time resolution. 

o Some load data is widely available and used. For example, load energy consumption (kWh) is 
available for all respondents and is used in planning studies by 30% of the respondents. 

o AMI data is more widely available than it is used in planning. For example, AMI active power 
(kW) measurements are available for 74% of the respondents, but only 7% use the data for 
planning studies. Similarly, 64% of the respondents have access to AMI voltage measurements 
but only 4% have the data integrated in their planning models. 

o PV system AC (kVA) rating is the most commonly available and used PV information with 
78% of the respondents having it available and 22% using it in planning. PV system DC (kW) 
rating is also available for 70% of respondents but used in planning only by 12% of them. For 
most of the respondents, customer net metering measurements are available but PV system 
kW, kvar, or V measurements are not available. 

SURVEY
❑

❑

❑

❑

❑

❑
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o Some emerging load modeling data is commonly neither available nor in use. For example, 
DMS state estimated load data is available to only 30% of the respondents and is used in 

planning by no one. 

o The survey results illustrate a potential in distribution planning to increase the utilization of 
data that is readily available but currently not used. 

• Current load modeling practices are commonly based on load allocation 

o Loads are allocated to the peak load conditions by 74% of the respondents. 

o Load allocation is performed based on transformer kVA rating and customer kWh rating by 

43% and 36% of the respondents, respectively. 

o While feeder head sensor measurements are used for load allocation by 98% of the 
respondents, 50% of respondents also use recloser measurements for load allocation. 

• It is common to use simple or no voltage sensitivity models for loads 

o Constant power load models (load models that are not voltage sensitive) are frequently used 
by 82% of respondents. 

o Most (52%) respondents do not vary voltage sensitivity models of loads based on customer 
type. 

• While planning is largely based on assessing peak load conditions, time-series assessments are 

emerging 

o All respondents assess peak load conditions in planning. 

o Yearly load profiles are available for 22% of the respondents and 20% of the respondents use 
them for planning studies. 

o Only 7% of the respondents perform 576-hour (peak and minimum load days for each 
month). 

• Several potential improvement areas are identified to address the challenges and limitations related 
to current load modeling practices 

o Load masking and time-series load modeling are the most common challenges/limitations of 
current load modeling practices indicated by respondents. 

o Increased availability and integration of AMI data are the most common improvement needs 

for load modeling indicated by respondents. 

10.3. Spatial and Temporal Load Modeling 

This research area is discussed in detail in an EPRI Technical Report [33]. 

With growing penetrations of PV and other DER, there is an increasing need for more 
detailed representation of both spatial and temporal detail of loads. Spatial load modeling detail 
refers to the level of granularity to feeder load conditions for a given time instance. Spatial load 
modeling detail is important to accurately reflect the impact that distributed PV has on the feeder. 
Temporal load modeling detail refers to the level of granularity to diverse feeder load conditions 
over time. As the distribution impacts from PV and other DER vary greatly over time, temporal 
load modeling detail is important as it allows to more accurately capture DER distribution impacts. 

This research area analyzed improved spatial and temporal active and reactive power load 
modeling methods. This research area was divided into two parts: 

1. Time-Granularity Analysis: This first part focused on analyzing the impact that AMI load data 
time granularity has on quasi-static time-series load flow accuracy. 
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2. Assessment of Spatial and Temporal Load Modeling Methods: This second part focused on 
analyzing how different load modeling methods and levels of visibility to loads and DER influence 

load flow and hosting capacity analysis accuracy. 

These two parts are contrasted in Table 10-2 and discussed in more detail in the following 
subsections. 

Table 10-2. Two parts of spatial temporal load modeling research 

Part 1: Time-Granularity Analysis 
Part 2: Assessment of Spatial and Temporal Load 
Modeling Methods 

Objective: Analyze how time granularity 
of load data influences load flow accuracy 

Objective: Analyze how different load modeling methods 
and levels of visibility to loads and DER influence load 
flow and hosting capacity analysis accuracy 

Compare different time granularities (1-
min, 5-min, 15-min, 60-min) 

Perform all analysis at 15-min time granularity 

Perform all load modeling through 100% 
AMI penetration without DER 

Compare different load modeling methods and visibility 
levels 

Analyze scenarios without existing PV Analyze scenarios without and with existing PV 

Use Pecan Street data set (1-min) Use real utility AMI and PV data (15-min) 
 

10.3.1. Time-Granularity Analysis 

Utilities frequently record AMI data at 1-hour or 15-min resolution. Few, if any, utilities 
currently record AMI data at higher time granularity. There is limited understanding in how time 
granularity of AMI data influences load flow modeling accuracy and what granularity of AMI data 
would be needed for a given desired level of accuracy. To shed light into this, this first part of the 
spatial-temporal load modeling research area analyzed the impact that load data time granularity has 
on QSTS simulation accuracy. 

This assessment was performed on a modified version of the EPRI Ckt5 feeder model with 
1-minute AMI load profiles introduced in Section 3.1.1.1. Annual QSTS simulations were run at 
different time granularities (resolutions) to assess how the time granularity impacts the accuracy 
nodal voltages or element currents simulated with QSTS. The higher time granularities resulted in 
very large analysis input data and result data sets as illustrated in Table 10-3. In total, more than 4.6 
billion rows of result data were processed and analyzed as a part of the time granularity analysis. The 
quantity of results data clearly illustrates the challenges introduced by the emerging distribution 
system data sets and increasingly granular assessment methods. 

Table 10-3. The size of the time granularity analysis results data sets 

 hourly 15-min 5-min 1-min 

Annual Time-steps 8,760 35,040 105,120 525,600 

Monitored Buses 3,437 

Monitored Sections 2866 

Monitored Transformers 594 

Resolution-based Data Points 6.04e7 2.42e8 7.25e8 3.63e9 

Total Data Points 4,652,164,440 
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The QSTS simulation accuracies were analyzed separately for nodes/transformers/lines in 
the medium voltage primary and low-voltage secondary networks. Table 10-4 provides a very high-
level view of the time granularity results data set by showing the average (over all nodes/elements in 
a given category) errors in representing the worst-case (over time) conditions for the different time 
granularities. Clearly, coarser time granularities lead into higher QSTS simulation errors. Curiously, 
the errors roughly doubled as time granularity was decreased from 5-min to 15-min and from 15-
min to 60-min. Moreover, the accuracy at the edge of the system were more affected by the 
granularity of the AMI data. A very high-level guideline to distribution utilities would be to aim to 
have 15-min time granularity or better for medium voltage related applications and 5-min time 
granularity or better for low voltage related applications. However, the recommended/necessary 
time granularity depends on the accuracy requirements of a given application. 

Table 10-4. Average errors in representing the worst-case conditions for the analyzed time 
granularities 

Location Quantity Analyzed 5-min 15-min 60-min 

Medium Voltage 
Nodes 

Voltage 
(pu) 

+0.0006 (1.0038) +0.0013 (1.0038) +0.0027 (1.0038) 

Service Transformer 
Low-Voltage Nodes 

+0.0015 (0.9928) +0.0033 (0.9928) +0.0059 (0.9928) 

Low-Voltage 
Customer Nodes 

+0.0019 (0.9879) +0.0041 (0.9879) +0.0070 (0.9879) 

Medium Voltage 
Lines 

Element Loading 
(% of Rated) 

-0.23 (8.66) -0.48 (8.66) -0.84 (8.66) 

Low-Voltage 
Service Lines 

-2.99 (23.46) -5.62 (23.46) -9.25 (23.46) 

Low-Voltage 
Service Transformers 

-7.01 (65.71) -13.28 (65.71) -21.58 (65.71) 

 
The key take-away of the time-granularity analysis were as follows: 

• Time granularity of AMI data can considerably influence QSTS simulation accuracy. 

• The recommended time granularity depends on the application of interest and the desired level of 

accuracy. 

o For example, if the focus of the analysis is on the medium voltage, sufficient accuracy may be 
achieved with 15-min data. 

o On the other hand, if the focus is on the low voltage elements, data with 5-min or finer time 
granularity may be necessary to capture individual spikes in the demand that could create 

extreme conditions. 

• The errors are higher at high loading conditions compared to low loading conditions because of 

the higher magnitude in element loading being smoothed out by the coarser resolution data. 

• Load modeling with AMI data provides fairly good approximation of the behavior of the feeder 
no matter which resolution, particularly as compared to conventional utility load modeling 
practices. 

• The spatial-temporal load modeling analysis attempted to inform what is missed when AMI data 

is not available or utilized. 
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10.3.2. Assessment of Spatial-Temporal Load Modeling Methods 

The second part of the spatial-temporal load modeling assessed how different load modeling 
methods and levels of visibility to loads and DER influence load flow and hosting capacity analysis 
accuracy. The assessment involved the following four steps: 

• Step 1: Simulate the physical system utilizing an AMI active and reactive power profile for each 

load. 

• Step 2: Prepare synthetic “field measurement” data necessary for the given load modeling method. 
The synthetic field measurement data was obtained from the simulation performed using the utility 
AMI active and reactive power profiles. 

• Step 3: Model loads through load allocation or other method. 

• Step 4: Perform QSTS and hosting capacity simulations with the utilized load modeling method 

and quantify the accuracy of the given method. 

Table 10-5 summarizes the spatial and temporal load modeling cases that were evaluated. 

Table 10-5. Spatial and temporal load modeling cases analyzed shaded by level of detail  
(green: high detail, red: low detail) 

O
b

je
c
ti

v
e
 

Case 
Abbreviation 

Details 

Load Active Power 
Measurements 

Load Reactive Power 
Measurements SCADA 

Visibility 
(kW & Amps) 

Load 
Allocation 
Frequency Temporal 

Visibility 
Spatial 

Visibility 
Temporal 
Visibility 

Spatial 
Visibility 

R
e
f.
 Ref  

(BaseCase) 
Loads modeled directly with their 

AMI active and reactive power data 
15-min kW 

Load-
specific kW 

15-min kvar 
Load-specific 

kvar 
N/A N/A 

A
llo

c
a
ti
o
n

 F
re

q
u
e
n
c
y
 BAU 

(ALBAU) 
Business-as-Usual: Load allocation 

for the annual peak load 
Peak month 

kWh 

Load-
specific 

kWh 

Yearly 
average PF 

System-wide 
average PF 

Feeder head Peak month 

Monthly 
(ALMonthly) 

Load allocation for the peak load of 
each month 

Monthly 
kWh 

Load-
specific 

kWh 

Yearly 
average PF 

System-wide 
average PF 

Feeder head Month 

Time-wise 
(AL15Min) 

Load allocation for each 15-min 
instant 

Monthly 
kWh 

Load-
specific 

kWh 

Yearly 
average PF 

System-wide 
average PF 

Feeder head 15-min 

S
e
n
s
o
rs

 

BAU_S 
(ALBAU_S) 

BAU case with 3 additional feeder 
sensors 

Peak month 
kWh 

Load-
specific 

kWh 

Yearly 
average PF 

System-wide 
average PF 

Feeder head & 
3 feeder sensors 

Peak month 

BAU_TS 
(ALBAU_TS) 

BAU case with AMI data aggregated 
to each service transformer 

Peak month 
kWh 

Load-
specific 

kWh 

Yearly 
average PF 

System-wide 
average PF 

All service 
transformers 

N/A 

Ref_PAMI 
(BaseCase_PAMI) 

AMI kW data only (no AMI kvar 
data) 

15-min kW 
Load-

specific kW 
Yearly 

average PF 
System-wide 
average PF 

N/A N/A 

R
e
a
c
ti
v
e
 P

o
w

e
r 

M
o
d
e

lin
g

 

BAU_FPF 
(ALBAU_FPF) 

BAU case with feeder head reactive 
power profile 

Peak month 
kWh 

Load-
specific 

kWh 
15-min kvar 

Feeder head 
kvar 

Feeder head Peak month 

BAU_CYPF 
(ALBAU_CYPF) 

BAU case with customer-specific 
yearly average power factors 

Peak month 
kWh 

Load-
specific 

kWh 

Yearly 
average PF 

Load-specific 
PF 

Feeder head Peak month 

Monthly_CYPF 
(ALMonthly_CYPF) 

Monthly case with yearly average 
power factor of each customer 

Monthly 
kWh 

Load-

specific 
kWh 

Yearly 
average PF 

Load-specific 
PF 

Feeder head Month 

Monthly_CMPF 
(ALBAU_CMPF) 

Monthly case with monthly average 
power factor of each customer 

Monthly 
kWh 

Load-
specific 

kWh 

Monthly 
average PF 

Load-specific 
PF 

Feeder head Month 

 
The assessment was conducted on a modified version of the EPRI Ckt5 feeder model with 

1-Hour AMI load profiles introduced in Section 3.1.1.2. The QSTS simulation results (voltage and 
thermal loading at different levels on the feeder) from the analyzed spatial temporal load modeling 
cases are summarized in Table 10-6. 
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Table 10-6. Summary of spatial and temporal load modeling QSTS simulation results 
O

b
je

c
ti

v
e

 

Case Name 
(Case 

Abbreviation) 

Details 

Lowest Node Voltage Magnitudes 
[p.u.] 

Highest Thermal Loading 
[% of Rating] 

MV Nodes 
(MV) 

LV Nodes 

of Xfmrs 
(LV1) 

Customer 

Nodes 
(LV2) 

MV Lines LV Lines Xfmrs 

R
e
f.
 Ref  

(BaseCase) 
Loads modeled directly with their 

AMI active and reactive power data 
0.9888 0.9779 0.9720 12.40 26.81 70.04 

A
llo

c
a
ti
o
n

 

F
re

q
u
e
n
c
y
 

BAU 
(ALBAU) 

Business-as-Usual: Load allocation 
for the annual peak load 

+0.0025 +0.0048 +0.0062 -0.73 -14.28 -26.98 

Monthly 
(ALMonthly) 

Load allocation for the peak load of 
each month 

+0.0025 +0.0047 +0.0060 -0.70 -13.62 -25.80 

Time-wise 
(AL15Min) 

Load allocation for each 15-min 
instant 

+0.0019 +0.0040 +0.0053 -0.61 -13.50 -25.42 

S
e
n
s
o
rs

 

BAU_S 
(ALBAU_S) 

BAU case with 3 additional feeder 
sensors 

+0.0024 +0.0047 +0.0059 -0.62 -14.16 -26.56 

BAU_TS 
(ALBAU_TS) 

BAU case with AMI data aggregated 
to each service transformer 

+0.0022 +0.0023 +0.0026 -0.09 -6.98 -0.06 

Ref_PAMI 
(BaseCase_PAMI) 

AMI kW data only (no AMI kvar 
data) 

+0.0022 +0.0023 +0.0024 -0.08 +0.25 +0.19 

R
e
a
c
ti
v
e
 

P
o
w

e
r 

M
o
d
e
lin

g
 

BAU_FPF 
(ALBAU_FPF) 

BAU case with feeder head reactive 
power profile 

-0.0040 -0.0025 -0.0013 -0.46 -13.99 -25.98 

BAU_CYPF 
(ALBAU_CYPF) 

BAU case with customer-specific 
yearly average power factors 

+0.0036 +0.0060 +0.0073 -0.73 -14.23 -26.92 

Monthly_CYPF 
(ALMonthly_CYPF) 

Monthly case with yearly average 
power factor of each customer 

+0.0036 +0.0058 +0.0071 -0.70 -13.57 -25.72 

Monthly_CMPF 
(ALBAU_CMPF) 

Monthly case with monthly average 
power factor of each customer 

+0.0001 +0.0021 +0.0033 -0.70 -13.56 -25.70 

 
The key take-away from the QSTS analysis were: 

• Load modeling using real power measurement and a fixed power factor can provide relatively 

adequate results at the medium voltage level. 

• Having a fixed power factor will impact the way individual loads are modeled and thus the results 

from secondaries (low voltage). 

• The frequency of the real power (with fixed PF) load allocation show only minor improvements. 

• Additional sensors with real power measurement can improve load modeling accuracy. In 
particular, sensors at the service transformer or customer level noticeably improve the accuracy. 

In addition to QSTS analysis, the accuracy of the 12 considered spatial temporal load 
modeling cases were quantified with hosting capacity analysis. Five feeder locations were chosen for 
evaluating hosting capacity: 

• Location A: Single-phase MV bus associated with the LV bus with the highest voltage in the QSTS 

simulation base results. 

• Location B: Single-phase MV bus associated with the LV bus with high voltage magnitudes in the 

QSTS simulation. 

• Location C: Single-phase MV bus at the feeder end. 

• Location D: Three-phase MV bus at the mid feeder. 

• Location E: Single-phase LV bus with the highest voltage magnitude. 

The five hosting capacity locations of interest represent a range of feeder hosting capacity 
characteristics that were used to evaluate and compare alternative load modeling methods. The five 
locations are illustrated in Figure 10-5. For each location, hosting capacity was analyzed against 
steady-state voltage limits defined in ANSI C84.1 (+/- 5%) and the thermal constraints of each line 
and transformer as defined in the feeder model. 
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Figure 10-5. The five locations of interest evaluated in the HC analysis 

Figure 10-6 illustrates the nature of hosting capacity results by showing the percentiles of the 
daily hosting capacity errors in colors for the ALBAU load modeling case at location D (base case 
hosting capacity results are shown in grey). Here, ALBAU method overestimates the hosting 
capacity as it does not properly capture the diversity of loads. Figure 10-7 illustrates the annual 
hosting capacity duration curves for selected methods at location D. 

 
Figure 10-6. Example hosting capacity results: percentiles of the daily hosting capacity errors for 

the ALBAU load modeling case at location D 

A

C

B
D

E

63639.2

39742.3

8184.1.2.3
14846.3

X_63639_1.2
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Figure 10-7. Example hosting capacity results: annual hosting capacity duration curve for 

selected cases at location D 

Table 10-7 summarizes the hosting capacity results of the spatial temporal load modeling 
analysis. While the results have many details, a general conclusion of the results follows: 

• Hosting capacity accuracy depends on the load modeling method and the feeder location. 

• Spatial visibility to loads (AMI kW or transformer sensors) and more granular reactive power 
modeling (e.g. feeder power factor) tend to improve the accuracy of the hosting capacity analysis. 

Table 10-7. Summary of spatial and temporal load modeling hosting capacity results 

O
b

je
c
ti

v
e

 

Case Name 
(Case Abbreviation) 

Difference in Minimum Hosting Capacity 
[% with respect to reference HC] 

PV 
Location A 

PV 
Location B 

PV 
Location C 

PV 
Location D 

PV         
Location E 

A
llo

c
a
ti
o
n

 

fr
e
q
u
e
n
c
y
 

Business-As-Usual 
(ALBAU) 

31.6% 40.0% 25.0% 22.8% 25.0% 

Monthly Load Allocation 
(ALMonthly) 

26.3% 40.0% 25.0% 22.8% 25.0% 

Step-wise Load Allocation 
(AL15Min) 

31.6% 20.0% 25.0% 15.2% 25.0% 

S
e
n
s
o
rs

 

Branch sensors 
(ALBAU_S) 

31.6% 40.0% 25.0% 22.8% 25.0% 

Transformer sensors 
(ALBAU_TS) 

10.5% 20.0% 25.0% 15.2% 25.0% 

Real Power AMI 
(BaseCase_PAMI) 

10.5% 20.0% 25.0% 15.2% 25.0% 

R
e
a
c
ti
v
e
 

p
o
w

e
r 

m
o
d
e
lin

g
 

BAU: Feeder head step-wise PF 
(ALBAU_FPF) 

31.6% 20.0% 25.0% 7.6% 25.0% 

BAU: Customer-specific yearly avg PF 
(ALBAU_CYPF) 

31.6% 20.0% 25.0% 22.8% 25.0% 

Monthly: Cust-specific yearly avg PF 
(ALMonthly_CYPF) 

26.3% 40.0% 25.0% 15.2% 25.0% 

Monthly: Cust-specific monthly avg PF 
(ALMonthly_CMPF) 

31.6% 20.0% 25.0% 15.2% 25.0% 

 

Finally, Table 10-8 shows the computational performance and the data requirements for the 
12 spatial temporal load modeling cases. The computational time of each method is in the same 
order of magnitude although there are some differences between the methods. Some methods also 
result in many more load allocation factors but this may or may not be a concern depending on how 
the load allocation method would be implemented in simulation software. The key difference 
between the analyzed methods is in the data requirements. Some methods require several orders of 



 

159 

magnitude more input data that must be accessed, stored, and prepared for the analysis. This is not 
straightforward and distribution utilities and their data sets may not be prepared for such a daunting 
task. Hence, it is important to consider where the added data provides value that justifies the effort 
required. 

Table 10-8. Computational performance and data requirements for the spatial temporal load 
modeling cases 

Objective Case Name (Case Abbreviation) 
QSTS Time 

[s] 
HC Time 

[h] 
Load Data 

Points 
Allocation 

Factors 

Reference Reference (BaseCase) 3,587 8.24 96,640,320 - 

 
Allocation 
Frequency 

Business-As-Usual (ALBAU) 3,573 7.48 35,040 1,379 

Monthly Load Allocation (ALMonthly) 3,910 8.49 35,040 16,548 

Step-wise Load Allocation (AL15Min) 3,928 9.00 35,040 48,320,160 

Sensors 

Branch sensors (ALBAU_S) 3,574 7.51 140,160 1,379 

Transformer sensors (ALBAU_TS) 4,039 9.51 20,463,360 1,379 

Real Power AMI (BaseCase_PAMI) 3,573 6.12 48,320,160 - 

Reactive 

power 
modeling 

BAU: Feederhead step-wise PF (ALBAU_FPF) 4,188 16.65 70,080 1,379 

BAU: Customer-specific yearly avg PF 

(ALBAU_CYPF) 
3,647 7.73 35,040 1,379 

Monthly: Cust-specific yearly avg PF 
(ALMonthly_CYPF) 

3,565 8.12 35,040 16,548 

Monthly: Cust-specific monthly avg PF 

(ALMonthly_CMPF) 
3,559 8.01 35,040 16,548 

 

10.4. Load Modeling with BTM PV 

This research area is discussed in detail in an EPRI Technical Report [96]. 

Many distribution utilities have limited to no visibility to the operation of behind the meter 
(BTM) PV. Most utilities have only one meter per customer, metering the customer net load and 
providing limited visibility to the customer native load masked by PV generation. This limited 
visibility makes accurate load modeling difficult. High penetration of single-phase BTM PV also has 
the potential to increase magnitude and variability of the load unbalance, which makes accurate load 
modeling particularly important [99]. 

This research area investigated practical methods to model loads and PV generation on 
distribution feeders with high penetration of net metered BTM PV systems that mask the utility load 
measurements. In particular, this research area assessed five cases with different load modeling 
approaches that are summarized in Table 10-9 and motivated below. 

• Case 1: A separate meter was assumed for loads and BTM PV systems. In this case, loads and PV 
generation were directly modeled through AMI active and reactive power measurements. Case 1 
was used as a reference case to quantify the accuracy of Cases 2-5. 

• Case 2: The BTM PV systems are not modeled explicitly, and the loads are allocated based on 
customer net-metered kWh and scaled based on feeder net active power profile.  

• Case 3: The loads are modeled identically to Case 2, but the BTM PV systems are modeled 
explicitly based on the PV system AC and DC ratings, and a generic DC-power generation profile. 
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• Case 4: The BTM PV systems are modeled identically to Case 3, but the loads are scaled based 
on feeder estimated native active power profile, as opposed to the feeder net active power profile. 

In Case 4, loads are still allocated based on customer net load kWh. 

• Case 5: The BTM PV is modeled as in Cases 3 and 4, and the loads are allocated based on 
estimated customer native load kWh. In Case 5, loads are scaled identically to Case 4. Case 5 
investigated the value of allocating loads based on estimated native load kWh as opposed to net 
load kWh. 

Table 10-9. The five analyzed approaches to model loads on feeders with high penetration of BTM 
PV shaded with the color of detail (green: high, red: low) 

Case # 

Customer 
Measurement 

Used for Load 
Allocation (kWh) 

Feeder Head 
Measurement 

Used for Load 
Allocation 

Approach for Load 
Scaling in QSTS 

Simulation and 
TSHC Analysis 

Approach for 
Reactive Power 

Load Modeling 

Approach for PV 

System Modeling 

Case 1 - - AMI data AMI data AMI data 

Case 2 Net metering kWh 
Net phase currents 

at feeder head 
Net active power at 

feeder head 
Computed from net 
FH measurements 

No model 

Case 3 Net metering kWh 
Net phase currents 

at feeder head 
Net active power at 

feeder head 
Computed from net 
FH measurements 

PV systems 

following a time-
series profile 

Case 4 Net metering kWh 
Net phase currents 

at feeder head 
Approx. native load 

at feeder head 

Computed from 

approx. native load 
at feeder head 

PV systems 

following a time-
series profile 

Case 5 
Approx.  

native load kWh 

Approx. 
native load FH 

power 

Approx. native load 
at feeder head 

Computed from 
approx. native load 

at feeder head 

PV systems 
following a time-

series profile 

 

The analysis was performed on a modified version of the EPRI Ckt5 distribution feeder with 
a high penetration of BTM PV systems introduced in Section 3.1.1.3. For each Case 1-5, quasi-static 
time-series (QSTS) power flow simulations and time-series hosting capacity (TSHC) analysis was 
first performed and then, the accuracy of Cases 2-5 was quantified using Case 1 as a reference. For 
QSTS simulations, the accuracy of the maximum and minimum voltage magnitudes, and the 
maximum thermal loadings caused by forward and reverse power flow were analyzed. For TSHC, 
both the minimum and percentiles of the annual hosting capacity were analyzed. 

The key take-aways from this analysis were as follows: 

• Scaling the allocated loads for time-series assessments based on feeder native active power 
estimated based on SCADA measurements and estimated PV generation profile (Case 4) resulted 
in considerably better accuracy as compared to scaling the loads based on the net load profile 
(Cases 2 and 3). 

• Cases 2 and 3 cannot be easily extended to evaluating future scenarios (e.g., load growth) or what-
if studies (e.g., smart inverter functions) given that these methods do not accurately model native 
load and PV generation. 

• Modeling loads with net-metering data while also modeling PV systems (Case 3) leads to double 
counting the feeder PV generation and thus, considerably over-estimating PV impacts. 

• Modeling loads with net-metering data without modeling PV systems (Case 2) can reasonably well 
represent the current (historical) feeder conditions. However, this approach under-estimates PV 
impacts particularly at the low-voltage secondary circuits. 
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• Allocating loads based on net-metering kWh for each customer (Case 4) resulted in the best 
approximation of the HC across the five feeder hosting capacity locations of interest by capturing 
not only the minimum value but also other representative percentiles in the year-long hosting 
capacity analysis. 

• Allocating the loads based on customer estimated native load kWh (Case 5) resulted in higher load 
values for customers with PV systems, as compared to allocating the loads based on customer net 
load kWh (Case 4). Conversely, customers without a PV system were allocated smaller load values. 

• Allocating loads based on estimated native load monthly kWh for each customer (Case 5) did not 
considerably improve the analyzed metrics as compared to allocating the loads based on net-
metering kWh for each customer (Case 4). This could be partially explained by the feeder peak 
load (for which loads were allocated) occurring during evening hours when PV generation was 
small. Larger differences between Cases 4 and 5 may be obtained for feeders with peak load 
occurring during higher PV generation times. The performance of these two approaches can also 
differ more for other metrics that were not analyzed in this research area. 

10.5. Phase-Specific Load Modeling 

This research area is discussed in detail in an EPRI Technical Report [97]. 

The objective of this research was to assess how well conventional utility load modeling 
methods represent highly unbalanced loading conditions, and how the methods can be improved to 
better represent such conditions. To this end, eight approaches to represent highly unbalanced 
feeder loading conditions, which are summarized in Table 10-10, were analyzed as a part of this 
research area. 

Table 10-10. Eight analyzed approaches to model loads on feeders with highly unbalanced loading 
shaded with the color of detail (green: high, red: low) 

Case 
# 

Case Name 
Feeder 
Model 

Feederhead 
Amps for Load 

Allocation 

Feederhead 
kW for Scaling 

Loads 

Reactive Power 
Modeling 

Motivation 

1 Ref Unbalanced N/A AMI P AMI Q Reference case 

2 Ref Bal Balanced N/A AMI P AMI Q Accuracy of balanced circuit modeling 

3 BAU Unbalanced Phase-Avg Total kW 
Total kvar 

(ALBAU_FPF) 
Accuracy of BAU 

4 BAU Bal Balanced Phase-Avg Total kW 
Total kvar 

(ALBAU_FPF) 
Accuracy of BAU with balanced circuit 

modeling 

5 BAU 3ph-I Unbalanced Phase-Specific Total kW 
Total kvar 

(ALBAU_FPF) 
Value of phase currents in load allocation 

6 BAU 3ph-P Unbalanced Phase-Avg Phase kWs 
Total kvar 

(ALBAU_FPF) 
Value of phase-specific kW profiles 

7 BAU 3ph-I-P Unbalanced Phase-Specific Phase kWs 
Total kvar 

(ALBAU_FPF) 
Combined value of phase currents in load 

allocation & phase-specific kW profiles 

8 BAU 3ph-I-P-PF Unbalanced Phase-Specific Phase kWs 
Phase-specific 
power factors 

Combined value of phase currents in load 
allocation & phase-specific kW & kvar profiles 

 

For this research area, a modified version of the EPRI Ckt5 feeder model was implemented 
with a significant, yet realistic, level of unbalance. Figure 10-8 shows the voltage profiles of the 
original and modified EPRI Ckt5 feeder models during a high voltage unbalance time instance. As is 
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evident from Figure 10-8, the modified feeder model has considerably higher voltage unbalance, as 
desired. 

  
Figure 10-8. The voltage profiles of the original EPRI Ckt5 feeder model (left) and the modified 
version with high unbalance (right) during a high voltage unbalance time instance. Each color 

represents voltage magnitudes for a given phase in the model. 

The modified version of EPRI Ckt5 OpenDSS feeder model was used to analyze the 
accuracy of load modeling Cases 1, 3, and 5-8. However, to analyze the accuracy of balanced circuit 
modeling in Cases 2 and 4, a balanced version of the feeder model was created in OpenDSS. In the 
process of creating the balanced feeder model, a bug in OpenDSS was detected and fixed in its 
source code. Prior to fixing this bug, the balanced models created with the software produced 
incorrect impedance values for some types of conductors and thus, resulted in incorrect voltage 
profiles. 

Table 10-11 lists the high-level summary of the QSTS simulation results for the eight 
analyzed load modeling cases. While the results are discussed in detail in the published EPRI report, 
key findings can be summarized as follows. 

• The load modeling approaches based on load allocation (Cases 3-8) 

o Captured feederhead active power fairly accurately. 

o Overestimated feeder reactive power consumption (due to double counting the losses). 

o Underestimated the node-average time-minimum 3ph-bus L-L voltages. 

o All methods (except those based on balanced circuit model) had comparable accuracy in 
capturing the time-maximum element loadings. 

o Did not accurately capture service transformer and service line loadings. 

These findings match with load modeling analysis presented in Section 10.3. 

• Balanced circuit modeling (Cases 2 and 4) 

o Did not capture any current or voltage unbalance and hence, significantly underestimated the 
voltage drops over time and across the feeder nodes, but particularly at the low-voltage level. 
The time-minimum voltages were underestimated on average by 0.01 – 0.026 p.u. 

o Represented less accurately feederhead phase active and reactive powers. 

o Captured less accurately the time-maximum MV line loadings but was comparably accurate to 
unbalanced modeling in capturing LV line and transformer loadings. 
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o For these reasons, balanced circuit modeling is not recommended particularly on feeders with 
high load unbalance. 

• Using phase-specific currents in load allocation (Cases 5, 7 and 8) as compared to using phase-
average currents (Case 3 and 6) 

o Represented better the range of L-N and L-L voltage magnitudes (more accurate voltage 
profile and/or more accurate range between phases and phase-phase pairs). 

o Represented better the feederhead L-N and L-L voltage unbalance. 

• Using phase-specific load profiles for scaling loads in QSTS simulation (Cases 6, 7 and 8) as 

compared to using phase-average load profiles (Cases 3 and 5) 

o Using phase-specific load profiles in QSTS simulation without phase-specific currents in load 
allocation (Case 6) captured feederhead phase powers, and feeder current and voltage 
unbalance was worse than using phase-specific currents in load allocation without phase-
specific load profiles in QSTS simulation (Case 5). 

o If the loads were allocated based on phase-specific currents, scaling loads in QSTS simulation 
based on phase-specific load profiles (Case 7 vs. Case 5) resulted in minimal 
difference/improvement in the accuracy of simulated time-minimum node voltages. This may 
be explained by the load allocation time instance (feeder peak load) capturing the node time-
minimum voltages fairly accurately. Phase-specific load profiles may have a higher benefit on 
others’ metrics. 

• Best overall accuracy was obtained with using phase-specific currents in load allocation and phase-
specific load profiles in QSTS simulation (Case 7 and 8). Using phase-specific power factor 
profiles (Case 8 vs. Case 7) did not provide clear improvement for the metrics analyzed. More 
noticeable differences may be experienced for metrics not analyzed here. 

Table 10-11. Summary results for the eight analyzed approaches to model loads on feeders with 
highly unbalanced loading 

Case Name 

Bus-Average of Time-Minimum 
Voltages - Difference to Ref Case 
[p.u.] 

Average of 3ph 
Buses L-L Time-
Min Voltages - 
Difference to 
Ref Case [p.u.] 

Element-Average of Time-Max 
Loadings - Difference to Ref Case 
[% of NormAmps] 

MV Buses 
Xfmr LV 
Buses 

Customer 
LV Buses 

MV Lines LV Lines Xfmrs 

Ref 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ref Bal 0.009 0.021 0.026  4.542 0.154 0.784 

BAU 0.005 0.003 0.002 0.006 0.245 13.934 25.471 

BAU Bal 0.003 0.015 0.020  4.412 13.962 25.384 

BAU 3ph-I 0.007 0.005 0.004 0.006 0.322 13.925 25.515 

BAU 3ph-P 0.006 0.004 0.002 0.006 0.187 13.865 25.237 

BAU 3ph-I-P 0.007 0.006 0.005 0.006 0.272 13.865 25.310 

BAU 3ph-I-P-PF 0.007 0.006 0.005 0.006 0.271 13.860 25.296 

 

Time-series hosting capacity was performed with QSTS simulations quantifying the 
maximum rated size of a single PV system that can be accommodated at one of five feeder locations 
of interest without exceeding defined thresholds at any time during the year. Figure 10-9 illustrates 
the aggregated magnitudes of the hosting capacity errors for Cases 3, 5, 6, 7 and 810. As can be seen 
in the figure, total values for feeder head (FH) active power and power factor (Case 5) resulted in 
the same percent error magnitude as using phase-specific values for FH active power and power 

 
10 HC was not analyzed for Cases 2 and 4 for which the QSTS simulation results demonstrated significant error levels. 
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factor (Case 8). Cases with phase-specific FH active power and total FH power factor (Cases 6 and 
7) resulted in the biggest aggregated error for hosting capacity calculation across the three-phase and 
single-phase locations. 

 
Figure 10-9. Aggregated magnitude of HC errors 

Separate from the analysis above, this research area also analyzed how accurately the 10 load 
modeling methods discussed in Section 10.3 represent the current and voltage unbalance. The key 
findings of this analysis were as follows. 

• Modelling loads with the AMI active power or with transformer-level active power measurements 
were most accurate in capturing time-maximum current and voltage unbalances. 

• Methods based on allocating the loads for annual peak or monthly peak were least accurate in 
capturing time-maximum current and voltage unbalances. 

• As compared to allocating loads to annual/monthly peak, performing load allocation for each time 
instance yielded slightly more accurate time-maximum current and voltage unbalances. 

• As compared to using feederhead sensor only, leveraging feeder sensors yielded more accurate 
time-maximum current unbalances but negligible improvement in time-maximum voltage 
unbalances. 

10.6. Voltage Sensitive Load Modeling 

This research area is discussed in detail in an EPRI Technical Report [34], and had two parts: 

1. Develop a new method for estimating system-wide parameters of voltage-sensitive load models, 

and 

2. Analyze the impacts of commonly used voltage sensitive load models and model parameters.  

These two parts are discussed in the following two subsections. 

10.6.1. Estimating the Parameters of Voltage Sensitive Load Models 

A method to estimate voltage-sensitive model parameters, [100], based on AMI data was 
developed.  The method, which is illustrated in Figure 10-10, starts by processing customer by 
customer AMI active power, reactive power, and voltage measurement profiles, filtering voltage 
change events from them, and sampling a measurement point before and after each voltage change 

event. Then, exponential model parameters 𝑛𝑝 and 𝑛𝑞 are estimated with ordinary least squares 

(OLS) linear regression for each voltage change event for each customer. Next, the estimated 
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parameters are combined to the feeder level as a weighted average based on customer energy 
consumption. Last, statistical representative values for the parameters are selected for the entire 
feeder. 

 
Figure 10-10. Method to estimate the parameters of voltage-sensitive load models 

The developed parameter estimation method was tested on a utility AMI data set resulting in 

the following feeder-level parameter estimates: 𝑛𝑝 = 3.32 and 𝑛𝑞 = 4.29. These parameters were 

somewhat high compared to values reported in the literature but still within the expected ranges. 
While it was not possible to validate the accuracy of the estimated parameters, their impact on QSTS 
simulation was analyzed as a part of the analysis discussed in the following subsection. 

10.6.2. Analysis of Typical Voltage-Sensitive Load Models 

Selected voltage-sensitive load models and model parameters commonly used in the industry 
were analyzed. The models and model parameters were selected based on a review of literature and 
distribution modeling software. The following five voltage-sensitive load model-parameter 
configurations were analyzed: 

• Case 1: ZIP model with constant power 

• Case 2: ZIP model with constant current 

• Case 3: ZIP model with constant impedance 

• Case 4: Exponential model with sensitive values (𝑛𝑝 = 1.7, 𝑛𝑞 = 4) 

• Case 5: Exponential model with estimated parameters (𝑛𝑝 = 3.3, 𝑛𝑞 = 4.3) 

Cases 1-3 were selected to capture the corner case impacts of the ZIP model, Case 4 to 
capture the voltage sensitive exponential model, and Case 5 to capture the impact of the exponential 
model with the parameters estimated with the developed method. For each case, an annual QSTS 
simulation was performed on the EPRI Ckt5 feeder model. To focus the analysis on the impacts of 
the voltage-sensitive load models and parameters, the loads were modeled in the QSTS simulations 
with their AMI active and reactive power recordings. For each case, the resulting minimum voltage 
magnitudes and maximum element loadings were captured and compared to the other cases. Table 
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10-12 lists the summary results of the voltage sensitive load modeling comparison. The key findings 
can be summarized as follows. 

• Node-average time-min voltages were very similar for all node types (differences ≤0.007 p.u.). 

• Element-average time-max element loadings were very similar for all element types (differences 

≤4.673%). 

• Differences in the feeder energy consumption were ≤1.612%, which can be important for CVR 

and similar assessments. 

• The differences were negligible for node voltage and element loading related metrics, but could 
be significant for energy consumption related metrics, which could be important for CVR or 
similar assessments. 

Table 10-12. Summary of the voltage sensitive load modeling comparison 

Case 
Name 

Bus-Average of Time-Minimum 
Voltages - Difference to ZIP_P 

Case [p.u.] 

Element-Average of Time-Max 
Loadings - Difference to ZIP_P 

Case [% of Rated] 

Feeder Energy Consumption - 
Absolute Percentage 

Difference to ZIP_P Case [%] 

MV Buses 
Xfmr LV 
Buses 

Customer 
LV Buses 

MV Lines LV Lines Xfmrs Active Power Reactive Power 

ZIP_P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

ZIP_Z 0.003 0.004 0.005 0.789 0.753 3.174 0.822 0.349 

ZIP_I 0.002 0.002 0.002 0.424 0.421 1.725 1.612 0.650 

ExpSens 0.004 0.005 0.006 0.682 0.669 2.826 0.245 0.723 

ExpEst 0.006 0.007 0.007 1.159 1.073 4.673 1.108 0.889 

 

10.7. Reactive Power Load Modeling 

This research area is discussed in detail in an EPRI Technical Report [76]. 

Reactive power demand of loads have commonly been modeled through power factor that 
some utilities adjust based on customer class, feeder voltage level, and other characteristics. The 
conventional reactive power load modeling approaches (fixed-in-time and feeder-wide power factor) 
provide limited spatial-temporal accuracy and detail as power factors are known to vary across 
customers and time. However, it is challenging to improve the accuracy and detail of reactive power 
load allocation given that the commonly available feeder reactive power measurements are typically 
masked by switched unmonitored capacitor banks. 

This research area investigated the accuracy of different reactive power load modeling 
methods and proposed approaches to improve them. This research area was divided into the 
following two parts. 

1. Feederhead Native Reactive Power Estimation: In this first part, a practical method was 
proposed to estimate the reactive power produced by capacitor banks to allow separating feeder 
net reactive power measurements to native reactive power and reactive power produced by 
capacitors. 

2. Improved Reactive Power Load Modeling: In this second part, different reactive power load 
modeling approaches were assessed, and a load modeling method was proposed to improve the 
spatial and temporal diversity of the reactive power load model. 

 These two parts are discussed in the following subsections. 
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10.7.1. Feederhead Native Reactive Power Estimation 

In this part, a practical method was developed for estimating the feeder native reactive 
power demand based on SCADA and AMI measurements. As a side product, the developed method 
also estimates the status of switched capacitor banks and feeder reactive power losses. The 
developed algorithm is based on identifying clusters in correlations of feederhead active power and 
reactive power, as illustrated in Figure 10-11 on the right. The algorithm was initially developed and 
tested on various modified versions of EPRI Ckt5 by changing the location, size, number of 
capacitor banks on the system, one of which is shown in Figure 10-11 on the left. The performance 
of the developed algorithm was further tested on several utility feederhead measurement data sets, 
different time-granularity of the feederhead measurements, etc. 

 
Figure 10-11. A modified version of the EPRI Ckt5 feeder with the capacitor locations shown with 

the red circles (left) and the principle of capacitor state identification algorithm (right) 

The key findings from this research related to estimating the feeder native reactive power 
can be summarized as follows. 

• Capacitor state changes can be identified by plotting the feederhead real power versus the 

feederhead reactive power. Distinct hyperplanes can be observed in many cases. 

• In some cases, feeder seasonal power factor characteristics can make it challenging to identify the 
distinct hyperplanes. This challenge can potentially be overcome by creating separate feederhead 
real power vs. reactive power scatter plots for each month of the year and/or hour of the day. 

• Some points on the scatter plot may fall in-between the hyperplanes due to a capacitor state change 
occurring in the middle of the time-step (1 hr or 15 min depending on SCADA measurement 
frequency). 

• A methodology was proposed to identify capacitor states by incrementally clustering datapoints 
by hyperplanes so that the native reactive power flow at the feederhead can be determined. 

10.7.2. Improved Reactive Power Load Modeling 

Methods were also developed for modeling the reactive power of individual customers based 
on SCADA measurements, AMI real power measurements, and the feeder native reactive power 
estimated with the developed method. The methods developed in this research area expanded the 
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spatial-temporal load modeling methods discussed in Section 10.3 that largely focused on active 
power modeling. 

In this research area, six different load modeling methods listed in Table 10-13 were 
developed to investigate the value of four aspects to reactive power load models: 

• Benefits of scaling loads with separate active power and reactive power profiles, 

• Benefits of power-based load allocation method (as opposed to current-based), 

• Benefits of phase-specific load allocation method, and 

• Benefits of step-wise allocation. 

Table 10-13. Summary of the load modeling methods analyzed in this research area 

Description 

Load P model Load Q model 

Visibility level 
Load 

allocation 
method 

Load 
allocation 
frequency 

Load 
scaling for 

QSTS 
Simulation 

Motivation 
Temporal Spatial Temporal Spatial 

Business-As-Usual 
(ALBAU) 

Peak 
month 
kWh 

Customer-
specific 

Yearly 
average PF 
(feederhead) 

1 PF for all 
loads 

Current mag. – 
Customer kWh 

Current-
based 

allocation 

Once for 
Peak month 

1 profile 
(feederhead 

kW) 

Current utility 
practice 

Business-As-Usual 
(ALBAU_pqProf) 

Peak 
month 
kWh 

Customer-
specific 

Allocated on 
yearly avg PF 

– Time-
varying due to 

Q prof. 

1 PF for all 
loads 

Current mag. – 
customer kWh 

Current-
based 

allocation 

Once for 
Peak month 

2 profiles 
(feederhead 
kW/kVAR) 

BAU allocation but 
scaling load with real 
and reactive power 
profiles (vs 1 profile) 

Business-As-Usual – 

Improved PF 
(ALBAU_improvedPF) 

Peak 

month 
kWh 

Customer-
specific 

Iterated load 
PF for 

feederhead – 
Time-varying 
due to Q prof. 

1 PF for all 
loads 

Feederhead 

kW/kvar – 
customer kWh 

Current-

based 
allocation 

Once for 
Peak month 

2 profiles 

(feederhead 
kW/kVAR) 

Improving the load’s 

power factor to better 
reflect feederhead 

power factor 

Power-based LA – 
Yearly LA 

(ALBAU_PQ_total) 

Peak 
month 
kWh 

Customer-
specific 

Allocated for 
feederhead – 
Time-varying 
due to Q prof. 

Following 
customer 

kWh so no 
diversity 

Feederhead 
kW/kvar – 

customer kWh 

Power-based 
allocation 
(P&Q) – 

phase AVG 

One for 
peak month 

2 profiles 
(feederhead 
kW/kVAR) 

Load allocation to 
reflect feederhead 
real and reactive 

powers using phase 
average P&Q values 

(2 Cfactors) 

Power-based LA – 
Yearly LA 

(ALBAU_PQ_phase) 

Peak 
month 
kWh 

Customer-
specific 

Allocated for 
feederhead – 
Time-varying 
due to Q prof. 

Following 
customer 

kWh so no 
diversity 

Feederhead 
kW/kvar – 

customer kWh 

Power-based 
allocation 
(P&Q) – 
phase-
specific 

One for 
peak month 

2 profiles 
(feederhead 
kW/kVAR) 

Load allocation to 
reflect feederhead 
real and reactive 

powers using phase 
specific P&Q values 

(6 Cfactors) 

Power-based LA – 
step-wise LA 

(AL15min_PQ_phase) 

Monthly 
kWh 

Customer-
specific 

Allocated 
using Monthly 

kWh 

Following 
customer 

kWh so no 
diversity 

Feederhead 
kW/kvar – 

customer kWh 

Power-based 
allocation 
(P&Q) – 
phase-

specific 

15 Min N/A 

Increased load 
allocation to match 

time-varying real and 
reactive power at 

feederhead. 

 
The methods listed in Table 10-13 were tested on the EPRI Ckt5 feeder model introduced 

Section 3.1.1.2. An annual QSTS simulation was performed for each load modeling method and the 
accuracy of each method was quantified against a BaseCase scenario, which was identical to Section 
10.2 and modeled all loads with their AMI active and reactive power profiles. The accuracy of the six 
developed load modeling methods was evaluated with respect to simulated node voltages and 
element loadings. The key findings from this assessment included the following. 

• For a case study analyzed in this research area, the improved reactive power load modeling 
methods noticeably increased the accuracy of simulated feeder voltages but resulted in only a 
minor improvement on the accuracy of simulated element thermal loadings. This indicates that 
accurate reactive power load modeling may be more beneficial for applications that require 
accurately simulated voltages than for applications that require accurately simulated distribution 
equipment thermal loadings. 
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• Power-based load allocation or a load allocation with an improved power factor improves the 
reactive power load modeling accuracy by better representing the real and reactive power at the 
feederhead (instead of current magnitude) with more noticeable differences for peak load and 
other high loading conditions. 

• The benefits of phase-specific load allocation are more apparent on feeders, which have 
considerably unbalances (active power and power factor). Otherwise, phase-average load 
allocation can provide adequate performance. 

• Step-wise load allocation models the feeder (real and) reactive power losses more accurately (than 
a single load allocation and scaling based on feederhead profiles) especially during off-peak load 
conditions. 

• Scaling loads with separate P&Q profiles (as opposed to P profile only) represents better the 
temporal diversity of the load model through improving the load model during off-peak 

conditions. 

• Compared to scaling loads with feederhead net load measurements, scaling loads with estimated 
feeder native load improves the load modeling accuracy through more accurate representation of 
losses. 

• The load modeling methods analyzed in this research area only require feederhead SCADA 
measurements and customer monthly energy consumption that are available for many distribution 
utilities. 

10.8. Load Modeling in DMS 

This research area is discussed in detail in an EPRI Technical Report [98]. 

Distribution utilities are increasingly deploying distribution management systems (DMS) that 
perform power flow simulations with detailed load modeling methods. The implementation of those 
load modeling methods and power flow simulations is typically proprietary for the commercial DMS 
and hence, limited information is available between different commercial DMS. As a result, it is not 
clear how DMS load modeling may differ from conventional distribution load modeling methods. It 
is also not clear how the power flow results may differ between DMS and commercial distribution 
planning software. 

This research area assessed the load modeling and power flow simulation of a commercial 
DMS and compared them to those of a distribution planning software. The objective of this 
research area was to provide distribution utilities with increased understanding of the potential 
differences in load models and power flow results between DMS and planning software and 
approaches to reconcile the differences. The findings from this research area can help to increase the 
understanding and confidence of these DMS capabilities. 

Literature relevant for the assessment of DMS functions discussed in this research area was 
reviewed. The review encompassed numerous reports and other publications from EPRI, NREL, 
Argonne National Laboratory, and other entities, as well as the documentation of a commercial 
DMS tool. The key lessons learned include: 

• Many DMS functions and applications have been proposed in the literature and are available from 

commercial DMS. For this research area, the most relevant DMS functions were: 

o DMS load modeling (also referred to as load estimation), 

o DMS power flow (also referred to as online power flow), and (to some extent) 
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o Distribution state estimation (DSSE). 

• These three functions are not clearly defined in the literature because commercial DMS have 
proprietary implementations with limited documentation of how particular functions are 
implemented. As a result, the implementation of the three relevant functions is likely to differ 

between commercial DMS vendor software. 

• Load modeling in a commercial DMS may be performed by the DSSE function (potentially 
without a separate load modeling engine). Conversely, load modeling in a DMS may be performed 
by a separate engine but may involve aspects resembling DSSE. In other words, DMS load modeling 
may have fundamental differences to conventional load modeling in distribution planning software making apples 
to apples comparison challenging. 

• No literature was identified on past assessments evaluating commercial DMS load modeling, 
power flow, DSSE, comparing DMS with planning tools, or related topics. In other words, the 

research performed in this research area seems to (one of) the first publicly available assessments of its type. 

The assessment of differences between planning and operational tools was conducted on a 
single utility feeder that is introduced in Section 3.1.1 The following data was available for the 
assessment (for details, see [98]). 

• Utility feeder planning model, which was converted into OpenDSS to minimize unknowns in load 
modeling and power flow simulation 

• DMS results obtained from the utility commercial DMS for two “DMS snapshots” taken at: June 
3, 2021 at 13:09 and June 29, 2021 at 17:18 

• AMI data available for most customers on the feeder 

• SCADA data from the feederhead and other available locations 

The assessment consisted of three parts illustrated in Figure 10-12: 1) Load Modeling 
Assessment, 2) Power Flow Assessment, and 3) Combined Load Modeling and Power Flow 
Assessment. 

 
Figure 10-12. Three parts of the DMS load modeling assessment 

The DMS load modeling and power flow results from the two DMS snapshots were 
compared to five OpenDSS cases: 

Load Modeling Assessment:

Objective: Analyze the load 
modeling differences

Inputs: Identical measurements 
and parameters for load allocation

Process: Perform load 
modeling/allocation in each 

software and extract the results

Outputs: kW & kVar of each load
kW & kvar at feeder and other 

aggregation levels

Power Flow Assessment:

Objective: Analyze the power flow 
differences when loads are 

modeled identically

Inputs: Identical load models 
(identical kW & kVar for each load)

Process: Perform power flow 
simulation in each software and 

extract the results

Outputs: Amps, Volts, kWs, kVars
across the feeder

Combined Load Modeling & 
Power Flow Assessment

Objective: Analyze the combined 
load modeling and power flow 

differences

Inputs: Identical measurements 
and parameters (as feasible)

Process: Perform load modeling & 
power flow simulation in each 

software and extract the results

Outputs: Combination of the 
outputs on the left
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• “DMS Loads”: Model each load directly with its DMS kW and kvar value. By using identical load 
models in the two software, this case allowed focus on comparing the power flow results as 

illustrated for the “Power Flow Assessment” part in Figure 10-12. 

• “AMI Loads”: Model each load directly with its AMI measurements during the DMS snapshot 
time instances. For simplicity, loads without AMI were modeled in OpenDSS with their DMS 
values. This case was analyzed to provide context to how closely DMS and OpenDSS load 
modeling methods may align with the actual load values as measured by AMI. 

• “I-Phase”: Allocate feederhead phase currents (from DMS) based on customer monthly kWh 
(from AMI) and feeder aggregated monthly average power factor (from AMI). This case represents 
a common load modeling practice applied by some utilities in their planning software. 

• “PQ-Phase”: Allocate feederhead phase kW and kvar (from DMS) based on customer monthly 
kWh (from AMI) and feederhead phase-average power factor (from DMS). This case represents 

another common load modeling practice applied by some utilities in their planning software. 

• “PQ-Total”: Allocate feederhead total kWs and kvars (from SCADA) based on customer 
monthly kWh (from AMI) and feederhead phase-average power factors (from DMS). This case 
represents a third load modeling practice applied by some utilities in their planning software. 

Given their different use cases, DMS and distribution planning software are expected to 
have a range of differences, for details of the differences relevant to the assessment here see [98]. As 
a result, considerable effort may be required to manage the differences between the software to 
perform assessments like the one discussed in this research area. To focus the analysis on the 
differences in load modeling and power flow simulations, considerable effort was invested in 
minimizing all other discrepancies between the planning and operational versions of the model as 
well as automating the assessment. The main components developed for addressing these aspects of 
the assessment are illustrated in Figure 10-13. The report for this research area [98] includes a 
detailed list of discrepancies addressed in this assessment including: 

• Feederhead voltage magnitude 

• Voltage regulator tap positions 

• Capacitor switch statuses 

• Feeder model topology 

• Measurements used for load allocation 

• Load values (when not allocated) 

• Load voltage sensitivity 
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Figure 10-13. Components for the power flow and load modeling assessment including planning 

and DMS results 

A high-level summary of the differences between DMS results and OpenDSS results is 
provided in Table 10-14. The key findings from the assessment were as follows. 

• DMS and distribution planning software are expected to have a range of differences that can make 
apples to apples comparison between the software challenging given their primary applications. 
Details about differences relevant to the assessment and the approach followed to resolve 
discrepancies are discussed in detail in [98]. 

• Numerous factors for improving the consistency of load modeling and power flow results between 
DMS and planning software were identified. The documentation of these factors and their impact 
could be used to improve the accuracy of distribution models in planning and operation tools. 
Considerable effort may be required to manage the differences between the two software when 

performing assessments like the one discussed in this research area. 

• Noticeable differences (up to +/-2%/0.02p.u.) were observed in the voltage profiles between the 
DMS and planning software even when all loads were modeled identically. It is worth emphasizing 
that these differences persisted even after considerable effort was invested in minimizing the 
differences between the two software. This suggests potential differences between the power flow 
modeling between the DMS and the planning software. 

• The load modeling/allocation methods applied in DMS and planning software can have a 
noticeable impact on load modeling and power flow results and the differences of the results 
between the two software. The analysis of results illustrates the magnitude of differences that can 
be found between planning and operational tools with alternative load modeling methods. For 
simulated line currents and bus voltages, absolute differences up to 50 Amps and 10%/0.1p.u. 
were observed for some cases and feeder locations. However, for most feeder locations, the 

differences were much less. 

• From the three OpenDSS load allocation methods, PQ_Phase (i.e., allocating loads based on 
feederhead phase kWs and kvars) yielded the best overall performance for the test case. I_Phase 
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(i.e. allocating based on feederhead phase currents) led to inaccurate feeder reactive power 
modeling, and PQ_Total (i.e. allocating based on feederhead phase-total kW and kvar) led to 
somewhat less accurate modeling of feeder line currents and bus voltages. As a result, PQ_Phase 
is the recommended load allocation method to limit the differences between planning and DMS 
tools, when measured feederhead phase kWs and kvars are available. 

• While AMI data could theoretically allow for more detailed load modeling, considerable effort 
can be required to process the data and the large quantities of AMI data can introduce 
challenges, including handling of data quality issues and unmetered loads. In this assessment, it 
turned out to be challenging to properly handle unmetered loads. If AMI data is directly used to 
model the loads of some customers, it is recommended to allocate the loads of the remaining 
customers to match the feeder aggregated loads. However, if most loads are directly modeled 
with AMI data, allocating the limited remaining loads may lead to unrealistic values for (some of) 

the other allocated loads. 

Table 10-14. Summary of the differences between DMS results and OpenDSS results 

Case 
Name 

OpenDSS Load Modeling 
Approach 

Aggregated 
Feeder Load 
Differences 

Simulated Feederhead Power 
and Current Differences 

Simulated 
Line 

Current 

Differences 

Simulated 
Bus Voltage 
Differences 

kW kvar kW kvar Amps 

DMS Loads Use DMS load models Small Small Small Noticeable Noticeable Small Noticeable 

AMI Loads 
Model loads with their AMI kW and 

kvar values 
Noticeable Noticeable Considerable Considerable Considerable Noticeable Noticeable 

I_Phase 

Allocate feederhead phase currents 
(DMS) based on customer monthly 
kWh (AMI) and feeder aggregated 

monthly average power factor (AMI) 

Small Noticeable Small Considerable Small Noticeable Considerable 

PQ_Phase 

Allocate feederhead phase kW and 
kvar (DMS) based on customer 

monthly kWh (AMI) and feederhead 
phase-average power factor (DMS) 

Small Small Small Small Small Noticeable Considerable 

PQ_Total 

Allocate feederhead total kWs and 
kvars (SCADA) based on customer 
monthly kWh (AMI) and feederhead 
phase-average power factors (DMS) 

Small Small Small Small Noticeable Noticeable Considerable 

 

10.9. Summary 

Accurate load modeling within distribution planning tools has been critical for effective 
system planning and analysis. However, growing penetration of DER introduces new assessment 
needs that require more granular and accurate load models. The work in this task highlighted the 
importance of leveraging the unprecedented visibility provided by AMI and other data streams to 
address emerging needs with updated distribution load modeling practices. 

This task developed and evaluated improved, yet practical, distribution load modeling 
methods that leverage modern data streams. This was achieved by seven research areas addressing a 
broad range of distribution load modeling aspects. Research in these areas identified numerous ways 
for distribution planners to enhance the conventional distribution load modeling practices to better 
utilize the modern data. 
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This research has also demonstrated that increasingly granular and detailed load modeling 
could be supported by wider availability of AMI, DER measurements, feeder sensors, and other 
emerging data streams, as well as their integration to distribution planning tools. Results provided by 
numerous simulation scenarios demonstrated that further refinements to conventional load 
allocation methods can go a long way. In particular, the accuracy of load allocation methods can be 
improved by leveraging measurements from additional sensors, using phase-specific measurements, 
as well as allocating based on active and reactive power measurements. Moreover, using additional 
customer level information, such as native load kWh values, can lead to improvements.  

The development of this task has pointed to the need to continue research for practical 
methods and tools to disaggregate PV and other DER, such as energy storage and electric vehicles, 
from net load measurements based on typically available utility data. Further research on best 
practices to improve consistency in load modeling within operational and planning tools is also 
warranted. 
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11. PV DYNAMIC MODELING 

11.1. Task Overview 

Problem Statement: High penetration of BTM PV with the revised IEEE Std 1547TM-2018 
[80] control functionalities makes validation of PV-DER models critical to ensuring bulk system 
stability. The Western Electricity Coordinating Council composite load model (WECC CLM) has 
recently been proposed, [101], and it is now available in various commercial power system 
simulation tools. After several updates, the latest model is called CMPLDWG and incorporates 
DER components by utilizing the PVD1 model, [102], [103] Because the DER development has 
grown and changed after the PVD1 model was published, it is no longer a representative model for 
today’s distribution systems. Indeed, some renewable energy standards published in the past few 
years (e.g., the IEEE Std 1547TM-2018 and California Rule 21, [104]) may significantly impact the 
representation of the previously developed power system models. 

Objectives: Motivated by the abovementioned challenges and developments, the primary 
goals of this task are to: (1) determine dynamic models of the distribution system and PV systems; 
(2) identify and tune the key parameters used in representing an aggregate response of many 
individual DERs spread across a distribution system via novel estimation algorithms; and (3) 
demonstrate and test classification algorithms to predict responses to events so as to detect 
maloperation or failures of a PV inverter cluster (see Figure 11-1). 

 

 
Figure 11-1. PV dynamic modeling illustration 

11.2. PV Dynamic Modeling and Validation 

To have a better representation of today’s power system with a large number of small-scale 
DERs, EPRI has recently proposed the new aggregate dynamic model named “DER_A” to support 
power system stability studies [105]. In 2018, this aggregate model was approved for implementation 
in bulk power system planning studies by the WECC Model Validation Working Group. Compared 
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to the previous power system models, DER_A provides a simpler yet more comprehensive model 
by considering the latest standards and functionalities (e.g., voltage and frequency control) that are 
related to a DER. The DER_A model can represent the aggregated dynamics behavior of many tens 
to hundreds of small distributed inverter-based generators (e.g., rooftop PV systems) in a 
distribution system. Although the DER_A model drastically reduces the dimension of model 
parameters from a total of 121 (for the PVD1 model) to 48, proper setting of parameters is still 
critical to ensuring the accuracy of power system simulation. The DER_A model is developed for 
representing dynamic behaviors of inverter-based renewable generation/storage devices (e.g., wind 
turbines, PV systems, and batteries). It is simplified from the generic renewable energy-system 
models. Figure 11-2 shows the architecture of the DER_A model. It consists of five subsections 
based on different functions: 

1) Active power-frequency controls: frequency and real power readings are the two inputs for 
this block. It outputs active current command (Ipcmd) for other subsections, which is calculated 
by using power-order (Tpord) and filtered terminal voltage (Vt_filt). Freq_flag is used to 
enable/disable the control of this subsection. 

2) Reactive power-voltage controls: this block represents the voltage control of DER devices. 
Terminal voltage (Vt) and a user-defined voltage reference value (Vref0) are the inputs. The 
flag Pflag is able to decide the control mode between constant reactive power control and 
constant power factor control. The output of this subsection is reactive current command 
(Iqcmd). 

3) Active-reactive current priority controls: The flag, Typeflag, indicates the simulated device 
is either a generation or a storage unit, while the other flag (i.e., Pqflag) determines the operation 
of the current limit logic between Q- or P-priority mode. In short, this subsection mainly 
describes the behaviors of a DER device under disturbances (e.g., fault events and intermittent 
nature of renewable resources). 

4) Fractional tripping controls: this section represents the behaviors of DERs when a voltage 
event happens (i.e., under- and overvoltage). The major parameters are the four breakpoints 
(vl0, vl1, vh0, and vh1) and the flag, Vtripflag, which enables/disables the fraction tripping 
control function, while the fraction parameter, Vrfrac, decides how much of DER generation 
should be cut out with the four breakpoints during a voltage event. 

5) Voltage source representation: the last subsection simulates a voltage source converter in a 
modern inverter device. In the DER_A model, it is regarded as equivalent to a voltage source 
behind the impedance. Therefore, the reactance, Xe, is used in this subsection. 
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Figure 11-2. Block diagram of the DER_A model with each section of the controls highlighted 

A total of 48 parameters of the DER_A model are listed in Table 2-1, which shows the 
parameters in each function block with their properties (e.g., time constants, gain, deadbands, etc.). 
Because it is not feasible to optimize all 48 parameters, we first need to identify the critical 
parameters to obtain an effective configuration setting of the model that will participate in the 
optimization process. In this study, the MATLAB® Optimization ToolboxTM is used to obtain the 
optimal setting of the selected DER_A model parameters. 

Table 11-1. List of the DER_A model parameters 

 

Prior to calibration of the parameters of the DER_A model, we have implemented it in 
Simulink® (see Figure 11-3) and validated it against the “DERAU1” model provided by PSS®E. 
Figure 11-4 shows the trajectories of the bus voltage as well as dynamic real and reactive power 
responses obtained with our DER_A model implementation (in red) and PSSE (in blue). The results 
give us the confidence that we have accurately implemented DER_A. 
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Figure 11-3. DER_A model implementation in Simulink 

 
Figure 11-4. Bus voltage (top), real (middle) and reactive (bottom) power of Simulink and PSS®E 

models of DER_A 

11.3. DER_A Parameterization and Calibration 

According to different interconnection standards, NERC provides a list of default 
parameters value for the DER_A model [106]. The first step is to identify the critical model 
parameters that can impact the simulation result. Next, the MATLAB® Optimization ToolboxTM is 
used to obtain the optimal setting of the selected model parameters.  
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11.3.1. Selection of Critical Parameters 

The critical parameters are defined as the DER_A model’s parameters that can improve the 
accuracy of a power system simulation by reasonably adjusting the value of the parameters. For 
example, reactance, time boundaries, deadbands, and breakpoints are not appropriate parameters to 
be optimized because they are usually determined by the hardware limits or device/power-system 
standards. Second, the switch parameters (i.e., flags) are excluded as well because they are 
configuration settings in a power system simulation. Therefore, time constants and gain are the two 
kinds of parameter properties that are regarded as critical parameters in this research. To this end, 
we have first identified ten critical model parameters (i.e., Trf, Trv, Tp, Tiq, Tpord, Tg, Tv, Kpg, Kig, and 
Kqv) based on our engineering judgment and some preliminary tests we have performed. 

11.3.2. Optimized DER_A Parameter Values 

The MATLAB-based nonlinear least-squares (NLS) solver, lsqnonlin, is used for acquiring the 
optimal settings among all the combinations of the selected ten critical model parameters. One of 
the uses of the NLS algorithm is curve fitting for a closed-loop system. Because the DER_A model 
has a couple of feedback control loops, the NLS optimization algorithm can be utilized to achieve 
the goal of calibrating the model. The calibration can be done by finding the appropriate parameter 
values (i.e., time constants and gain) that provide the minimal error between the output and input 
signals. 

To verify the performance of the calibration result, the CYME [107] dynamic simulation is 
used to simulate an IEEE standard feeder model for providing the required input of the calibrated 
DER_A model. The output (i.e., aggregated PV generation) of the DER_A model is further 
compared with the simulation results from CYME. 

Because the dependencies among the ten critical parameters are unknown, different 
combinations of critical parameters may result in similar optimization results. Therefore, a total of all 

possible 1,023 (=∑ (10
𝑘
)10

𝑘=1 ) critical parameter combinations are used to generate the optimal 

parameter settings by using MATLAB’s lsqnonlin function with the default solver (i.e., the trust-
region reflective algorithm). In each trial, an optimal parameter set is generated by using the NERC’s 
suggested default setting as the initial value. Each of the 1,023 optimal sets is further applied to the 
DER_A model for comparing the performance with the default model and the unit step reference 
signal individually. The result shows that 512 out of 1,023 sets have lower RMSE than the default 
setting. Finally, the set with the lowest RMSE is selected as the optimal parameter set for the 
DER_A model. Table 11-2 shows the optimally calibrated values (in bold) of the DER_A model 
parameters for the case with the minimum RMSE. In this case, the parameter set, Trf, Trv, Tv, and 
Kqv, is the combination of critical parameters that are used in the optimization process. 
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Table 11-2. Optimal parameter configuration for the DER_A model 

Trf Trv Tp Tiq Tpord Tg Tv Kpg Kig Kqv 

0.44935 0.026464 0.02 0.02 0.02 0.02 0.02 0.1 10 0.18303 

 

According to the optimization result, almost every test case returns different optimal settings 
by applying different combinations of critical parameters to the optimization toolbox, which means 
dependencies exist among the critical parameters. 

11.3.3. Validation of the Optimized DER_A Model 

The verification of model calibration is supported by a 10-second simulation on the IEEE 
34-node network using CYME. Table 11-3 shows the configuration of the five PVs that are 
integrated into the IEEE 34-node test feeder (as shown in Figure 11-5). The voltage and frequency 
readings at the substation node (i.e., Node 800) are recorded during the 10-second simulation. These 
two data streams serve as the inputs (i.e., Vt and Freq in Figure 11-2) for the DER_A model. 
Throughout the simulation time window, we have varied the output of PVs in the range between 
[0.73, 1.0] pu, where 1.0 pu, in our case, equals 1.5 MW of aggregate PV generation. To run tests 
with more realistic PV data, we have added random noise to the aggregate PV generation data (i.e., 
Pref) prior to feeding it into the DER_A model that we have built in Simulink. The noise signal is 
created by generating a random number which is in the range of ±10% of the original PV output for 
each time step (i.e., 2 seconds). The input of the DER_A model, Pref, is calculated by summing the 
original aggregated PV output with the noise signal. 

 
Figure 11-5. PV locations on the IEEE 34-node test feeder. 

Table 11-3. IEEE 34-Node test feeder with PV generation 

 

Figure 11-6 shows the comparison among the (1) noise-added PV generation data (i.e., Pref) 
from CYME, (2) output of the DER_A model with default settings, and (3) optimized DER_A 
model. The Pref represents the actual aggregated PV output from the 5 PVs in the test distribution 
system. The outputs of the DER_A model (dashed red and solid orange curves) should follow the 
Pref (blue curve). The zoomed-in plot shows the different transient behaviors between default and 
optimal settings of the DER_A model. The overall RMSEs (between Cycles 61 and 600) for the 
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default and optimal parameter sets are found to be 0.090948 and 0.090791, respectively. Essentially, 
these errors represent the difference between the outputs of the two settings of the DER_A model 
and the aggregate PV generation from CYME. The lower RMSE corresponds to the case with the 
best-fit parameter values for the DER_A model calibration. According to this test result, the optimal 
setup of the DER_A model parameters is able to improve the accuracy of the power system 
simulation. 

 
Figure 11-6. Comparison of the noise-added PV active power (Pref) with the output of the DER_A 

model using default settings and the optimal DER_A model. 

In our study, the calibrated DER_A model is verified by the real power outputs from PVs. 
Therefore, the result is valid for active power-frequency control and voltage-source representation 
function blocks, which are shown in Figure 11-2.  

11.4. Detection of Maloperation or Failures 

To generate a useful dataset for detecting maloperation of a PV inverter, we have refactored 
the Python script used to apply the different configurations of transient events and automate the 
CYME simulations on the IEEE 34-node test feeder. The initial dataset covers a total of 2,690 test 
scenarios, which are listed in Table 11-4. In the load-modification testing, four modification 
configurations are applied to the three scenarios individually. Thus, there are a total of 

3 × 4 × ∑ (6
𝑘
)6

𝑘=1 =756 cases under this test category that involves modification of 6 spot loads. 

CYME supports multiple operation modes for a PV inverter model as shown in Figure 11-7. The 
transient events are run under the three different PV inverter operation modes. According to the 
different operation modes, a corresponding power factor is set to the power output of each PV 
inverter. Because the PV inverter operation mode is set by the user rather than by switching voltage 
readings, it is suitable for simulating the feeder model with maloperation of PV inverter(s). All the 
test scenarios are run for 30 cycles with a 0.05-cycle time step during the power system simulation. 
Figure 11-8 shows the configuration of the CYME simulations. 
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Table 11-4. List of test scenarios 

Inverter Operation 
Mode / 

Transient Event Type 
(# of Cases) 

MPPT 
(PF = 1) 

Volt-var 
(PF = 0.7) 

Shutoff 

Node Fault (34) Single Node Fault  

Line Disconnection (24) Single Overhead Line Disconnection 

PV Disconnection (124) All Combinations of PV Disconnection N/A 

Spot Load Modification 
(756) 

I. Real power only 
II. Reactive power only 

III. Combined (I&II) 

(i) 35% increase 
(ii) 100% increase 

(iii) 20% decrease 
(iv) 50% decrease 

Total Number of Cases 938 938 814 

 

 
Figure 11-7. PV inverter model in CYME 
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Figure 11-8. Simulation parameters and time settings for all test scenarios 

Because the CYME Transient Stability Analysis module only provides voltage magnitude and 
angle as well as frequency readings for each feeder node in the stability report, we have developed a 
Python program to collect the current readings of each PV inverter. Therefore, we have obtained 
four features (i.e., node voltage magnitude and angle, node frequency, and PV inverter’s output 
current magnitude and angle readings) in the dataset for developing an ML model to detect the 
maloperation of PV systems. For training purposes, features are created for PV systems based on 
the power system measurement of the CYME simulation. Table 11-5 shows the 18 features defined 
for the PV systems. 

 

Table 11-5. List of training dataset’s features 

 Duration [Cycle] Feature Name Description 

P
re

-T
ra

n
si

en
t 

E
v
en

t 

6 - 200 

maxV_pre 
The maximum voltage reading during the time period 
before the transient event 

avgV_pre 
The average voltage reading during the time period 
before the transient event 

minV_pre 
The minimum voltage reading during the time period 
before the transient event 

maxF_pre 
The maximum frequency reading during the time 
period before the transient event  

avgF_pre 
The average frequency reading during the time period 
vbefore the transient event 

minF_pre 
The minimum frequency reading during the time 
period before the transient event 

maxI_pre 
The maximum current reading during the time period 
before the transient event 

avgI_pre 
The average current reading during the time period 
before the transient event 

minI_pre 
The minimum current reading during the time period 
before the transient event 
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 Duration [Cycle] Feature Name Description 
P

o
st

-T
ra

n
si

en
t 

E
v
en

t 

202 - 222 

maxV_post 
The maximum voltage reading during the time period 
after the transient event 

avgV_ post 
The average voltage reading during the time period 
after the transient event 

minV_ post 
The minimum voltage reading during the time period 
after the transient event 

maxF_ post 
The maximum frequency reading during the time 
period after the transient event 

avgF_ post 
The average frequency reading during the time period 
after the transient event 

minF_ post 
The minimum frequency reading during the time 
period after the transient event 

maxI_ post 
The maximum current reading during the time period 
after the transient event 

avgI_ post 
The average current reading during the time period 
after the transient event 

minI_ post 
The minimum current reading during the time period 
after the transient event 

 
To label each instance in the dataset, the voltage readings at Sample 402. Since the power 

system reach a steady state after applying a transient event at Sample 402, the voltage and frequency 

readings (𝑉402 and 𝑓402) of each PV node is used with the corresponding inverter’s operation mode 
to classify an instance (normal or abnormal). Table 11-6 shows the classification logic for each 
instance. 

Table 11-6. Classification of instances 

Operation Mode of an Inverter Normal Operation 

MPPT 0.95 pu ≤ V402 ≤ 1.05 pu 

Volt-var V402 < 0.95 pu  OR  V402 > 1.05 pu 

Shutoff f402 > 60.05 Hz 

 
For the detection of inverter maloperation, we have tested and compared several common 

ML algorithms provided by scikit-learn library, which are listed below. 

• k-NN: a common ML algorithm supports both unsupervised and supervised neighbors-based 
learning methods. For our task, the k-NN algorithm is configured as a supervised learning 
method.  

• Linear SVM: an SVM algorithm with linear kernel. We use the default configuration for the 
coefficient d = 0.025. 

• RBF SVM: an SVM algorithm with RBF kernel. We use the default configuration for the 

coefficients 𝛾 = 2 and C = 1. 

• GP: a generic supervised learning method designed to solve regression and probabilistic 
classification problems. 

• RF: one of the averaging algorithms based on randomized decision trees. Each tree in the 
ensemble is built from a sample drawn with replacement from the training set. 

• Neural Network: the basic neural network algorithm (i.e., multilayer perceptron (MLP)) is 
used in the tests. Scikit-learn use the parameter alpha for regularization (i.e., L2 regularization) 
term, which assists in avoiding overfitting by penalizing weights with large magnitude. The 
alpha is set to 1, while the max iteration is set to 1,000.  

https://scikit-learn.org/stable/modules/tree.html#tree
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• AdaBoost: a popular boosting algorithm. The core principle of AdaBoost is to fit a sequence 
of weak learners (i.e., models that are only slightly better than random guessing such as small 
decision trees) on repeatedly modified versions of the data. 

• NB: a simple yet powerful algorithm for predictive modeling. The model comprises two types 
of probabilities that can be calculated directly from the training data: (1) the probability of 
each class and (2) the conditional probability for each class given each x value. 

The eight classifiers are trained by the dataset and compared the performance. The train:test 
split ratio is set to 80:20. In our case, we only consider the maximum power point tracking (MPPT) 
operation mode, resulting in a dataset that contains 756 instances for each PV. Since 5 PVs are 
connected to the power system, the total number of instances becomes 3,780. The performance of 
each classifier is measured by accuracy, which is defined as the overall true positive  and true 
negative  rates. To compare the training efficiency, we also provide the runtime of the training 
process for each classifier. The test result is shown in Table 11-7. 

Table 11-7. Comparison of different ML classifiers with the reduced dataset 

Classifier Accuracy [%] Runtime [s] 

k-NN 99.735 0.015 

Linear SVM 94.444 0.101 

RBF SVM 99.339 0.037 

GP 98.677 6.522 

RF 99.868 0.038 

Neural Network (MLP) 94.180 2.440 

AdaBoost 99.868 0.307 

NB 98.677 0.016 

 
 The observations of the test results are summarized as follows: 

• The k-NN classifier provides the quickest training process among the eight classifiers and 
balances the tradeoff between training time and accuracy the best. 

• Random forest (RF) and AdaBoost classifiers return the best performance in terms of 
detection accuracy. 

• Gaussian process (GP) model was initially assumed to be the best classifier for this task 
because it is becoming increasingly popular in solving classification, calibration, and regression 
problems. While the GP model performs relatively well in terms of accuracy, it takes the 
longest time to train the utilized dataset. 

According to the test result on the performance of different ML classifiers, we have further 
created a larger dataset by including all the CYME simulations with different inverter operation 
modes (i.e., MPPT, volt-var, and shutoff). The size of the dataset is increased to 13,450 instances. 
The configuration of the training process remains the same (i.e., an 80:20 train:test split ratio), 
except that we shuffle the sequence of the instances before splitting the dataset. Furthermore, we 
repeat the shuffle, training, and testing process ten times and calculate the average accuracy and 
runtime values for each classifier. The test result is shown in Table 11-8. 
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Table 11-8. Comparison of different ML classifiers with the full dataset 

Classifier Accuracy [%] Runtime [s] 

k-NN 97.60 0.300 

Linear SVM 65.61 4.646 

RBF SVM 78.72 5.432 

GP 72.82 206.596 

RF 91.75 0.075 

MLP 64.61 4.363 

AdaBoost 87.52 0.587 

NB 64.84 0.005 

 
In general, all the accuracy values are significantly lower than those of the previous test. 

However, k-NN can still achieve an ML accuracy of more than 97% with a 0.3-second runtime. It 
shows that the patterns of the PV inverters’ behavior are similar within the same operation mode. 
Therefore, the neighboring-based algorithm can form distinctive groups when relatively similar 
patterns (inverter operation modes) are present in the training/testing dataset.  

Decision-tree-based algorithms classify instances by sorting them in the tree. It has a similar 
concept to that of a clustering algorithm at high levels. However, it further differentiates each 
instance as the sorting process passes on to the lower level. Therefore, RF provides the second-best 
accuracy performance when utilizing the extended dataset. Compared to the previous test, we can 
infer that PV inverters’ behaviors are strongly associated with different operation modes, but there 
are not many differences inside each operation group. Thus, the clustering-based (i.e., k-NN) and 
decision-tree-based (i.e., RF) classifiers perform better than other ML algorithms. 

Another advantage of these two classifiers is that their training processes are simpler than 
those of others. They take much less time to develop an ML model. Because today’s distribution 
grids are ever more complicated, massive volumes of data will most likely create computational 
bottlenecks for various ML applications. Regularly updating the ML model and fine-tuning its 
hyperparameters optimize the performance of classifiers are critical to reducing the false discoveries 
in ML tasks, thus ensuring the reliability of a power grid. Therefore, an ML algorithm with a short 
training time would be preferable for efficient utilization in today’s power grids.  

11.5. Summary and Future Work 

In this section, we present viable approaches to calibrating an aggregate PV dynamic model 
and detecting maloperation/failure of PV inverter systems in modeling environment.  This work 
resulted in the following publication [108].  More specifically, we have (1) accurately fitted the 
DER_A model and calibrated its parameters via a derivative-free nonlinear least-squares algorithm and 
(2) trained and tested some of the popular ML classifiers with certain pre-/post-event features, using 
the transient simulation data provided by CYME. To enhance the scope and generalizability of the 
tasks performed, the following improvement efforts are reserved for future work:  

1. development of robust and scalable probabilistic ML methods to calibrate dynamic 
model parameters and classify and predict the behavior of inverters and control devices; 

2. validation of the newly developed methods in a large-scale distribution feeder 
environment considering the full range of control functionalities defined in the IEEE 
Std 1547-2018TM 
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3. utilization of realistic PV data and a distribution model (e.g., SMART-DS [109]) for 
identifying the optimized setting of aggregate DER model parameters; and  

4. evaluation of more comprehensive scenarios by using higher-fidelity (e.g., 
electromagnetic) transient simulations under a wide range of uncertainties in feeder and 
PV dynamic model parameters. 
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12. ALGORITHM IMPLEMENTATION 

12.1. Open Source Code Release 

Three distribution system model calibration algorithms are included in this release, see 
https://github.com/sandialabs.  There are two algorithms for performing phase identification: one 
based on an ensemble spectral clustering approach and one based on leveraging additional sensors 
placed on the medium voltage.  Start with the CA_Ensemble_SampleScripts.py file and the 
SensorMethod_SampleScript.py file, respectively.  The third algorithm identifies the connection 
between service transformers and low-voltage customers (meter-to-transformer pairing algorithm).  
Start with the MeterToTransPairingScripts.py file.   

There is also a sample dataset included to facilitate the use of the code.  The dataset will load 
automatically when using one of the sample scripts provided.  For more details, please see Section 
12.1.3. 

12.1.1. Phase Identification  

12.1.1.1. Spectral Clustering Ensemble Method 

The code for the spectral clustering ensemble method is broken into three files: 
CA_Ensemble_SampleScripts.py, CA_Ensemble_Funcs.py, and PhaseIdent_Utils.py.  Start with the 
CA_Ensemble_SampleScripts.py file; it will automatically load the required sample data and run the 
spectral clustering ensemble algorithm.  CA_Ensemble_Funcs.py contains the primary functions 
that make up the method, and PhaseIdent_Utils.py contains helper functions.   

For more details on this method, please see Section 4.3. 

This algorithm performs phase identification of customers by using their voltage timeseries 
measurements to cluster similarly related customers, without any other data requirements of 
topology information, customer power measurements, or measurements from the substation or 
transformers.  It takes as input the voltage timeseries from advanced metering infrastructure (AMI) 
meters which have been converted into per-unit representation and transformed into a change in 
voltage timeseries by taking the difference in adjacent measurements.  The algorithm loops through 
the available data in interval sizes specified by the windowSize parameter.  A windowSize of 384 may 
be a good place to start; values between 96 and 384 will likely work fine.  Larger window sizes tend 
to work better, but there is a tradeoff depending on the amount of missing data in the dataset.  At 
each iteration, customers with missing data during that window are excluded, and the remaining 
customers are clustered using the sklearn implementation of spectral clustering.  The clustering 
results from each window are used to build a co-association matrix where the entries for customers 
that were clustered together are incremented.  After all windows have been processed, the co-
association matrix is normalized by dividing each entry by the number of windows where that pair 
of customers were both included in the window (i.e., neither customer was excluded due to missing 
data).  The normalized co-association matrix is then used as a pre-computed affinity matrix to the 
spectral clustering algorithm for the final clustering determination.  The number of final clusters can 
be set based on the feeder topology.  Four to seven final clusters might be a good place to start, 
however this parameter may change from feeder to feeder.  For example, if the feeder has voltage 
regulation devices a larger number of clusters may be required.  The resulting clusters will be 
groupings by phase, but the final mapping from the cluster to a particular phase is left to a 
subsequent step.  If the original utility labels are available and you believe they are at least 50% 

https://github.com/sandialabs
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accurate, then the final mapping can be done using a majority vote with the original labels.  This is 
what is done in the sample script provided.   

The two primary outputs from the spectral clustering ensemble phase identification method 
are finalClusterLabels from the CAEnsemble function and predictedPhases from the 
CalcPredictedPhaseNoLabels function.  The finalClusterLabels field contains the results from the 
final cluster assignment; these cluster labels correspond to phase groupings but are not mapped to a 
particular phase.  If the original phase labels are available, and you believe they are at least 50% 
accurate, then they can be used to do the mapping between the clusters in finalClusterLabels and 
particular phases.  This is the predictedPhases field where each customer has been assigned a 
predicted phase based on the final cluster and a majority vote using the original utility labels.   

 

 
Figure 12-1. Output screenshot for the spectral clustering ensemble phase identification algorithm 

using the sample data 

12.1.1.2. Sensor-based Method 

The code for the sensor-based phase identification method is broken into three files: 
SensorMethod_Funcs.py, SensorMethod_SampleScript.py, and PhaseIdent_Utils.py.  
Sensor_Method_Funcs.py contains the primary functions for the sensor-based method.  
PhaseIdent_Utils.py contains helper functions.  SensorMethod_SampleScript.py is the place to start; 
the sample data will load automatically and run the algorithm.   

For more details on this method, please see Section 4.2 

The sensor-based phase identification method takes voltage timeseries from AMI meters and 
sensors located on the medium-voltage distribution system (this research used IntelliRupters).  
Based on the known phases of the medium-voltage sensors located around the feeder, the phase of 
each AMI meter is determined based on the correlations to the phase voltage measurements from 
the other sensors.  The voltage timeseries should be pre-processed into a per-unit representation and 
then converted to a change in voltage timeseries by taking the difference of adjacent measurements.  
A window ensemble approach is employed where intervals of data, specified by the windowSize 
parameter, are taken independently.  Correlation coefficients are calculated between each customer 
and each sensor data stream (three data streams per sensor, one for each phase).  Any customers 
with missing data during a window are excluded from consideration during that window.  The other 
parameter to set is the CC Separation Filter threshold (CCSepThresh); this parameter filters the 
correlation coefficients produced by individual windows using the Correlation Coefficient 
Separation Score.  Using a window size of 96 and a CC Separation filter value of 0.06 might be a 
reasonable place to start.  Ranges of 96-384 for the window size and 0.02 – 0.06 for the CC 
Separation filter appear to be reasonable choices for the data we have tested.  Once all available data 
has been used, the mean of the correlation coefficients is taken.  The highest correlated sensors with 
each customer then vote on the predicted phase for each customer.  The number of votes should be 
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determined by the number of available sensors on the feeder and other considerations such as the 
number of voltage regulation devices in the system.  Our work uses 5 votes.  Finally, confidence 
metrics are calculated for each customer to give an indication of confidence in the phase prediction.    

The primary output of the sensor-based phase identification method is the 
predictedPhaseLabels field.  This will contain the phase labels for each customer (excluding those 
omitted due to missing data) which were assigned by the sensor-based method.  Figure 12-2 shows 
the output produced by running the SensorMethod_SampleScript.py using the included sample data.  
The predictions are compared both to the original utility labeling and the ground-truth phase 
labeling.  

 
Figure 12-2. Output screenshot for the sensor-based phase identification method using the 

sample data 

12.1.2. Meter-to-Transformer Pairing 

The code that implements the meter-to-transformer pairing task is broken into three files: 
M2TFuncs.py, M2TUtils.py, and MeterToTransPairingScripts.py.  M2TFuncs.py implements the 
primary functions for the methodology.  M2TUtils.py implements helper functions.  
MeterToTransPairingScripts.py is the place to start; this file will load the sample data and run the 
algorithm. For more details on this method, please see Section 6 [65]. 

This method uses correlation coefficients analysis of the customer voltages to flag 
transformer groupings, which likely contain errors, and then a linear regression methodology using 
voltage, real power, and reactive power data is used to correctly group the customers by service 
transformer.  This code implements the methodology described in Section 6.  The input to the 
meter-to-transformer pairing algorithm is voltage magnitude, real power, and reactive power 
timeseries AMI data.  The algorithm is divided into two stages.  In the first stage, pairwise 
correlation coefficients are calculated between all pairs of customers.  Then, the original transformer 
labels are used to inspect the correlation coefficients for each transformer grouping. If any of the 
pairwise correlation coefficients are below a specified threshold then the transformer is flagged for 
inspection in the second stage of the algorithm.  Stage 1 is done using a ranked approach with 
multiple thresholds such that stage 1 results in a ranked list of flagged transformers, so that the 
earlier in the list the transformer appears, the worse the correlation coefficients were in that 
transformer grouping.  In stage 2, a pairwise linear regression is done between all customers.  This 
produces a mean-squared-error (MSE) value that functions as a type of goodness-of-fit metric for 
the regression, a resistance coefficient, and a reactance coefficient.  The resistance and reactance 
values function as a type of distance matrix between customers.  The MSE values and are used as a 
filter for the reactance matrix, where pairs with high MSE are discarded.  The algorithm currently 
sets the MSE threshold by finding the minimum MSE value and adding a small amount to that 
value.  This parameter could also be set manually if desired.  The resulting, filtered, reactance matrix 
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is used to assign new transformer groups to the flagged transformers/customers from Stage 1.  
Customer pairs serviced by the same transformer will have reactance “distances” lower than the 
reactance due to the influence of two transformers.  

The primary output of the meter-to-transformer pairing algorithm is the 
predictedTransLabels field returned by the CorrectFlaggedTransErrors function.  This field contains 
a list of transformer labels, unchanged labels remaining the same, and new transformer groupings 
labeled with negative integers.  There is not a straightforward way to map the new groupings 
(designated with negative integers) to physical transformers; that is left as a subsequent task.  The 
sample data produces output as shown in Figure 12-3.  The two customers whose labels were 
changed (customer_4 and customer_53) are in new transformer groups with the other customers 
serviced by their respective transformers.  You can see this by comparing the results in 
predictedTransLabels to the ground-truth transformer labels in transLabelsTrue variable.  The 
“Transformers with incorrect groupings” list is empty because the algorithm was 100% successful in 
finding the correct transformer groupings.  Any transformers whose groupings are incorrect when 
compared to the ground-truth labels would be listed here.   

 

 
Figure 12-3. Output screenshot for the meter-to-transformer pairing algorithm 

12.1.3. Sample Data 

The sample data included in this release consists of timeseries data for 400 single-phase 
customers, 10 sensors, and the substation at 15-minute intervals with a total of 11,520 measurement 
points, or approximately four months.  The customer advanced metering infrastructure (AMI) data, 
as well as the sensor and substation, consist of voltage magnitude, real power, and reactive power 
timeseries.  The voltage magnitude data is in Volts and the real power and reactive power are in 
Watts and Var, respectively.  There are also phase labels, transformer labels, and IDs for each AMI 
and sensor.  The data is included as .npy files which is the numpy data format.  This data is a subset 
of the dataset described in Section 3.1.1 

12.2. CYME Implementation and Testing 

Phase identification, secondary system topology and parameter estimation, and meter-to-
transformer pairing algorithms were implemented in Python prototypes connected to the CYME 
software. This allows validating these algorithms on multiple utility and realistic test networks under 
a variety of conditions. The algorithms that were tested include those developed in this project and 
other state-of-the-art methods found in the literature.  
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12.2.1. Phase Identification 

12.2.1.1. Algorithms 

Six phase identification algorithms were implemented in CYME’s Python prototype during 

this project. Their input data requirements are summarized in Table 12-1, wherein a checkmark (✓) 
indicates that the corresponding input is required. 

 

Table 12-1. Input data requirements of the six phase identification algorithms. 

Method 
AMI SCADA (Feeder) Initial customer 

phases  V kW(h) V kW(h) 

ESC-GIS  ✓ x x x ✓ 

ESC-SCADA  ✓ x ✓ x x 

PCA ✓ x ✓ x x 

MT ✓ x ✓ x x 

LASSO x ✓ x ✓ x 

SF x ✓ x ✓ x 

 

12.2.1.1.1. Ensemble Spectral Clustering with GIS Phasing (ESC-GIS) 

The ensemble spectral clustering method with GIS phasing (ESC-GIS), developed by SNL, 
is presented in Section 4.3.1.3 of this report. Specifically, the original approach without the co-
association matrix was implemented in CYME’s Python prototype [13]. Scikit-learn’s spectral 

clustering function was used with a Gaussian kernel (𝛾 = 0.01) [43]. Unless stated otherwise, 12 
clusters were used in the k-means stage. Each window covers four days. 

12.2.1.1.2. Ensemble Spectral Clustering with SCADA Measurements (ESC-SCADA) 

The ensemble spectral clustering method with SCADA measurements (ESC-SCADA) is 
similar to ESC-GIS, except that the initial customer phase – used for voting – is found by 
computing the Pearson correlation coefficients (CCs) between the customer and the three single-
phase SCADA feeder head voltage time series. The largest CC defines the initial phase. 

12.2.1.1.3. Principal Component Analysis (PCA) 

This approach, presented in [110], is similar to ESC-GIS. The main differences are that it 
uses principal component analysis (PCA) instead of spectral clustering, and that it doesn’t use an 
ensemble methodology. The prototype calls scikit-learn’s PCA function with two components [43]. 
Must-link constraints [110] are excluded to avoid dependency on a potentially erroneous network 
model. 

12.2.1.1.4. Multi-Tree (MT) 

The multi-tree (MT) algorithm of [111] was implemented in CYME’s Python prototype. In 
this approach, a tree is created for each phase at the feeder head, whose root nodes are the locations 
of the single-phase SCADA feeder measurements. Starting from these root nodes, each tree is 
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populated by adding the load with the highest CC to any of the existing elements of the trees, until 
all loads have been added. 

12.2.1.1.5. Least Absolute Shrinkage and Selection Operator (LASSO) 

The objective of this method is to find the phase connectivity vectors 𝐗𝑓 (𝑓 = {𝑎, 𝑏, 𝑐}) 

such that 𝐏𝐗𝑓 + 𝐞 = 𝐘𝑓 (𝑓 = {𝑎, 𝑏, 𝑐}) where 𝐏 and 𝐘𝑓  contain the customer AMI and substation 

real power measurements, respectively, and 𝐞 is a residual vector [112]. This is solved using the least 
absolute shrinkage and selection operator (LASSO). Scikit-learn’s LASSO function is used with a 

penalty coefficient 𝛼 = 0.05 [43].  

12.2.1.1.6. Salient Frequency (SF) 

The salient frequency (SF) approach first filters out low frequencies from the customer 
active power profiles using a Discrete Fourier Transform (DFT), and then extracts “salient,” or 
distinguishing events from each customer and uses correlation coefficients with the substation real 
power measurements to assign a phase to each customer [113]. In CYME’s Python prototype 
implementation, the first 10 components computed by the DFT are filtered out [113], the threshold 

𝑇𝐻 [113] is equal to the number of AMI meters divided by 5, and only the load variations of the 
closest 20 samples are considered. 

12.2.1.2. Metrics 

The accuracy of the algorithms is defined as 
 

Acc% =
1

3
∑ ∑

𝐹eq(𝑃𝑛
pred

, 𝜎)

|𝑀𝜎
ref|

𝑛∈𝑀𝜎
ref𝜎∈{𝑎,𝑏,𝑐}

× 100% 
 

(12-1) 

where 𝑀𝜎
ref is the set of customers with valid measurements originally connected to phase 𝜎 (in the 

network model for synthetic data test cases), 𝑃𝑛
pred

 is the predicted (identified) phase of the 𝑛th 

customer by the phase identification algorithm, 𝐹eq(𝑥, 𝑦) returns 1 if 𝑥 = 𝑦 and 0 otherwise, and 

|𝑆| represents the cardinality (number of elements) of set 𝑆.  

For ensemble methods (ESC-GIS and ESC-SCADA), a confidence score CS𝑛 can be 

computed to get a feel of the prediction accuracy. For a given customer, CS𝑛 represents the 
percentage of windows whose predicted phase equals the final predicted phase. 

12.2.1.3. Synthetic Data Test Cases 

Several tests using synthetic AMI data and CYME network models of real feeders are 
presented in this section. For each feeder, base sets of equivalent AMI and SCADA measurements 
are generated by solving time-series power flows on each network model for 10,000-timesteps at a 
15-minute interval (around 104 days) with synthetic AMI active and reactive power profiles [32]. 
Key information regarding these feeders is presented in Table 12-2. In order to see the impact of the 
voltage regulation equipment on the algorithms, other sets of equivalent measurements are 
generated for the North #1, North #2, and South systems where the regulator taps are fixed during 
the entire simulation. They are denoted by the suffix (Fixed).  

The combination of synthetic data and network models is an informative means of assessing 
the accuracy and robustness of the various phase identification algorithms. Unlike tests with real 
AMI data from utility feeders, it provides free and unequivocal ground truth (no field personnel 
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needs to be involved); furthermore, the synthetic data can be modified in controlled ways to test the 
algorithms under different scenarios. The results presented here were published in [41]. 

Table 12-2. Properties of the four distribution test systems. 

Network Nodes AMI Meters 
Substation 

Voltage 
Regulators 

Inline Voltage 
Regulators 

EPRI’s CKT5 3003 1373 0 0 

North #1 2369 615 1 3 

North #2 4065 963 1 6 

South 1778 447 0 1 

12.2.1.3.1. Ideal Conditions 

The accuracy metric Acc% is first computed for all methods under ideal conditions (e.g., 
noiseless measurements, full AMI coverage, …); the corresponding results are presented in Figure 
12-4. 

ESC-GIS provides almost perfect results (>99%) for all systems. The accuracy of ESC-
SCADA and PCA is similar: both are very accurate with no active tap changers, but their accuracy 
plunges for networks with multiple regulators (<60% for North #1 and #2). MT behaves similarly 
to ESC-SCADA and PCA but is more accurate for North #1 (84.6%). LASSO’s accuracy is greater 
than 90% for all networks except CKT5 (67.9%). The accuracy of SF ranges from 60 to 80%. 

The main reason ESC-SCADA and PCA are inaccurate for North #1 and #2 is because 
inline voltage regulators cause occasional but significant voltage changes that are not seen by the 
SCADA voltage measurements. Consequently, the step in these methods that tries to correlate the 
AMI and SCADA voltage measurements often fails. As for ESC-GIS, as long as an adequate 
number of clusters is used, the presence of voltage regulators has a negligible impact because it does 
not use SCADA measurements. 

MT almost always correctly identifies large groups of nearby same-phase customers 
independently of the presence of tap-changing devices. However, it often has difficulty connecting 
these groups to the proper tree when tap changers are present. An extreme case is North #2, where 
957 of the 963 customers were assigned to phase A while only 397 are truly on this phase. 

For CKT5, the LASSO algorithm fails to identify any phase for several customers (the 

corresponding element in the three solution vectors 𝐗𝑓 all equal 0), which explains its very low 

accuracy. Nevertheless, if these unidentified customers are removed from 𝑀𝜎
ref, Acc% only jumps 

from 67.9% to 84.4%. Since CKT5 is the network with the most customers, followed by North #2 
where several customers also remain unidentified, it appears that LASSO has difficulties with larger 
systems. 

As will be demonstrated in Section 12.2.1.3.4, SF’s accuracy improves monotonically over a 
wide range of available samples; however, even with 10,000 samples, the accuracy is below 80% for 
all test networks. Figure 12-4 also shows that for a given sample count, SF is more accurate for 
networks with fewer customers. 
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Figure 12-4. Phase identification accuracy under ideal conditions. 

12.2.1.3.2. AMI Coverage 

A well-known practical concern with power-based methods is low AMI coverage, e.g., due 
to partial AMI deployment or opt-out clauses. To assess the robustness of LASSO to different AMI 
coverage levels, the case study is repeated by removing different numbers of AMI meters from the 
base set. The location of these meters is chosen randomly. To compare with voltage-based methods, 
the same study is executed with ESC-GIS. The corresponding results are presented in Figure 12-5.  

LASSO’s accuracy decreases as the AMI coverage is reduced. The accuracy remains above 
80% for the South network even with a coverage of only 50%, which shows some robustness. 
However, for North #2, the accuracy falls below 80% and 90% for coverage levels of 90% and 
95%, respectively. This limits the applicability of LASSO in practical situations. Note that as in 
Figure 12-4, the presence of tap changers has a limited impact on LASSO’s accuracy. As for ESC-
GIS, the coverage level has no effect on accuracy. 

 
Figure 12-5. Accuracy of LASSO and ESC-GIS for different AMI coverage levels 
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12.2.1.3.3. Initial Phase Mislabeling 

ESC-GIS assigns a unique phase to all customers of a given cluster using a voting scheme 
based on the initial guess of each customer phase.  This initial customer phase typically comes from 
a GIS system. In the ideal conditions test case (Section 12.2.1.3.1), all initial phases were exact, 
which is an unrealistic assumption. Note that among the methods tested in this paper, only ESC-
GIS uses this initial phasing. 

The study of Section 12.2.1.3.1 is repeated by intentionally mislabeling different numbers of 
initial customer phases. As seen in Figure 12-6, the method remains very accurate with up to half of 
the phases incorrectly labeled (>95% for all networks), showing high robustness. The accuracy 
decreases drastically afterwards. This perfectly validates the work published in [29] during this same 
project. 

 

Figure 12-6. Accuracy of ECG-GIS as a function of the percentage of customers with initially 
mislabeled phases 

12.2.1.3.4. Number of Samples 

Figure 12-7 presents the impact of the number of measurement samples on Acc% on the 
CKT5 and South networks. For the four voltage-based methods, 1,000 samples (around 10 days of 
data at a 15-minute interval) is sufficient to achieve maximum accuracy under ideal conditions on all 
test networks. The same is true with LASSO on South (the smallest network of the set) but not 
CKT5 (the largest). With CKT5, the accuracy keeps increasing as a function of the sample count, 
although it starts plateauing between 5,000 and 10,000 samples. Finally, as mentioned in Section 

12.2.1.3.1 Acc% monotonically increases as a function of the sample count with SF. At least 500 
samples were needed for the ensemble methods to have at least one full window of four days. 
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Figure 12-7. Phase identification accuracy as a function of the number of samples for the CKT5 
and South networks 

12.2.1.3.5. Measurement Error 

All previous studies assumed ideal, noiseless, and synchronized measurements. To analyze 
some of the impact of imperfect measurements, the study of Section 12.2.1.3.1 is repeated by adding 
different levels of uniformly distributed noise (as a percentage of each measured value) to all AMI 
and SCADA measurements; Figure 12-8 presents the corresponding results for North #1 and North 

#1 (Fixed). All methods see virtually no change with an error level of 0.1%, while Acc% starts 
decreasing with a noise level of 0.2% for some of the voltage-based methods. Due to the inherent 
randomness, there is no clear trend. For instance, ESC-GIS has better accuracy with noises of 0.4% 
and 0.5% than 0.2% and 0.3%. LASSO and SF appear immune to these levels of noise, since power 
measurements see natural variations of much larger amplitude than the injected noise. 

 
Figure 12-8. Phase identification accuracy as a function of uniformly distributed measurement 

error for the North #1 and North #1 (fixed) networks 

12.2.1.4. Utility Data Test Case 

While several scenarios were covered in the synthetic data test cases section (Section 
12.2.1.3), real utility data can also be helpful to assess the phase identification algorithms under 
situations that would not have been otherwise envisioned.  
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In this section, results obtained on an AMI voltage data set provided by a North American 
utility are presented. Because the utility did not have access to SCADA measurements, only the 
ECG-GIS algorithm is considered. The set spans over five months with a 15-minute time interval 
and covers a single feeder with 290 metered single-phase customers. The feeder has one substation 
and two inline voltage regulators. There are several instances of missing data through parts the five 
months. Out of 11,310 potential results (39 windows times 290 customers), 2,615 could not be 
computed. Six clusters are used in the k-means step. 

The results are summarized in Table 12-3. All customers initially labeled on phase A are 
predicted to be on this phase; while no additional customers are assigned on phase A. Out of 107 
customers on phase B according to the original network model, ESC-GIS predicted that 29 of them 

should be on phase C. The confidence score of each of these 29 customers is very high (CS𝑛 >
89%), with most being in the 96-97% range. According to the network model, the 29 customers 
belong to the same lateral. After viewing these results, the utility realized that they had planned to 
move this lateral to phase B and changed the model accordingly but had forgotten to do it in the 
field. ESC-GIS therefore correctly identified an entire mislabeled lateral. The phase identification 
algorithm also predicted that six customers initially connected to phase C should be on phase B, 

with relatively low CS𝑛 ranging from 72.2% to 75.7%. According to the network model, all six 
customers are directly tapped to three-phase lines in the same part of the feeder. The utility did not 
confirm nor deny this prediction.  

Table 12-3. Results with the utility data set using ESC-GIS 

 Initial Phase (GIS) 

A B C Total 

Predicted Phase 
(ESC-GIS) 

A 124 0 0 124 

B 0 78 6 84 

C 0 29 53 82 

Total 124 107 59 290 
 

In the spectral clustering algorithm, the final k-means stage – which finds clusters of 
customers on the same phase – uses the eigenvectors of a Laplacian as the input. Each eigenvector is 
a representation of a single customer. Visualizing them is another means of assessing the prediction 
quality.  

The first three non-trivial dimensions of the eigenvectors of the utility data set are plotted in 
Figure 12-9 for a single window with few missing measurements. Most customers are neatly grouped 
in three clusters, implying a strong correlation between the voltage time series of customers 
connected on the same phase, thus giving more confidence in the predicted results. The six 
customers initially labeled on phase C discussed in the previous paragraph belong to a compact 
cluster mostly comprised of phase B meters (bottom left of Figure 12-9), strengthening the 
prediction. The 29 customers belonging to the mislabeled lateral are also grouped compactly with 
the majority of customers initially assigned on phase C (bottom right). 
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Figure 12-9. Eigenvectors of ESC-GIS on the utility data set for a single window 

12.2.1.5. Discussion 

12.2.1.5.1. Voltage Regulators 

As outlined in Section 12.2.1.3, voltage-based phase identification methods are very sensitive 
to the presence of multiple voltage regulators, especially when both AMI and SCADA 
measurements are used. The reason is intuitive. Many voltage-based methods are derived on the 
assumption that the voltage variations are more similar between customers on the same phase than 
on different phases. Because voltage regulators cause large variations that are only seen by 
downstream customers, the voltage correlation between customers on the same phase but on other 
sides of the tap changer is weakened.  

To visualize this explanation, the first three non-trivial dimensions of the eigenvectors 
obtained by ESC-GIS on North #2 and North #2 (fixed) under ideal conditions are shown in 
Figure 12-10 and Figure 12-11, respectively. 

Due to the voltage regulators, many more clusters can be observed in Figure 12-10 than in 
Figure 12-11; nevertheless, same-phase customers are mostly grouped together, enabling proper 
delimitation of clusters. While clusters of the same phase are mostly closer to each other, one group 
of customers on phase A is closer to clusters of phases B and C. This makes it challenging to 
correctly map each cluster with the corresponding SCADA phase voltage measurement. Finally, as 
observed in Section 12.2.1.3, voltage regulators do not impact power-based methods since they have 
a negligible impact on load power consumption. It is therefore suggested to either use power-based 
methods (e.g., LASSO and SF) or voltage-based methods that do not rely on SCADA measurements 
(e.g., ESC-GIS) for networks with multiple voltage regulators. 
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Figure 12-10. Eigenvectors of ESC-GIS on a network with active tap changers (North #2) for a 

single window. 

 

 
Figure 12-11. Eigenvectors of ESC-GIS on a network with fixed tap changers (North #2 [fixed]) for 

a single window 

12.2.1.5.2. Number of Clusters 

It could appear that using one cluster per phase in the k-means stage of ESC-GIS and ESC-
SCADA is sufficient for networks with all customers connected between line and neutral. However, 
as seen in Figure 12-10, all customers connected to the same phase are not necessarily grouped in 
one cluster even under ideal conditions. This is particularly manifest for feeders with multiple 
voltage regulators. Consequently, more clusters are used with ESC-GIS and ESC-SCADA than the 
number of phases (i.e., 12 in Section 12.2.1.3 and six in Section 12.2.1.4). 

To further substantiate this claim, the study of Section 12.2.1.3.1 is repeated with ESC-GIS 
using only three clusters, i.e., one per phase. The accuracy of North #1 and North #2 is only 68.9% 

and 66.4%, respectively; whereas Acc% > 99% for all five other networks. Accuracies greater than 
99% were obtained for North #1 and North #2 using 12 clusters. On the other hand, using too 
many clusters may also deteriorate the accuracy, especially for networks with fewer customers. As an 
example, the study of Section 12.2.1.4 is repeated with 12 clusters instead of six. Only six of the 29 
customers belonging to the mislabeled lateral discussed in Section 12.2.1.4 are correctly identified 
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when using 12 clusters; whereas all are identified with only six clusters. The creation of smaller 
clusters within the ESC-GIS algorithm may therefore also prevent the detection of multiple highly 
correlated mislabeled customers, e.g., belonging to the same lateral.  

12.2.1.5.3. Missing Measurements 

Section 12.2.1.3.2 showed and discussed the impact of AMI coverage, where loads were 
either fully metered or unmetered. In practice, in addition to customers with no AMI metering, AMI 
voltage and/or power time series will often comprise single or multiple missing measurements, e.g., 
due to communication failures and system maintenance. 

Many phase identification methods require all customers being identified to have a full 
measurement set for the entire period of study. For methods requiring large data sets to achieve 
accurate predictions, it can be difficult to define a long enough study period where all meters have 
no missing measurements. 

Ensemble methods such as ESC-GIS and ESC-SCADA therefore have a practical 
advantage. In these methods, multiple smaller windows (e.g., 4 days) are studied individually.  If one 
or multiple measurements are missing, the customer is only ignored for the corresponding 
window(s). The final voting stage is still applied, except with fewer windows for customers with 
missing measurements. However, caution must be taken when including windows with several 
excluded customers, as they are more prone to yield inaccurate predictions. This may unintentionally 
decrease the confidence scores. 

12.2.1.5.4. Measurement Distortion 

The study of Section 12.2.1.3.5 considered the impact of measurement noise on accuracy by 
adding different levels of uniformly distributed noise to otherwise ideal and synchronized 
measurement sets. While informative, this does not represent the full spectrum of measurement 
distortions that can affect practical phase identification studies. For instance, the set of SCADA 
and/or AMI measurements used at a given time step may not be synchronized. These measurements 
may represent instantaneous values at the end of the interval, peak or average values for the entire 
interval, etc. Moreover, many SCADA meters provide power measurements while AMI systems 
often send energy measurements, requiring approximations to convert to equivalent power 
measurements.   

12.2.1.5.5. Sample Counts 

Section 12.2.1.3.4 showed that unlike with SF, a relatively small number of samples (e.g., 
1,000) is needed for voltage-based methods to reach their peak accuracy. This is to be expected 
because SF identifies all customers individually (through their salient variations) as opposed to 
grouping them. It therefore requires a considerable number of samples to find sufficient high-
frequency components (salient events) for each AMI meter to be associated with the corresponding 
SCADA meter. 

While several methods can handle years of measurements with little computational cost, 
using too much data comes with practical concerns. For one, customer phases are not always static. 
An example thereof is provided in Section 12.2.1.4. Another issue is algorithms that can only use 
complete data sets (see Section 12.2.1.5.3). Longer periods increase the possibility of having to 
remove customers due to missing measurements. 
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12.2.2. Secondary System Topology and Parameter Estimation 

12.2.2.1. Task Overview 

End customers are generally served by connecting to a service transformer on a secondary 
distribution system. However, for some utilities, such a secondary distribution system is not 
modeled or is only modeled with limited details in their networks. This makes it difficult to study the 
impacts of connecting behind-the-meter (BTM) technologies (such as electric vehicles, rooftop PVs, 
etc.) at customers’ locations and/or to study the voltage variations and service reliabilities of the 
secondary distribution systems.  

One can build the model for secondary distribution systems from manual inspections, but it 
requires significant man hours and resources to do so. Alternatively, the availability of voltage and 
power measurements from smart meters (AMI) enables some methodologies to estimate the 
topology (a customer is served by connecting directly to the distribution transformer, or there are 
intermediary nodes between the customer and the distribution transformer) and the parameters of 
the secondary distribution systems (length and resistance of lines). 

The objective of this task is to develop a prototype using the CYME software that meets the 
following performance requirements/criteria: 

• Accuracy: Over 90% success rate to estimate line resistance within +/- 5% error to actual 
resistance values 

• Algorithm efficiency and computation speed: Scalability to large distribution networks (i.e., 
with over 500 service transformers/secondary networks) 

• Robustness 
o Ability to handle “noisy” measurements 
o Ability to handle missing reactive power measurements (due to capabilities of AMI 

meters) 

12.2.2.2. Regression-based Estimation Method 

CYME’s Python prototype implements the methodology based on [62], which is formulated 
based on linear regression model for parameter estimation. The method assumes the availability of 
AMI measurements of voltage, real power and reactive power. The connectivity of each meter to the 
distribution transformer is also assumed to be known, which is usually available from the GIS 
system. 

For a pair of customers which are connected to a common node, one can write the following 
equation of approximated voltage drop 

𝑉1 − 𝑉2 = 𝐼𝑅1𝑅1 + 𝐼𝑋1𝑋1 − 𝐼𝑅2𝑅2 − 𝐼𝑋2𝑋2 + 𝜖, 

where 𝑉1, 𝑉2 ∈ ℝ
𝑛×1 are the time series of voltage measurement with 𝑛 data points for customer 1 

and 2 respectively. 𝐼𝑅1 , 𝐼𝑅2 ∈ ℝ
𝑛×1 are the time series of currents computed from real power, and 

𝐼𝑋1 , 𝐼𝑋2 ∈ ℝ
𝑛×1 are the currents computed from reactive power for customer 1 and 2 respectively. 

Finally, 𝑅1, 𝑅2, 𝑋1, 𝑋2 ∈ ℝ are the line resistance and reactance to be estimated between the two 
customers and the common immediate upstream node. 

Based on the approximated voltage drop equation, one can write the following regression 
model 
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𝑦 = 𝐗𝛽 + 𝜖,  where 

𝐗 = [𝐼𝑅1 ,  − 𝐼𝑅2 ,  𝐼𝑋1 ,  − 𝐼𝑋2] ∈ ℝ
𝑛×4 

𝛽 = [𝑅1,  𝑅2,  𝑋1, 𝑋2]
𝑇 ∈ ℝ4×1 

𝑦 = 𝑉1 − 𝑉2 ∈ ℝ
𝑛×1 

Using the ordinary least squares (OLS) estimator, one can estimate the parameter 𝛽 by 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 

Note that the model can be modified if reactive power measurement is not available (hence 

𝐼𝑋1 , 𝐼𝑋2  cannot be computed). However, to estimate the line reactance, the 𝑋/𝑅 ratio must be 

assumed. 

The following is a high-level sketch (illustrated in Figure 12-12) of how the methodology is 
systematically applied to a distribution network. 

Step 1 

1.1. For all meters that are served by a transformer, get all combinations of meter pairs. 

1.2. For each pair of meters, use the OLS estimator to estimate the parameters and calculate the 
Pearson coefficient. 

1.3. After Pearson coefficient is computed for all combinations, pick the pair which has the 
highest value which indicates best fit. 

1.4. Replace the pair of customers by a “virtual node/meter” and approximate the voltage and 
power data for this “virtual node”. Repeat 1.1 until a single “virtual node” is left for this 
transformer. (see an example in Figure 12-13 – Step 1) 

1.5. Repeat 1.1-1.4 for all transformers in the network. 

 

Figure 12-12. High-level sketch of the regression-based estimation method   

Step 2 

2.1. Each transformer in the network should now have only 1 “virtual node”. (Note, a few 
technical assumptions are made in order to apply the OLS estimator in Step 2. Refer to [62] 
for details) 
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2.2. Pair 1 transformer with another transformer in a specified neighborhood (by electrical 
distance) and on the same phase (multiple pairs may be possible). 

2.3. For all pairs identified in 2.2, use the OLS estimator to estimate the parameters between the 
single “virtual node” and the transformer node (see an example in Figure 12-13 – Step 2). 
Pick the pair that has the best fit. 

2.4. Repeat 2.1-2.3 for all transformers in the network. 

     

Figure 12-13. Illustrative example for Step 1 and 2 of the parameter estimation methodology   

12.2.2.3. Synthetic Results 

In testing the methodology and the prototype, the CKT5 network of EPRI is adopted with 
some modifications. 

1. Lines of secondary distribution networks in the original CKT5 network have the same 
length. For testing purposes, lines are modified to have different lengths. 

2. Some distribution transformers are selected to add a short line between the secondary node 
of the transformer and its first immediate downstream section. Line lengths are assigned 
randomly for different transformers. 

 Synthetic measurement data for 110 days with 15-minute intervals is used. Voltage 
measurements are generated from synthetic active and reactive power profiles by solving time-series 
power flows on the CKT5 network. 

12.2.2.3.1. Noiseless measurement data 

The following scenarios were run to test the performance of the prototype, assuming 
noiseless measurement data. 

a. Use voltage (𝑉), real power (𝑃) and reactive power (𝑄) data 

b. Use only 𝑉 and 𝑃 data, and 𝑋/𝑅 ratio assumed to be 1:4.678 (which is the actual ratio for 
the lines used in CKT5) 
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c. Use only 𝑉 and 𝑃 data, and 𝑋/𝑅 ratio assumed to be 1:3 

d. Use only 𝑉 and 𝑃 data, and 𝑋/𝑅 ratio assumed to be 1:5 

e. Use only 𝑉 and 𝑃 data, and 𝑋/𝑅 ratio assumed to be 1:7 

Figure 12-14 shows the histograms of empirical measure of errors observed between the 
estimated and actual line resistance for all scenarios (for better visualization purpose, the y-axis is capped at 
300 for all histograms). The legend entries show the success rates to have <5% estimation errors for all 
scenarios. 

 
Figure 12-14. Empirical measure of errors between estimated and actual resistances 𝑹  

It is observed from Figure 12-14 that, 

• The availability of 𝑄 data results in an over 99% of success rate to have <5% estimation errors 

• In absence of 𝑄 data, success rate is lower than when 𝑄 data is available, even when using the 

true 𝑋/𝑅 ratio 

• In absence of 𝑄 data, as the assumed 𝑋/𝑅 ratio moves away from the true value, the success 
rate of estimation decreases 
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12.2.2.3.2. Estimation of X/R ratio of line impedance 

In the previous section, in absence of reactive power measurement, the 𝑋/𝑅 ratio must be 
assumed to apply the prototype to estimate the line resistance and reactance. The estimation 

accuracy depends on how close the assumed 𝑋/𝑅 ratio is to the actual value. CYME developed a 

novel approach to estimate the 𝑋/𝑅 ratio of the line impedance from the voltage and active power 
measurement data, based on Extended Kalman Filter (EKF) estimation. 

The EKF model 

Denote the state variable 𝑥(𝑘) =  [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 ]𝑇, where 𝑥1 is the voltage 

difference of the customer pair, 𝑥2 and 𝑥3 are the line resistance of customer 1 and customer 2 

respectively, 𝑥4 is the line 𝑋/𝑅 ratio to estimate, and 𝑥5 and 𝑥6 are the mean ratio of reactive power 
to active power of customer 1 and 2 respectively. 

Denote the output measured 𝑧(𝑘) =  [𝑉1(𝑘) − 𝑉2(𝑘) 𝑅1̃ 𝑅2̃]
𝑇 , where 𝑉1 and 𝑉2 are the 

measured voltage data of customer 1 and 2 respectively, 𝑅1̃ and 𝑅2̃ are the estimated line resistance 
from linear regression for customer 1 and 2 respectively. The active power measurement for 

customer 1 and 2 are also given as 𝑃1 and 𝑃2 respectively. 

Then we can derive the following state-space model: 

𝑥(𝑘 + 1) = Φ[𝑥(𝑘), 𝑘] + Γ 𝑤(𝑘) 
𝑧(𝑘) = 𝐻[𝑥(𝑘), 𝑘] + 𝑣(𝑘)  

where Φ[𝑥(𝑘), 𝑘] =

[
 
 
 
 
 
 
−𝐼𝑟1(𝑘)𝑥2(𝑘) (1 + 𝑥4(𝑘)𝑥5(𝑘))  + 𝐼𝑟2(𝑘)𝑥3(𝑘)(1 + 𝑥4(𝑘)𝑥6(𝑘) )

𝑥2(𝑘)

𝑥3(𝑘)

𝑥4(𝑘)

𝑥5(𝑘)

𝑥6(𝑘) ]
 
 
 
 
 
 

  

𝐻[𝑥(𝑘), 𝑘] = [𝑥1(𝑘)
1

𝑘
∑ 𝑥2(𝑖)

𝑘

𝑖=0

1

𝑘
∑ 𝑥3(𝑖)

𝑘

𝑖=0
]
𝑇

  

Γ = ℐ6×6 

𝔼{𝑤(𝑘)} = 𝒪6×1 

𝔼{𝑣(𝑘)} = 𝒪3×1 

𝑐𝑜𝑣{𝑤(𝑘),𝑤(𝑗)} = 𝑄 ∈ ℝ6×6, 𝑘 ≠ 𝑗 
𝑐𝑜𝑣{𝑣(𝑘), 𝑣(𝑗)} = 𝑅 ∈ ℝ3×3, 𝑘 ≠ 𝑗 

 Here, ℐ and 𝒪 refer to identity and zero matrices respectively. In Φ[𝑥(𝑘), 𝑘], 𝐼𝑟1 and 𝐼𝑟2 are 

considered given as control inputs and can be calculated by 𝑃1/𝑉1 and 𝑃2/𝑉2, respectively. 

 At 𝑘 = 0, the algorithm of EKF is initialized with 𝑥̂(0) = [0, 0.01, 0.01, 0.2, 0, 0]𝑇. 

 

1. Predict states at (𝑘 + 1) using  𝑥̂(𝑘 + 1|𝑘) = Φ[𝑥̂(𝑘), 𝑘] 

2. Calculate 

𝑉(𝑘 + 1|𝑘) =
𝜕Φ

𝜕𝑥̂
𝑉(𝑘)

𝜕ΦT

𝜕𝑥̂
 + Γ 𝑄 Γ𝑇 

3. Calculate 
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𝑃(𝑘 + 1) = [
𝜕𝐻

𝜕𝑥̂
𝑉(𝑘 + 1|𝑘)

𝜕𝐻𝑇

𝜕𝑥̂
+ 𝑅 ]

−1

 

𝑉(𝑘 + 1) = 𝑉(𝑘 + 1|𝑘) − 𝑉(𝑘 + 1|𝑘)
𝜕𝐻𝑇

𝜕𝑥̂
𝑃(𝑘 + 1)

𝜕𝐻

𝜕𝑥̂
 𝑉(𝑘 + 1|𝑘) 

4. Calculate Kalman filter gain  

𝐾(𝑘 + 1) = 𝑉(𝑘 + 1)
𝜕𝐻𝑇

𝜕𝑥̂
𝑅−1  

5. Update the prediction of states at (𝑘 + 1) using 

𝑥̂(𝑘 + 1) = 𝑥̂(𝑘 + 1|𝑘) + 𝐾(𝑘 + 1){𝑧(𝑘 + 1) − 𝐻[𝑥̂(𝑘 + 1|𝑘), 𝑘 + 1}} 

6. Repeat Step 1 by setting 𝑘 = 𝑘 + 1 

 

 Figure 12-15 shows the empirical distributions of estimated 𝑋/𝑅 ratio by the EKF model, 
using 15-min interval measurements of 2 days, 10 days, 20 days, 30 days, 42 days, and 68 days, 
respectively.  

 
Figure 12-15. Empirical distributions of estimated 𝑿/𝑹 ratio from EKF estimation  

It is observed from Figure 12-15 that, 

• In all scenarios, an observable spike of probabilities occurs near 𝑋/𝑅 = 0.2, which is the true 

𝑋/𝑅 value 

• The scenario using 10 days data gives the best estimation with the least error % and the least 

deviation 

• The estimation is less accurate when there is not enough data for the estimation process (i.e. 

using only 2 days data) 
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• Unlike linear regression, it is not always beneficial to have a large amount of data for the EKF 
model. In this experiment, the estimation is less accurate and starts to have increasing error % 
as the number of data increases. This is mainly due to the fact that in the EKF model, we use 
the mean Q/P in the state vector. As the number of data increases, if the actual Q/P ratio has 
a larger variation from the mean value (which is the case for the synthetic data used in the test 

cases), the estimated 𝑋/𝑅 values are more likely to deviate, hence making the estimation less 
accurate (see Figure 12-16 as an example) 

 
Figure 12-16. Estimated 𝑿/𝑹 ratio from the EKF model using 10-days vs. 30-days data of P and V 

12.2.2.3.3. Noisy measurement data 

In this section, the prototype is evaluated for robustness to measurement errors in the 𝑉, 𝑃, 

and 𝑄 data which is assumed available. The following scenarios are considered: 

a. Use 𝑃, 𝑄, and 𝑉 noiseless data (baseline case) 

b. Noiseless 𝑉 data, 𝑃, 𝑄 data with 5% errors (noises with a uniform distribution) 

c. Noiseless 𝑉 data, 𝑃, 𝑄 data with 10% errors (noises with a uniform distribution) 

d. Noiseless 𝑉 data, 𝑃, 𝑄 data with 20% errors (noises with a uniform distribution) 

e. 𝑉 data with ±0.25V errors, 𝑃,𝑄 data with 5% errors (all noises have uniform distributions) 

f. 𝑉 data with ±0.5V errors, 𝑃, 𝑄 data with 5% errors (all noises have uniform distributions) 

g. 𝑉 data with ±0.25V errors, 𝑃,𝑄 data with 10% errors (all noises have uniform distributions) 

h. 𝑉 data with ±0.25V errors, 𝑃,𝑄 data with 20% errors (all noises have uniform distributions) 
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Figure 12-17 shows the histograms of empirical measure of errors observed between the 
estimated and actual resistance for all scenarios above. 

 
Figure 12-17. Empirical measure of errors between estimated and actual resistances 𝑹  
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Table 12-4 summarizes the success rates of <5% estimation errors in Figure 12-17 and 
compares with that of the baseline scenario. 

Table 12-4. Results of success rate with noisy measurement data 

Scenarios 
Success Rate (%) 

Results (<5% errors) Delta 

a. Noiseless 𝑷,𝑸, and 𝑽 data (Baseline) 99.12 - 

b. Noiseless 𝑽 data, 𝑷,𝑸 data with 5% errors 98.58 -0.54 

c. Noiseless 𝑽 data, 𝑷,𝑸 data with 10% errors 96.53 -2.59 

d. Noiseless 𝑽 data, 𝑷,𝑸 data with 20% errors 87.23 -11.89 

e. 𝑽 data with ±0.25V errors, 𝑷,𝑸 data with 5% errors 97.22 -1.90 

f.  𝑽 data with ±0.5V errors, 𝑷,𝑸 data with 5% errors 92.83 -6.29 

g. 𝑽 data with ±0.5V errors, 𝑷,𝑸 data with 10% errors  90.83 -8.29 

h. 𝑽 data with ±0.5V errors, 𝑷,𝑸 data with 20% errors  85.89 -13.23 

 
It is observed from Table 12-4 that, 

• If the voltage measurement is accurate, the prototype can tolerate up to 20% measurement 
errors in the active and reactive power data to maintain ~90% estimation accuracy. 

• If all measurement data are noisy, the prototype can tolerate up to 0.5V errors in voltage 
measurements, and at the same time, up to 10% errors in active and reactive power data to 

maintain ~90% estimation accuracy. 

CYME’s prototype has been demonstrated to have met the objective and milestones of this 
task. Some further work is possible to explore related to this task, especially on integrating the 
Kalman filtering concept into the parameter estimation prototype to enhance the robustness when 
reactive power data is missing (an iterative approach may be necessary, and the convergence is to be 
studied). 

12.2.3. Meter-to-transformer Pairing 

12.2.3.1. Task Overview 

For the tasks of phase identification and parameter estimation of secondary distribution 
systems, we use the AMI measurement data of customers on the distribution network. It is assumed 
that the connectivity information of each customer and its serving distribution transformer is 
known, which is usually from utilities’ GIS records. However, in certain situations, the connectivity 
information in GIS records may be wrong, i.e. a customer is labelled to be served by transformer A, 
but in reality the customer is served by transformer B. Such inaccuracies may happen due to repairs 
and/or network reconfiguration without updating the GIS records properly. 

The accuracy of GIS records is important to achieve highly accurate results for the tasks of 
phase identification and parameter estimation of secondary distribution systems. One can do field 
verification to verify the connectivity information of meter and the service transformer for all GIS 
records, but this requires significant man hours and resources to do so, especially for a large 
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distribution network. Alternatively, one can adopt an approach to estimate the connectivity pairing 
of customer meter to its service transformer by leveraging the AMI measurement data. 

CYME’s objective is to develop a prototype that can estimate the customer meter-to-
transformer pairing information based on AMI measurement data. The prototype uses the CYME 
software and should meet the following performance requirements/criteria: 

• Accuracy: Over 90% success rate in identifying the mapping of meters to distribution 
transformers 

• Algorithm efficiency and computation speed: Scalability to large distribution networks (i.e. 
with over 500 distribution transformers / secondary networks) 

• Robustness: Ability to handle “noisy” measurements 

12.2.3.2. Methodology 

Two algorithms are implemented in CYME’s prototype. 

12.2.3.2.1. ICA method 

The first algorithm (“ICA”) is based on the work by Wu et al [114], where Fast Independent 
Component Analysis (FastICA) technique is applied to extract features from the time series of 
voltage data of all meters in the neighborhood, and the features (denoted by a mixing matrix) are 
then clustered using the Kernel K-means. The mixing matrix is time-independent and reflects the 
similarity between voltage data series. Customers identified within the same cluster are labelled to be 
served by the same transformer, which is determined by the most common transformer according to 
the existing GIS records. 

 The following describes a high-level sketch of the methodology. 

1. Pick a meter 𝑚 and its transformer 𝑥𝑓𝑜𝑚 labelled in GIS record 

2. Search for nearby 𝐾 transformers based on geographic distance to meter 𝑚 

3. Collect all 𝑁 meters that are labelled in GIS record to connect to any transformer in 𝐾 

4. Collect voltage measurement data 𝑋𝑡 for all 𝑁 meters, where each meter has 𝑀 data points 

5. Use FastICA method to compute the mixing matrix 𝐴, where 

𝑋𝑡 = 𝐴𝑆𝑡 + 𝑋𝑡̅̅ ̅𝑒
𝑇 , where 𝑋𝑡, 𝑆𝑡 ∈ 𝑅𝑁×𝑀 ,  𝐴 ∈ 𝑅𝑁×𝑁 , 𝑋𝑡̅̅ ̅ ∈ 𝑅𝑁×1,  𝑒 ∈ 1𝑁×1 

6. Use the Kernel K-means and silhouette scores to determine the proper number of clusters in 

𝐴, denoted as 𝑘∗  

7. For each cluster, collect the list of connected transformers in GIS for all meters in this cluster 
and compute their empirical counts. 

1. If 𝑘∗ ≤ 𝐾, append the collected the list of transformers as well as their empirical 
counts to each meter, and consolidate the list/counts. 

2. If 𝑘∗ > 𝐾, add an ‘unknown’ transformer to the list with a count of ‘uc’ (which is a 
percentage of the highest empirical count among all transformers in this cluster), 
append the list as well as empirical counts of transformers to each meter, and 
consolidate the list/counts 
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8. Repeat Step 1 until all meters in the network are picked 

9. Each meter should now have a list of transformers associated with empirical counts 

1. Label a meter with the transformer that has the most count 

2. If the transformer “unknown” has the most count, label this meter for “field 
verification required” 

3. If the top two transformers have similar counts (within some threshold), then also 
label with meter for “field verification required” 

The following illustrates a simple example for the ICA technique. 

The top chart in Figure 12-18 shows time-series voltage measurements for 3 meters (out of a 

collection of 𝑁 = 40 meters) with 𝑀 = 50 data points each shown, where 2 meters are connected 
to the same transformer (blue and orange), and the third meter (green) is connected to a different 
transformer.  

The ICA analysis extracts a total of 40 features from the time-series data, as shown in the 
bottom right chart of Figure 12-18, as well as a mixing matrix with support on the 40 extracted 
features. The chart at bottom left of Figure 12-18 shows the mixing weights for each feature for the 
3 customers. Mixing weights for blue and orange customers are quite similar because they are served 
by the same transformer, while the mixing weights for the green customer look different. 

Based on the differences of mixing weights, customers on the same transformers will likely 
be grouped into the same cluster by the Kernel K-means. 

 

Figure 12-18. Time series voltage measurement of 3 meters (top); mixing weights corresponding 
to the 3 meters (bottom left); and features extracted by ICA (bottom right) 
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12.2.3.2.2. R2 Method 

The second algorithm (“R2”) is based on the work by Luan et al [115], where the Pearson 
correlation coefficient R2 is calculated for any two series of voltage measurements. R2 coefficients 
are calculated pair-wisely among all meters. The coefficients are then ranked to determine the 
transformer to which each meter is connected. 

Note that the original R2 algorithm is limited to only two transformers. In reality, when a 
meter is incorrectly labeled in the GIS records, to find the correct transformer it connects to, more 
than 2 transformers should be searched for in the neighborhood. Because of this, the algorithm has 
been improved to handle this situation. 

The high-level sketch of this algorithm is similar to that of ICA algorithm, except that a 

correlation matrix 𝑊 for a group of meters is used for clustering rather than the mixing matrix 𝐴 
(Step 5 and 6). 

𝑊𝑁×𝑁 = [

1 𝑟12 …
𝑟21 1 …
⋮
𝑟𝑛1

⋮
𝑟𝑛2

⋮
…

] ,   𝑤ℎ𝑒𝑟𝑒 𝑟𝑖𝑗 =

{
 
 

 
 

∑(𝑥𝑖 − 𝑥𝑖 ̅̅ ̅)(𝑥𝑗 − 𝑥𝑗̅)

√(∑(𝑥𝑖 − 𝑥𝑖 ̅̅ ̅)2 ∑(𝑥𝑗 − 𝑥𝑗 ̅̅ ̅)
2
)

,  𝑖𝑓 𝑖 < 𝑗

𝑟𝑗𝑖,    𝑖𝑓 𝑖 > 𝑗

 

Here, 𝑥𝑖 and 𝑥𝑗 are the time-series voltage measurement data for meters 𝑖 and 𝑗. 

For the same time-series voltage measurements in the example of ICA (as in top chart of 
Figure 12-18), Figure 12-19 shows the R2 coefficients for each of the 3 meters to all other meters in 
the meter collection. As expected, the blue and orange customers have similar coefficient curves, 
where the green customer has a different one. 

Again, based on the differences of the R2 coefficients, customers on the same transformers 
will likely be grouped into the same cluster by the Kernel K-means. 

 
Figure 12-19. R2 coefficients between each of the 3 meters selected and all other meters in the 

group  

12.2.3.2.3. Kernel K-means 

As mentioned in the two algorithms, Kernel K-means technique is used for clustering the 
mixing matrix for the ICA method and the R2 coefficient matrix for the R2 method. 
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A brief discussion on the difference between the standard K-means and the Kernel K-means 
is given below. The objective function used in the standard K-means can be written as, 

𝑓𝑘𝑚𝑒𝑎𝑛𝑠 =∑ ∑ ‖𝑥𝑖 − 𝜇𝑗‖
2
, 𝜇𝑗 =

1

|𝐶𝑗|
∑ 𝑥𝑖
𝑥𝑖∈𝐶𝑗𝑥𝑖∈𝐶𝑗

𝑘

𝑗=1

. 

Here 𝐶𝑗 refers to the cluster 𝑗, 𝑥𝑖 refers to the vector of data point 𝑖 belonging to cluster 𝑗, 

and 𝜇𝑗 is the center of 𝐶𝑗. The vector 𝑥𝑖 is often of high dimension (in relation to the total number 

of meters that are clustered), and the Euclidean distance used in standard K-means is known to lose 
its meaning in measuring uncorrelated variables in a high dimensional space. This may result in 
clusters that are too close to separate. To overcome this difficulty, instead of using a summation of 

point-wise squared errors of 𝑥𝑖 to the cluster center in the objective function, we map 𝑥𝑖 into a 

higher dimensional metric space equipped with inner product, denoted by a function 𝜙. The 
objective function is then modified to the following, 

𝑓𝑘𝑒𝑟𝑛𝑒𝑙 =∑ ∑ ‖𝜙(𝑥𝑖) − 𝜇𝑗‖
2
, 𝜇𝑗 =

1

|𝐶𝑗|
∑ 𝜙(𝑥𝑖)

𝑥𝑖∈𝐶𝑗𝑥𝑖∈𝐶𝑗

𝑘

𝑗=1

. 

To compute the ‖𝜙(𝑥𝑖) − 𝜇𝑗‖
2
 term in the equation above for a cluster 𝐶, we can expand 

the norm to, 

‖𝜙(𝑥𝑖) − 𝜇𝑗‖
2
= 〈𝜙(𝑥𝑖), 𝜙(𝑥𝑖)〉 − 

2

|𝐶|
∑〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉

𝑥𝑗∈𝐶

+
1

|𝐶|2
∑ 〈𝜙(𝑥𝑗), 𝜙(𝑥𝑘)〉

𝑥𝑗,𝑥𝑘∈𝐶

. 

Here, the operator 〈, 〉 denotes the inner product of two vectors, which can be represented 
by a kernel function (Gaussian kernel, polynominal kernel, etc.). Hence the objective function can be 

evaluated without an explicit mapping function 𝜙, and the algorithm of standard K-means clustering 
can still be adopted. In this implementation, the Gaussian kernel function is used. 

12.2.3.3. Synthetic Results 

The same test network as well as the synthetic AMI measurement dataset are used to test 
both algorithms in CYME’s prototype. However, only the voltage measurements are necessary, 
which are generated from synthetic active and reactive power profiles by solving time-series power 
flows for 30 days with a 15-minute interval on the CKT5 network. 

12.2.3.3.1. Test with Ground Truth 

For the initial test, we assume that all meter-to-transformer pairings are correctly labeled in 
the GIS records (the “Ground Truth”). Then from the voltage measurement data, we estimate the 
transformer that each customer meter is connected to. Finally, we compute the accuracy rate as the 
number of correctly estimated pairings over the total number of meter-to-transformer pairings in the 
network. In CKT5, there are 1,373 pairings in total, hence 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑖𝑟𝑖𝑛𝑔

1373
× 100% 
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Figure 12-20 and Table 2-1 show the accuracy results of the two algorithms for different 
numbers of transformers searched in the neighborhood (up to 10 transformers). We also compare 
with the results obtained by using Kernel K-means versus the standard K-means clustering. 

The figure and the data table below show that accuracies remain constant as the number of 
transformers in the neighborhood is increased when using Kernel K-means, especially the ICA 
method. The reduction of accuracy using the standard K-means can be explained by the minor 
difference in Euclidean distance between clusters. As more transformers in the neighborhood are 
being searched, meters have more possible clusters are possible to group into, which increases the 
possibility of false estimation.  

 
Figure 12-20. Accuracy of meter-to-transformer pairing algorithms using 30-days measurement 

(with comparison between Kernel K-means and K-means) 

Table 12-5. Results of accuracy of meter-to-transformer pairing algorithms 

Method Accuracy (%) 

Nb. of xfos 2 3 4 5 6 7 8 9 10 

ICA - Kernel 99.67 99.42 99.34 99.42 99.85 99.93 99.78 99.56 99.64 

ICA 98.91 98.03 98.40 98.54 98.18 97.31 97.38 97.09 96.94 

R2 - Kernel 99.49 99.49 99.56 98.91 98.98 98.98 98.62 98.40 98.03 

R2 98.27 96.80 96.72 95.99 94.32 94.17 93.52 93.08 92.94 

 

12.2.3.3.2. Test with Incorrect GIS Records 

For this experiment, we test the algorithms for a couple of scenarios with different levels of 
incorrect pairings in the existing GIS records. Ten transformers are searched for to collect the 
meters in the neighborhood. For each meter, a list of possible transformers is returned, with the 
empirical counts (probabilities) of transformers that the meter may connect to. From these 
probabilities, one can have two possible outcomes for each meter. 

1. Confirmed. There is a strong indication of 1 transformer, which has a high empirical 
probability. For this outcome, if we compare this identified transformer with the “ground 
truth”, we will further have two possibilities. 

a. Successful identification: the identified transformer is the true transformer that serves 
the meter, regardless of whether the existing pairing information in GIS is correct or 
not (for example, the upper graph of Figure 12-21) 
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b. False identification: the identified transformer is not the true transformer serving the 
customer (for example, the middle graph of Figure 12-21) 

2. Flag for further verification. In this outcome, the algorithm identifies at least two possible 
transformers that have similar probabilities (for example, the bottom graph of Figure 12-21), 
or the “unknown” transformer is returned with a high probability. Hence further verification in 
field is required to determine the correct transformer.  

Table 12-6 shows the results of both algorithms for different levels of incorrect entries in 
GIS records up to 30%. As the number of incorrect pairings in GIS increases, the percentage of 
pairings flagged by the algorithms for further verification increases linearly. If we assume that 
flagged pairings will be confirmed by field verifications for the correct pairing, we can include them 
into the rate of successful identification, which increases the overall successful rate to close to 95% 
even for the 30% case. Overall, the ICA method performs slightly better than the R2 method. 

Table 12-6. Accuracy of meter-to-transformer pairing algorithms with inaccurate GIS records 

GIS 
Error % 

Method Confirmed 
Successful 
Identification 

False 
Identification 

To Verify 

0% 
ICA 1366 99.49% 1363 99.27% 3 0.22% 7 0.51% 

R2 1339 97.52% 1329 96.80% 10 0.73% 34 2.48% 

10% 
ICA 1278 93.08% 1263 91.99% 15 1.09% 95 6.92% 

R2 1254 91.33% 1235 89.95% 19 1.38% 119 8.67% 

20% 
ICA 1183 86.16% 1146 83.47% 37 2.69% 190 13.84% 

R2 1150 83.76% 1108 80.70% 42 3.06% 223 16.24% 

30% 
ICA 1072 78.08% 1007 73.34% 65 4.73% 301 21.92% 

R2 1057 76.98% 982 71.52% 75 5.46% 316 23.02% 
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Figure 12-21. Illustration of possible outcomes by the algorithms (top – successful detection; 

middle – false detection; bottom – flag for further verification) 
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12.2.3.3.3. Test with Incorrect GIS Records and Noisy Measurements 

In the last experiment, noise is added to the voltage measurements to test the robustness of 
the algorithms. The following scenarios are considered: 

a. Use noiseless 𝑉 data (baseline case) 

b. 𝑉 data with zero-mean and 1V standard deviation noises 

c. 𝑉 data with zero-mean and 1.5V standard deviation noises 

d. 𝑉 data with zero-mean and 2.5V standard deviation noises 

e. 𝑉 data with zero-mean and 5V standard deviation noises 

Given that the ICA method performs better than the R2 method, only the ICA method is 
tested with the noisy data, assuming that 30% of meter-to-transformer pairings in GIS records are 
incorrect. Further, parameters and threshold values are calibrated by trial and error, such that one 
can optimize the judgment of whether estimated transformers for a meter can be confirmed 
(whether successful or false) or field verifications are required. This leads to improved results for the 
baseline case with noiseless data comparing to those in Table 12-6. 

Figure 12-22 and Table 12-7 show the results of all test scenarios:  

1. Percentages of confirmed and flagged for verifications remain relatively constant 
independent of noise levels 

2. False identification rate increases with the noise levels, hence success rate decreases 

3. The algorithm can achieve >90% overall success rate after field verification is done 

 

 

 

Figure 12-22. Accuracies (success rate, false identification rate, and success rate after field 
verifications) of ICA method on noiseless and noisy measurement data (with 30% of inaccurate 

information in GIS records) 
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Table 12-7. Results of accuracy of meter-to-transformer pairing algorithms with 30% inaccurate 
GIS records and noisy data 

Test 
Case 

Method Confirmed 
Successful 

Identification 
False 

Identification 
To Verify 

Successful after 
verification 

Noiseless ICA 1165 84.81% 1109 80.77% 111 4.04% 153 15.19% 1262 95.96% 

Noises 
with 1V 

std 
ICA 1169 85.14% 1099 80.04% 140 5.10% 134 14.86% 1233 94.90% 

Noises 
with 1.5V 

std 
ICA 1160 84.45% 1082 78.81% 155 5.64% 136 15.55% 1218 94.36% 

Noises 
with 2.5V 

std 
ICA 1154 84.05% 1047 76.26% 214 7.79% 112 15.95% 1159 92.21% 

Noises 
with 5V 

std 
ICA 1161 84.56% 1027 74.80% 268 9.76% 78 15.44% 1105 90.24% 

 

To conclude, CYME’s prototype has been demonstrated to have met the objective and 
milestones of this task. Some further work is possible to explore related to this task, especially on 
optimization of parameters and threshold values used in both ICA and R2 algorithms. This could be 
done creating some supervised learning model and training it with a set of accurate and inaccurate 
meter-pairings along with the ground truth. 

Additionally, as seen in Table 12-7, if we look at the success rate without any field 
verification, the ICA algorithm is able to identify >80% of correct meter-to-transformer pairings 
from noiseless measurement where only 70% of existing GIS records are correct. If we feed the 
resulted pairings back to the ICA algorithm and iteratively run the process, we may expect to further 
increase the success rate without field verifications. 

12.3. Open Modeling Framework (OMF) 

In collaboration with the National Rural Electric Cooperative Association (NRECA), the 
spectral clustering ensemble phase identification tool was implemented into their Open Modeling 
Framework (OMF) tool suite.  The OMF tool suite is a free and open-source web application 
primarily directed toward electric cooperatives but is public-facing and open for use by everyone. 
NRECA has created and maintained the OMF with support from the US Department of Energy, 
and the system provides access to 30+ techno-economic grid planning models to an active user base 
of over 200 utilities, vendors, and researchers. 

Part of this collaboration was the work described in Section 4.3.5 detailing the Modified 
Silhouette Coefficients and the Adjusted Rand Index.  That work directly enabled the 
implementation of the phase identification algorithm into the OMF tool by providing individual 
confidence scores for each customer’s phase prediction and enabling us to provide specific 
recommendations for the window size parameter and the minimum dataset requirements to the end-
user of the OMF tool.   

The phase identification algorithm is now fully live and available for use on 
https://omf.coop, labeled as the ‘phaseid’ tool in the menu. It can also be accessed directly via 
https://omf.coop/newModel/phaseId/iMoFi. Figure 12-23 shows the initial view of the GUI 
dashboard provided by the OMF tool when a user launches the phase identification tool.  The 

https://omf.coop/
https://omf.coop/newModel/phaseId/iMoFi
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‘Help?’ icon links to the OMF wiki, Figure 12-24, which provides a brief description and user guide 
for the phase identification tool.  The wiki also links back to the Sandia code released on Github, as 
well as the conference and journal papers related to the phase identification algorithm.  The wiki is 
hosted on the Github repository for the OMF tool which can be found at 
https://github.com/dpinney/omf/wiki/Models-~-phaseId.  The OMF tool suite is open-source 
and licensed under the GPL v2.0 license.   

Note that in Figure 12-23, the ‘Choose File’ button is pre-populated with a sample dataset 
for new users.  This is the same dataset released on the Sandia Github page.  Of course, the user can 
supply their own dataset once they are familiar with the tool.  Likewise, there are default values for 
the number of final clusters (7). 

 

 
Figure 12-23 - OMF example GUI 

 
Figure 12-24 - OMF wiki for the phase identification tool 

Figure 12-25, Figure 12-26, and Figure 12-27 show the output when the user runs the tool 
on the provided sample dataset.  Figure 12-25 shows the first output of the confusion matrix, 

https://github.com/dpinney/omf/wiki/Models-~-phaseId


 

221 

populated to the dashboard.  This shows the number of customers predicted to have a different 
phase from their initial label.   

Figure 12-26 shows the histogram of the confidence scores (Modified Silhouette 
Coefficients) for the sample dataset.  Note that all values are above 0.2, signifying high confidence in 
the predictions.  Figure 12-27 shows the last two outputs on the dashboard.  The first is a color bar 
representing the total number of customers, how many were predicted to have different phase labels 
than the input data (9% for the sample dataset), how many were unchanged, and how many were 
omitted due to missing data from the analysis (0% for the sample dataset).  Then there is a table 
showing the customer ID, the original phase, the predicted phase, and the confidence score for each 
customer.  Customers with different predicted phase labels compared to their original label are 
highlighted in red.  

The confidence score histogram is saved to the working directory as an image file, and the 
output table is saved as a csv file.   

 

 
Figure 12-25 - OMF phase identification tool, confusion matrix output 
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Figure 12-26 - OMF phase identification tool, confidence score output histogram 

 

 
Figure 12-27 - OMF phase identification tool, percent of labels changed color bar and algorithm 
output by customer 

 



 

223 

The phase identification tool is fully live and available for usage at no cost by coops, 
researchers, and vendors.  Having this tool available in this way puts the research funded by this 
project directly into the hands of the utilities and their partners who can benefit from this work. 

 

12.4. Integration with Utility Tools 

Utility #1 is implementing the sensor-based phase identification algorithm for widespread 
use into their system.  Sandia has facilitated their implementation in the form of advice and further 
algorithm development as issues or questions have come up.   

In preparation for putting the phase identification into their normal process, they have been 
working through the field verification of the feeders that the project team used for testing. Sandia 
provided the utility with the algorithm predictions, and the utility provided personnel and time to 
field-verify the algorithm predictions.  This is further detailed in Section 4.2.5.  The algorithm results 
for each of the four feeders was shown to be 100% accurate for customers predicted to be incorrect 
in the utility model. Each field verification provides additional confidence in the algorithm 
performance and additional insights into the types and frequencies of the errors that are identified. 

The utility uses the IBM Cognos platform as their data analytics platform.  This platform 
provides the functionality for a data input pipeline, data analytics, and a dashboard visualization.  As 
seen in Figure 12-28, they have put together a draft for the phase identification algorithm which runs 
in the Cognos platform.  The draft leverages the code that Sandia released as opensource (see 
Section 12.1) The algorithm has been shown to match the outputs from Sandia using the same 
dataset.  One of the challenges with this initial version is the runtime which is several hours.  This is 
mainly an implementation issue.   

They are in the process of developing a revised complete implementation that can be applied 
to their entire service area.  This includes developing a data input pipeline to convert raw AMI 
records from their database system into an array format for input into the phase identification 
algorithm.  This may be the primary bottleneck in the runtime as it involves calls to a database 
outside the Cognos architecture.   

 

Figure 12-28 - Phase identification in Utility #1’s reporting platform for using AMI data and 
recloser SCADA measurements to identify customers that are on the wrong phase in their 
database 
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12.5. Summary 

Three of the distribution system model calibration algorithms developed during this project 
were released as open source on the Sandia National Laboratories GitHub, 
https://github.com/sandialabs.  Those were the Spectral Clustering Ensemble phase identification 
algorithm, the Sensor-Based phase identification algorithm, and the two-stage meter-to-transformer 
pairing algorithm.  CYME implemented and tested three different types of algorithms within 
CYME.  Those were phase identification algorithms, secondary system topology and parameter 
estimation algorithms, and meter-to-transformer pairing algorithms.  NRECA implemented the 
spectral clustering ensemble phase identification algorithm into their OMF platform, and that 
algorithm is now freely available for use by utilities.  In addition, Utility #1 is in the process of 
implementing the sensor-based phase identification algorithm for widespread use within their 
system.  These four different algorithm implementation items demonstrate the utility of the 
algorithms developed over the course of this project in the real world.   

https://github.com/sandialabs
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13. CONCLUSIONS 

Uncertainty in distribution grid modeling leads to overly conservative or inaccurate decisions 
regarding PV integration and limits acceptance of higher levels of PV. Simulation tools are often 
severely limited in their effectiveness by the model accuracy.  This project developed methods to 
efficiently process grid measurements and Big Data to substantially increase the precision and 
accuracy of distribution system models.  There is a great industry need for more accurate feeder 
model phasing information, better spatial and temporal load models, phase-specific load models, 
more detailed reactive power load modeling, and better ways to represent feeder net load in the 
presence of exiting DER. The applications of the improved models include more accurate 
interconnection screening (reducing PV interconnection costs and expensive mistakes that impact 
safety and reliability) and increased confidence in public-facing hosting capacity maps (providing 
optimal locations to cost effectively allow high PV penetrations and improve the distribution system 
reliability and performance). The proposed methods leverage readily available utility measurement 
data, feeder models, and other information. The methods are demonstrated on real U.S. utility 
feeder models with field measurement data from SCADA, AMI, and other sources.   

It was shown in [116] that errors in grid models can result in significant hosting capacity 
errors.  Locational hosting capacity analysis was performed for 1379 potential PV interconnection 
locations with different levels of model errors for size of service transformers, customer to service 
transformer connection, missing existing PV, phase label errors, errors in secondary low-voltage 
system topology, difference in voltage regulation settings, and incorrect state of capacitors.  As seen 
in Figure 13-1, the discrepancies between the model and actual operations of the distribution system 
in the field can result in up to 100% error in the locational hosting capacity estimate. 

 

Figure 13-1 - The percent error in estimated locational voltage-constrained hosting capacity (VC-
HC) when there are a) phase label errors, b) errors in secondary system topology, and c) errors in 
substation voltage regulation settings in the distribution system model. [116] 

13.1. Accomplishments and Final Deliverables 

During the course of the research, several key accomplishments achieved were: 

• Demonstrated phase identification performing with at least 90% accuracy on test systems 

and utility feeders 

• Implemented and validated meter-to-transformer pairing algorithm with >90% success rate 

on test systems and utility feeders 

• Showed the ability to identify location, estimate size, and estimate parameters of PV systems 

in a medium-size distribution feeder with an error of less than 5% 
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• Demonstrated phase identification, secondary system parameter estimation, and meter-to-

transformer pairing algorithms in CYME 

• Demonstrated data-driven methods for identifying voltage regulator and switching capacitor 

states 

• Demonstrated the ability to determine control parameters for behind-the-meter smart 

inverters for their power factor and volt-var curve 

• Demonstrated improved, yet practical, distribution load modeling methods that leverage 

modern data streams 

• Deployment of phase identification algorithm in NRECA’s Open Modeling Framework 

(OMF) for easy use by coops 

• Demonstration with a utility partner of phase identification integrated into their 

environment and existing toolset 

Final deliverables resulting from the project are: 

• Publication with recommendations to utilities for AMI data recording guidelines along with a 

listing of value that can be realized at different levels of data resolution 

• Publicly published open-source algorithms for phase identification and meter-to-transformer 

pairing 
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13.3. Path Forward 

The ability to detect errors and calibrate distribution system models will continue to be an 
ongoing challenge for utilities.  Continued adoption of smart grid technologies and controls, such as 
electric vehicle chargers or advanced distribution management systems, means that there will be 
even more parameters, settings, and components to model in the future.  Fortunately, sensors and 
communication are also becoming cheaper, which allows for more visibility into distribution system 
operations and provides for additional model calibration capabilities.  These algorithms will need to 
continue to improve in the future for additional features and more efficient processing as the data 
coming back from the distribution system continues to grow in size. 

With growing numbers of distributed PV, the aggregate impacts to the bulk power system 
are becoming more important.  Future work could investigate the ability to use distributed 
measurements to calibrate aggregate dynamic models of PV for transient and stability simulations of 
the system.  This includes using new data sources, such as PMU and point-on-wave sensors, as they 
become more common in the distribution system. 

To be truly effective, these model calibration algorithms must be integrated into the utility’s 
processes.  Utilities may have information stored in a variety of locations, such as SCADA 
measurements with DMS, AMI data in billing, component information in GIS, and PV information 
in their interconnection database.  It is necessary to be able to access and query each piece of 
information and process it in a streamlined fashion with automated reports generated for the 
utilities.  In addition, it will be necessary to refine utility processes to manage the grid model data 
across the different utility IT systems, including planning and operational software.  

Future work could include hardware and sensing research to expand local analytic 
capabilities.  Most model calibration algorithms right now are performed at a central location based 
on large historical datasets from many sensors.  As the number and sampling frequency of sensors 
increases, computational efficiency improvements can be made by doing some analytics locally in a 
distributed or hierarchical fashion.  While fog computing using edge devices is becoming more 
common in certain grid controls, it may take some intense research to be able to apply model 
calibration using distributed computing architectures.  This could also include improvements to 
sensing hardware based on the ongoing positioning, navigation, and timing (PNT) research that 
would allow for more synchronized measurements around the distribution system that are important 
for measuring small phase angle changes.  
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