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ABSTRACT

As heterogeneous systems become increasingly popular for both mobile and high-performance 
computing, conventional efficiency techniques such as dynamic voltage and frequency scaling 
(DVFS) fail to account for the tightly coupled and varied nature of systems on a chip (SoCs). In 
this work, we explore the impact of system unaware DVFS techniques on a mobile SoC under 
three benchmark suites: Chai, Rodinia, and Antutu. We then analyze performance trends across 
the suites to identify a set of consistent operating points that optimally balance power and 
performance across the system. The consistent operating points are then constructed into a 
dependency graph which can be leveraged to produce a more effective, SoC-wide governor.
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INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS

Power consumption is an important issue in the design of computing systems. In recent years, 
there have been two developments which have created a need for energy aware computing: High 
Performance Computing (HPC): new HPC cluster systems are designed to have a power cap [1], 
[2] which allows the system to scale with the increasing demand, and Mobile Computing: 
proliferation of battery driven mobile devices has given rise to the need for meeting ever 
increasing demand for performance with a longer battery life, which requires focus on energy-
aware computing. Dynamic voltage and frequency scaling (DVFS) and Dynamic Duty Cycle 
Modulation (DDCM) are highly effective techniques for reducing system power dissipation [1], 
[3]. The key idea behind these techniques involves providing the system with just-enough speed 
for task completion, thereby reducing energy consumption quadratically. In addition to its energy 
saving characteristics, voltage and frequency modulation help in regulating the temperature of 
the cores which helps reduce system failure [4]. 

DVFS has been an active area of research, and the work can be broadly categorized into three 
categories [5]. The first category of work focuses on designing models to evaluate the power 
consumption of various programs. This area of work helps designers understand the impact of 
DVFS on various algorithms and helps software developers in designing efficient algorithms 
which are cognizant of both performance and power. The second category of work focuses on 
system-level design that tries to utilize system-level statistics of given resources from their 
governors and decides the operating points for the resources. Finally, the third area involves 
designing energy aware task scheduling, where based on the requirements of multiple processes 
and multi-core systems, jobs are scheduled on different machines to ensure maximum 
performance at minimum energy cost [6], [7].

Figure 1 Architecture Schematic of DVFS in Current Systems



In current DVFS systems, all requests for state transitions are generated through the respective 
governors and sent to the kernel, where they are serviced by the power management unit. A 
schematic of this architecture is shown in Figure 1. The operating points of the resources (CPU, 
GPU, Memory) are decided by the governor of that resource based on its state [8], unaware of 
the requirements of other resources and the complete system level power demands. The lack of 
cross-component awareness leads to sub-optimal policies and additionally affects the energy 
efficiency and the quality of service (QoS) of the system [9].

To address this problem, we develop a holistic multi-component DVFS mechanism utilizing the 
cross-component relationship among the resources. Our approach accounts for dynamically 
changing input data when making power predictions and does so at the fine-grained granularity 
of each operator. Achieving these objectives is challenging because there are no tools to measure 
the power cost of each operator directly, and we do not have visibility into operator code to 
understand its resource usage. Instead, we collect easily accessible device-level energy draw 
information on the mobile device (i.e., system on a chip (SoC)) and concurrently monitor 
changing composition of executing application operators to attribute measured power draw in a 
time interval to the observed operators within that interval. A prediction model, which directly 
maps operator execution times to their corresponding power use, is then trained using this data 
and deployed on the mobile device to provide run-time predictions for power optimization 
decisions.  Using these results, we are able to build a dependency graph among components and 
create power or performance equivalence classes that are used to intelligently modify the 
frequencies of each component to achieve a desired power and performance for the whole 
system.

In this work, we demonstrate that in a multi-component system of independent governors leads 
to sub-optimal energy and performance for the system. We study the relationship of varying 
operating points over different resources, which allows us to characterize the interactions among 
components embedded in a modern SoC architecture. Our work can be used to set individual 
component operating points as well as decide the transition path between points in order to 
achieve power savings in the system with minimal impact to performance. Through our research 
and development, we were able to achieve and exceed our goal of 10% power savings when 
comparing our approach to traditional DVFS methods.

METHODOLOGY

We have two primary design goals: 1) identify the cross-component dependency of power 
performance among resources, and 2) create a system-wide DVFS policy for efficient power-
performance behavior. The first step toward identifying the power models across each resource is 
to understand the relationship among them and how the power and performance of individual 
resources are intertwined. Secondly, we propose a method to identify the efficient and inefficient 



zones across various components, and furthermore, provide an architecture for system-wide 
DVFS policy.

POWER MODEL

In modern resources, the power is composed of two components: static and dynamic power. 
Static/leakage power is a result of an unwanted sub-threshold current (𝐼𝐿) in the transistor 
channels, which is a direct result of transistor characteristics, and is found in almost all 
transistor-based circuitry. Dynamic power is the more dominant component of the total power 
and is impacted by the voltage and frequency setting of the resource as expressed below [6]:

𝑃 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝐿𝑉2𝑓

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐼𝐿𝑉

where 𝑃 is the total power consumed, 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 is the leakage power, and 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is the dynamic 
power. 𝐶𝐿 and 𝐼𝐿 are constant values, 𝑉 is the operating voltage, and 𝑓 is the operating 
frequency. While most modern systems follow the behavior expressed in the equations above, 
some resources have slightly different behavior, such as memory systems which use the 
following model:

𝑃𝑚𝑒𝑚 =
1
2𝐶𝐿𝑉2𝑓 × 𝑎𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 + 𝐼𝐿𝑉

 
where 𝑎𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 is the concurrent memory access made to the resource.

Voltage and the frequency are tightly coupled and have almost linear correlation (Figure 2), to 
ensure safe operation of the devices. In modern systems each frequency is one-to-one mapped to 
a specific voltage along the Safe Boundary, which allows us to modify the operating voltage by 
changing the frequency. This relationship reduces the state space of our problem making it easier 
to focus on the impact of operating frequency of one resource on another.



DEPENDENCY GRAPH

Performance of resources is generally linearly correlated with the operating frequency of the 
resource. An operating point in a multi-resource system is represented as a tuple of operating 
frequencies, {𝑓𝐶𝑃𝑈,  𝑓𝐺𝑃𝑈,  𝑓𝑀𝑒𝑚}.

Current DVFS policies for multi-resource systems do not consider the interaction among 
resources in a tightly coupled system like SoCs, and the heterogeneous workload of modern 
applications where each resource impacts the performance of others. Due to this interaction, 
certain configurations can lead to less wasted power while still achieving similar performance. 
We represent the dependency of operating points in a graphical structure (Figure 3), where 
different colors represent different resources, and each node is an operating frequency. 
Equivalence classes represent a collection of operating point which provides similar power-
performance characteristics. A different class represents system requirements such as high 

Figure 2: Diagram Depicting Safe Operating Point



performance or power efficiency. These dependency graphs will help developers decide the 
optimal configuration based on QoS requirements and other operating constraints.

To design the dependency graph, we run the benchmarks for all possible configurations of 
voltage and frequency of each component and collect the benchmark and utilization numbers for 
each of the components. This allows us to characterize the interactions among different 
components.

DVFS POLICY

As expressed in the dependency graphs, we utilize the relationship among resources to design a 
system-wide holistic power management system. The various equivalence classes provide us 
with a set of operating points to choose from, dependent on the system requirement and 
operating constraints (such as low power mode or performance mode).

Figure 3: Schematic of an Example Dependency Graph



Figure 4: Schematic of Our Proposed Power Management System

We implement this policy on top of existing resource-specific governors as shown in Figure 4. 
Our DVFS policy adds a layer between existing resource-specific governors. We extract the 
resource utilization values by using either system provided methods (e.g., proc files) or the APIs 
provided by the resource specific governors. This model provides a global view of the system 
and allows us to set the system configuration per the system-wide optimal setting.

RELATED WORK

As DVFS for heterogeneous systems is a fruitful research area, there are several works related to 
our proposed project. GPU DVFS in isolation has been previously considered as GPUs consume 
more power and have larger voltage ranges than CPUs [10]. To explore GPU DVFS, Nath and 
Tullsen [10] present CRISP (Critical Stalled Path), an analytical tool used to understand how 
frequency impacts GPU application performance. At the time, state-of-the-art CPU performance 
frequency analysis tools split an application into two portions: pipelined computation and 
memory fetches. These CPU-oriented tools make the assumption that performance of the former 
scales with the frequency, while the latter does not, and uses this information to understand how 
to scale the frequency given an application’s characteristics. CRISP is built on the understanding 
that GPUs do not exhibit this behavior, as the computation in a GPU is highly overlapped with 
outstanding memory requests. Therefore instead, CRISP splits a GPU application into the load 
critical path and the compute/store path. Where the former is the longest string of dependent 
loads which is overlapped with computation, while the latter is defined as the accumulation of 
non-overlapped compute and store operations. These two portions are important to distinguish as 
they are impacted by GPU frequency differently. This understanding of the GPU architecture 



allows CRISP to predict performance within 4% of empirical measurement as frequency is 
scaled.

Other works have looked into using DVFS as a means to reduce DRAM energy. This is 
attractive as it has been found that DRAM contributes up to 40% of a server’s total energy 
consumption: a consequence of architects historically focusing their efforts on the CPU as well 
as the increased demand of memory bandwidth. Deng et al. [11] present MemScale, a scheme 
which proposes both DVFS of the memory controller and dynamic frequency scaling (DFS) of 
the physical DRAM chips. MemScale is developed using the concept of slack, defined as the 
difference of a desired runtime provided by the user and the actual runtime when the frequency is 
scaled. MemScale uses many performance counters to understand how the performance of an 
application is impacted by the memory controller DVFS and memory DFS, with the goal of 
minimizing the overall slack. MemScale is epoch-based, and every 5ms, the performance 
counters are profiled and application performance is predicted. After profiling, the frequency and 
voltage are scaled to reduce the slack of the application. While MemScale only alters the 
frequency of the DRAM device, there are proposed techniques to also alter the voltage. Chang et 
al. [12] propose Voltron, which aims to reduce the energy consumption of DRAM by reducing 
the supply voltage below the DRAM standards while still correctly storing the data. Another area 
of interest in memory DVFS is the granularity at which operations can be done. Today’s systems 
only support power management at the rank-level, which experiences frequent wake-ups from 
low-power states due to the coarse granularity. GreenDIMM [13] is a proposed system which 
allows the operating system to control the power state of DRAM at a sub-array granularity.

Work that is most similar to our project is a follow-on project to MemScale, called CoScale [14]. 
CoScale looks at the combined problem of CPU and memory DVFS, and shows that these 
problems can not be looked at individually. For example, naively combining a CPU DVFS and 
memory DVFS scheme ignorantly can create scenarios where the performance counters used to 
control the DVFS schemes do not represent the actual application characteristics. CoScale 
addresses this by using a single scheme, similar to that of MemScale, but controls the voltage 
and frequency of both the CPU and memory. One issue with looking at both CPU and memory 
DVFS is the search space is much larger than when looking at a single component. To address 
this, the authors use a gradient search heuristic to search the space of CPU and memory voltage 
and frequency.

While the area of DVFS for heterogenous systems has clearly been explored, no work has looked 
at how CPU, Memory, and GPU frequency and voltage impact end-to-end application 
performance. The interaction of voltage and frequency between all three components is very 
important to understand to reduce the energy consumption of modern SoCs. 



RESULTS AND DISCUSSION

A.  TEST PLATFORM

To explore the efficacy of current governors, we use the ODROID-XU4 Single Board Computer. 
This board houses a Samsung Exynos 5422 SoC, and its specification is summarized in Table I. 
The ODROID-XU4 importantly provides DVFS access and control over both CPUs, the GPU, 
and the main memory. Our goal is to capture the impact that scaling each component’s frequency 
has on several representative workloads. This process will help us identify where performance 
degradation occurs precisely, construct a graph that captures those dependencies, and potentially 
design a unified governor which avoids these shortcomings. Our system can run both Ubuntu 
18.04 with Linux kernel 4.14 as well as Android 4.4.4 (v7.1) and odroidxu4-4.9.y. Both system 
software configurations were used allowing us to run multiple benchmark suites.

Table 1: EXYNOS 5422 SPECIFICATIONS

CPU Octa ARM Cortex-A15 Quad 2GHz and Cortex-A7
Quad 1.3GHz

GPU Mali-T628 MP6 (OpenGL ES 3.0/2.0/1.1 and
OpenCL 1.1 Full profile)

Main Memory 2GB LPDDR3 RAM at 933MHz (14.9GB/s memory
bandwidth)

B. BENCHMARKS

In order to generate an understanding of how frequency scaling impacts SoC performance, we 
require a comprehensive evaluation of operating point efficacy under a variety of memory, CPU, 
and GPU-bound workloads. To obtain this evaluation, we scaled the frequency of each 
component while utilizing the AnTuTu benchmark suite. The AnTuTu benchmark suite is a 
popular mobile benchmark suite, which provides raw component scores for CPU, GPU, and 
Memory. AnTuTu also provides a User Experience (UX) score, which is an aggregate score 
describing how the different component performances would impact user experience.
On top of AnTuTu, we wanted benchmarks that utilize the entire SoC for a single application. To 
achieve this, we used the Rodinia benchmark suite [15], [16], a benchmark suite for 
heterogeneous platforms. The Rodinia benchmark suite contains a large number of applications 
with support for OpenCL and OpenMP, enabling applications to execute on the GPU, the CPU 
and GPU, or multiple CPUs.



One gap in Rodinia is that applications execute either on the CPU or the GPU without cross-
device threading or collaboration. To examine scenarios where both the CPU and the GPU are 
completing useful work simultaneously, we used the Chai benchmark suite [17]. Benchmarks in 
Chai collaborate through data partitioning, fine-grain task partitioning, or coarse-grain task 
partitioning.

Together, these three benchmarking approaches will provide data for system performance under 
varied workloads, including CPU-only, GPU-only, and combined CPU-GPU. These workloads 
consist of both memory and compute bound benchmarks.

C. ANTUTU

The AnTuTu benchmark suite provides a comprehensive analysis of our system. It provides a 
detailed breakdown of the different operating resources’ performance metrics such as CPU, 
GPU, Memory, and UX. This breakdown helps us observe the performance discrepancies in each 
resource with its corresponding operating points against the overall performance score. AnTuTu 
has different benchmark suites, which utilize a single resource bound task or a multi-resource 
bound task which allows us to gauge the impact of operating points on cooperative and isolated 
workloads.

We performed extensive testing with AnTuTu in Android OS at different CPU, GPU, and 
Memory operating points. We varied the frequency of the big and little CPU from 1.2 - 2.0 GHz 
and 1.0 - 1.4 GHz, respectively. For the memory, we varied the frequency from 165 - 933 MHz, 
and for the GPU, the frequency was varied from 177 - 543 MHz. We observed high correlation 
between performance of big and little core frequency; hence, we modified their frequency 
together to reduce the number of possible configurations and to study the interaction across 
different components more effectively.

C.1 FREQUENCY SWEEP

We observed a few interesting trends on the impact on performance due to memory and CPU 
frequency. As shown in Figure 5, there are local maxima for performance while sweeping 
memory frequencies dependent on the CPU frequency. The local maxima points shift towards 
higher memory frequency as the CPU frequency increases which implies that higher CPU 
frequency does not yield improved performance for lower memory frequency. We also observe 
that memory frequency has a high impact on GPU performance, and lower memory frequency 
can lead to saturation and power wastage for higher GPU frequency (Figure 6).



Figure 5: Frequency Sweep for Memory



Figure 6: Impact of Memory Frequency on GPU

In Figure 7, we analyze the memory performance scores with varying memory frequencies at the 
two different CPU and three different GPU frequency levels. For low memory frequencies, we 
observe identical scores across all CPU and GPU levels while at mid and high memory 
frequencies, memory performance either stagnates or drops for different GPU frequency levels 
across all CPU levels.



Figure 7: Memory Performance for Different CPU and GPU Settings

Figure 8 shows clusters of CPU performance scores for different CPU frequencies. We noticed 
clusters in the graph where the CPU performs efficiently or inefficiently: red boxes denote 



inefficient regions while green boxes denote efficient regions. From this analysis, we noticed that 
lower CPU frequencies can yield better CPU performance than a higher CPU setting in some 
cases. This behavior can be attributed to different GPU and memory frequencies for each data 
point. 

These results help us in developing a dependency graph, like the one shown in Figure 3, which 
encapsulates the effect of operating points on the performance of the system. In the next section, 
we study the power consumption at different operating points and its impact on overall 
performance which allows us to analyze the power-performance trade-offs that are dependent on 
the system and applications’ requirements.

Figure 8: CPU Performance Scores at Different CPU Configurations

C.2 POWER PERFORMANCE ANALYSIS

One of the primary goals of DVFS is to reduce the operating power. Therefore, we studied power 
performance characteristics of the Odroid-XU4 in an attempt to understand if there are 
inefficiencies in operating power and performance for different configurations. To achieve this, 
we ran all benchmarks at all possible configurations and noted the peak power consumption by 
each benchmark suite.

We observe that power and performance do not have a strictly positive relationship. These 
results imply a complex dependency among power and performance leading to efficient and 
inefficient operating zones based on the system wide configurations. This phenomenon is 



demonstrated in Figures. 9, 10, and 11 where efficient zones are represented by blue and 
inefficient zones are represented by red. These results are consistent with findings observed in 
the previous section where GPU and memory performance show saturation at various operating 
points. In general, we observe that if any of the resources are operating at one extreme while the 
others are at the opposite extreme, there exist regions of wasted energy without significant 
performance gains.

Figure 9 Power and Performance of CPU



Figure 10: Power and Performance of Memory

Figure 31: Power and Performance of GPU



To further understand this relationship, we calculated the Spearman Correlation of the 
benchmark performance for each resource with the operating point of all other resources. This 
analysis, in Table II, shows that memory frequency impacts performance of each component 
significantly, while CPU and GPU frequency impact only their own performance. These 
relationships are due to the architecture design; the CPU and GPU systems are both dependent 
on a unified memory which can cause stalls resulting in wasted cycles and loss of performance. 
Based on these numbers, we observe a general trend: to improve performance we first should 
increase memory frequency and then increase other frequencies. From the power perspective, the 
GPU provides the most gain for performance per power consumption across two extreme 
operating points: (1.65x) followed by memory (1.51x) and then CPU (0.8x).

Table 2: ANTUTU SPEARMAN CORRELATION

MemPerf CPUPerf GPUPerf
MemFreq 0.921 0.632 0.776
CPUFreq 0.152 0.737 0.070
GPUFreq -0.130 0.041 0.538

D. RODINA

The Rodinia benchmark suite [15] is a compute-intensive benchmark suite for heterogenous 
computing platforms. We chose Rodinia as it has a very strict division of labor between the CPU 
and the GPU, where the GPU performs all of the computation while the CPU performs file IO, 
memory allocation, etc. This was a desired characteristic to contrast to the Chai benchmark suite, 
which utilizes both the CPU and the GPU to collaborate in computation. Not all applications in 
Rodinia were able to run on the ODROID-XU4 platform, and thus, we used the following subset 
of applications: Pathfinder, KMeans, NW, Hotspot3D, Backprop, and Streamcluster.

D.1 FREQUENCY SWEEP

We swept the big CPU, little CPU, GPU, and memory frequencies on the ODROID-XU4 to 
understand the effect frequency scaling has on the selected Rodinia applications. The big CPU 
frequency was varied from 1.2 - 2.0 GHz, the little CPU frequency was varied from 1.0 - 1.4 
GHz, the GPU frequency was varied from 177 - 600 MHz, and the memory frequency was 
varied from 633 - 933 MHz. For these sweeps, all applications were either CPU bound, Mixed 
CPU-GPU bound, or Mixed CPU-Mem bound. Three examples can be seen in Figures 12, 13, 
and 14, which show the sweeping results for the NW, Pathfinder, and StreamCluster 
applications, respectively. As one can see, the NW application is solely CPU bound as it 
observes a 1.31x performance improvement when scaling the CPU frequency, while only a 1.18x 



and 1.14x performance improvement when scaling the GPU and memory frequencies, 
respectively. Figure 13 shows StreamCluster, which we classify as Mixed CPU-Mem bound as 
we see both a 1.16x and 1.19x performance improvement when increasing the memory and CPU 
frequencies, respectively, while scaling GPU frequency only achieves a 1.05x performance 
improvement. Lastly, Figure 14 shows Pathfinder, which we classify as Mixed CPU-GPU bound 
as it sees a performance improvement of 1.84x when increasing the GPU frequency and a 1.29x 
performance improvement when increasing CPU frequency, while only achieving a 1.09x 
performance improvement when scaling memory frequency.

Figure 42: Frequency Sweep for NW

Figure 53: Frequency Sweep for StreamCluster



Figure 64: Frequency Sweep for Pathfinder

We have three interesting observations from this data. The first is that increasing CPU frequency 
always produces a non-trivial performance improvement. We hypothesize that this is because all 
applications are performing similar CPU operations such as memory allocation, file IO, etc. 
which clearly benefits from increasing CPU frequency. The second observation is that while we 
don’t see a single application as being solely GPU bound or memory bound, we observe 
significant performance improvements when increasing either GPU or memory frequency for 
mixed bound applications. The third observation is that we never see the performance impact 
from memory frequency scaling to be the most significant, and it is always overshadowed by 
scaling either the CPU or the GPU frequency. We hypothesize that because the Rodinia 
benchmark suite offloads all computation to the GPU, these benchmarks are relatively 
insensitive to increases in DRAM access latency due to the GPU’s ability to hide memory 
latencies behind massive parallelism.

D.2 CORRELATION ANALYSIS

To greater understand the performance impact of sweeping each component’s frequency, we 
calculated the Spearman Correlation between the application latency and the frequency of each 
component. A negative Spearman Correlation between a frequency and the performance means 
that increasing the frequency of that components results in a decrease in the latency of the 
application. Additionally, the magnitude of the Spearman Correlation corresponds to the strength 
of the relationship between the frequency and latency. Table III shows the Spearman Correlation 
for each component for every Rodinia benchmark analyzed. Our first observation is that all 
component frequencies have a negative Spearman Correlation with the application latency for 



every application. This might seem obvious, but in the other benchmark suites there are scenarios 
where increasing a component’s frequency actually degrades performance. We hypothesize this 
is due to the strict division of work in the Rodinia benchmarks, which is not seen in either Chai 
or AnTuTu. Our second observation is that the Spearman correlation perfectly aligns with our 
classification of CPU bound and mixed bound applications via the magnitude of the 
corresponding Spearman Correlation. The third observation we can make from this data is that 
the CPU frequency has an overall greater affect than the GPU and memory frequencies on 
application performance. This is very surprising as one would assume because these are all GPU 
workloads that tuning the GPU frequency would have the greatest effect. However, for all of 
these applications, the CPU must perform file IO to retrieve the input data, perform memory 
allocation, and perform transfers both to and from the GPU accessible address space, as well as 
interpret the results. Clearly, these operations benefit from increasing CPU frequency, and are 
consistent across all applications.

Table 3: RODINIA SPEARMAN CORRELATION

GPU CPU Mem
Total -0.36 -0.58 -0.2
KMeans -0.70 -0.65 -0.055
NW -0.33 -0.83 -0.37
Pathfinder -0.83 -0.45 -0.15
StreamCluster -0.18 -0.80 -0.53
HotSpot3D -0.23 -0.91 -0.17
BackProp -0.26 -0.85 -0.41

D.3 CLUSTERING ANALYSIS

One of our primary goals is to use this exploration to inform a DVFS scheme as to how 
frequency scaling impacts heterogenous SoCs. An issue that arises when designing a DVFS 
scheme for SoCs is the large design space as the number of SoC components increases. For 
example, our frequency sweep was over 63 unique permutations across four components which 
additionally introduce complexity on how each frequency impacts application performance. We 
hypothesize that while there are a large number of frequency permutations, we can find a few 
key frequency groups which have a similar impact on performance, regardless of application. On 
top of that, we hypothesize that we can cluster frequency groups together that lead to similar 
performance characteristics.

We utilize k-means clustering to cluster the performance of each application into four clusters. 
We then examine the frequency groups that contribute to each cluster, and search for frequency 
groups that are in the same cluster across all applications. Interestingly, we were able to find at 



least one frequency group that was in the same cluster for all applications. This shows that, 
despite applications being impacted by the different component frequencies, we can use these 
frequency groups to create an application-agnostic control over application performance and 
energy. These results can be seen in Table IV, where Cluster 0 is the lowest performing cluster 
and Cluster 3 is the highest performing cluster. As one can see, the most important frequency to 
tune is the CPU, as mentioned in our previous results. Another interesting observation is that 
there are many frequency groups which consistently are in the highest performing cluster. This 
means that we can select the frequency group in this cluster which consumes the lowest power, 
while still achieving similar performance. We hope to utilize a clustering-based statistical 
analysis similar to this to develop a DVFS scheme in the Linux governor to control the big CPU, 
the little CPU, the GPU, and the memory frequencies in tandem.

Table 4: RODINA GENERATED FREQUENCY GROUPS

GPU CPU Mem
Cluster 0 177 Mhz 1.2 Ghz 633 Mhz
Cluster 1 266 Mhz

350 Mhz
1.2 Ghz
1.2 Ghz

933 Mhz
933 Mhz

Cluster 2 350 Mhz 1.6 Ghz 825 Mhz
Cluster 3 420 Mhz

480 Mhz
543 Mhz
600 Mhz
420 Mhz
480 Mhz
543 Mhz
600 Mhz

2.0 Ghz
2.0 Ghz
2.0 Ghz
2.0 Ghz
2.0 Ghz
2.0 Ghz
2.0 Ghz
2.0 Ghz

825 Mhz
933 Mhz
933 Mhz
933 Mhz
933 Mhz
933 Mhz
933 Mhz
933 Mhz

E. CHAI

Unlike other benchmark suites, the Chai benchmark suite [17] contains collaborative benchmarks 
with kernels that execute on both the CPU and the GPU simultaneously. This allows us to 
explore the impact of frequency scaling across the SoC when the entire SoC is under load. 
Unlike the Rodinia benchmarks, we expect to see a variety of performance trends across 
benchmarks. We ran as many of the Chai benchmarks as would compile and execute on our 
evaluation platform. Our selected subset for analysis include: Breadth-First Search (BFS), Image 
Histogram (Input Partitioning) (HSTI), Image Histogram (Output partitioning) (HSTO), In-place 



Transposition (TRNS), and Single-Source Shortest Path (SSSP). These applications collaborate 
through task partitioning (SSSP and BFS) and data partitioning (TRNS, HSTI, and HSTO).

E.1 GPU FREQUENCY SWEEP

To form a basic understanding of application behavior as hardware frequencies are changed, we 
perform a sweep of both the GPU and the CPU frequencies for each of the benchmarks. We 
leverage the ability to change the CPU and the GPU frequencies on the fly in Linux to manually 
tweak frequencies. We then run each benchmark and report timing and performance data. To 
smooth out the resulting data, we run each benchmark under each setting six times and report the 
average of each performance metric. We sweep across all possible values of GPU frequency 
(177 - 600 MHz) and evaluate at three different CPU frequencies — low, medium, and high. The 
low CPU frequency sets the big and little CPU cores at 1.2 GHz and 1 GHz, medium at 1.6 GHz 
and 1.2 GHz, and high at 2.0 GHz and 1.4 GHz, respectively. Looking across benchmarks, we 
notice three trends of behavior as we scale frequency parameters:

1) CPU-bound: The CPU-bound benchmarks (BFS and HSTI) demonstrate little 
performance improvement from increasing GPU frequency but do demonstrate 
performance improvement from increasing CPU frequency. As seen in Figure 15, 
there is no point where increasing GPU frequency provides a better performance 
improvement than that gained from increasing CPU frequency. Moreover, clocking 
the GPU at a higher frequency has little impact on performance and decreases system 
efficiency by consuming additional power. When running these benchmarks, a well-
performing governor should prioritize CPU frequency increases and GPU frequency 
decreases to optimize performance.



Figure 75: GPU Frequency Sweep for HSTI

2) GPU-bound: A foil to the CPU-bound benchmarks, GPU-bound benchmarks (TRNS) 
demonstrate performance improvement from increasing GPU frequency and little 
performance improvement from increasing CPU frequency. As seen in Figure 16, 
there is no point where increasing CPU frequency provides a meaningful increase to 
performance. A well-performing governor, should therefore prioritize increasing GPU 
frequency and decreasing CPU frequency to perform optimally. We also note that 
even for this GPU-bound benchmark, there is performance saturation as we further 
increase GPU frequency, suggesting that an optimal operating point may not be 
running the GPU at max settings.



Figure 86: CPU Frequency Sweep for TRNS

3) Mixed-bound: Finally, the mixed-bound applications (SSSP and HSTO) demonstrate 
behavior that changes depending on the current operating point. As seen in Figure 17, 
these benchmarks exhibit the greatest performance improvement from first increasing 
GPU frequency and then increasing CPU frequency. There is performance saturation 
once CPU and GPU frequencies reach a certain threshold, suggesting that running at 
max settings provides the same performance at a power loss.

Figure 97: GPU Frequency Sweep for HSTO



E.2 MEMORY FREQUENCY SWEEP

In addition to sweeping across CPU and GPU frequencies, we leveraged the SoC’s ability to 
over- and under-clock the memory frequency to explore the impact of memory frequency on 
performance at a variety of operating points. For most applications, changing memory frequency 
monotonically increases performance. There are points at a particular energy or power budget 
where increasing memory frequency will provide a larger performance increase than increasing 
GPU or CPU frequency, but a larger performance gain can be had by increasing CPU or GPU 
frequency if power is not a concern. Other applications demonstrate interesting behavior as 
memory frequencies are swept. For instance, HSTO demonstrates operating points where 
running the CPU and the GPU at lower frequencies but increasing the memory frequency 
provides a higher performance than increasing the CPU and the GPU frequencies as seen in 
Figure 18. Notice that at 825 MHz memory frequency, running with a medium CPU frequency 
and low GPU frequency outperforms running with a high CPU frequency and low GPU 
frequency. As memory frequency increases, the high CPU frequency operating point 
outperforms the medium CPU frequency operating point. Unlike with the GPU and the CPU 
frequencies, there is no clear-cut classification for application behaviors across memory 
frequencies.

Figure 108: Memory Frequency Sweep for HSTO



E.3 CLUSTERING

Throughout this exploration, our goal is to find operating points of equivalent performance to 
cluster into a single operating point. Clustering these equivalent operating points enables the 
governor to select the most efficient state at the desired performance level. Transitions between 
clusters can then be reduced from the entire state space to a constrained state space. State 
changes can then demonstrate DVFS changes across the entire SoC rather than a single 
component. We begin this clustering process by examining equivalent clusters for each 
application at a time. To derive equivalent performance clusters, we employ KNN clustering on 
the performance data. To select the number of clusters, we employ the elbow method and 
identify that four clusters is optimal as shown in Figure 19. Higher cluster identification number 
indicates higher cluster performance.

Figure 119: Plot Showing Computation of Optimal k Using the Elbow Method

While this clustering approach is well suited for identifying performance points for each 
individual application, it is ill-suited at deriving a generalized set of operating points. In an effort 
to generalize this analysis to a broader class of applications, we explore cross-application trends. 
To accomplish this, we identify operating points that consistently appear in performance classes 
and tie those together. Unsurprisingly, there are few consistent operating points within clusters 



due to the heterogeneous behavior when compared to benchmarks in Rodinia as seen in Table V. 
If we increase our tolerance to deviation between groups to allow for up to one application to 
disagree with the cluster, we see a more versatile set of clusters as shown in Table VI. Although 
certain trends exist across applications, there is no overarching set of clusters that apply well to 
all applications. Therefore, designing a consistently well-performing governor is challenging 
when running a diverse set of applications. Rather than design a single, all-encompassing 
governor, a better approach would involve designing a “smart-governor” that changes based on 
the current workload. Exploration of this concept is left for future work. Moreover, our 
evaluation fails to account for power usage at each operating point when executing Chai. 
Without these power numbers, our analysis only captures one view of the overall system.

Table 5: CHAI GENERATED FREQUENCY GROUPS

GPU CPU Mem
Cluster 0 177 Mhz

177 Mhz
1.2 Ghz 1.2Ghz 633 Mhz

728 Mhz
Cluster 1
Cluster 2
Cluster 3 600 Mhz

600 Mhz
2.0 Ghz
2.0 Ghz

933 Mhz
825 Mhz

Table 6: CHAI GENERATED FREQUENCY GROUPS

GPU CPU Mem
Cluster 0 177 Mhz

177 Mhz
177 Mhz
177 Mhz

1.2 Ghz 1.2Ghz 
1.6Ghz 1.2Ghz

633 Mhz
825 Mhz
633 Mhz
728 Mhz

Cluster 1 177 Mhz
177Mhz

1.6Ghz
1.6Ghz

825Mhz
933Mhz

Cluster 2 420 Mhz
420 Mhz

2.0 Ghz
1.6 Ghz

633 Mhz
825 Mhz

Cluster 3 600 Mhz
600 Mhz
600 Mhz
420 Mhz
420 Mhz
600 Mhz

2.0 Ghz
2.0 Ghz
1.6 Ghz
2.0 Ghz
2.0 Ghz
2.0 Ghz

933 Mhz
728 Mhz
933 Mhz
933 Mhz
825 Mhz
825 Mhz



F. MULTI-COMPONENT DVFS POLICY COMPARISON

Given our analysis, we utilize power and performance data across all benchmarks to construct 
frequency clusters which provide similar power and performance characteristics. We create the 
frequency clusters by using k-means clustering on an energy-delay product (𝐸𝐷𝑃(𝑣)) metric:

𝐸𝐷𝑃(𝑣) =  
𝑟 ∈ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑝𝑜𝑤𝑒𝑟𝑟 × 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑣
𝑟

where 𝑝𝑜𝑤𝑒𝑟𝑟 represents the power consumed by resource 𝑟, and 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑟 is the 
corresponding performance value (which could be benchmark score or completion time). The 
parameter 𝑣 allows us to define system constraints. A value 𝑣 < 2 shows that power is a more 
important metric than performance, while 𝑣 > 2 represents a more performance focused system.

Figure 20: Different Clusters for 𝑣 = 2, 1, 0.5

Figure 20 shows that cluster composition changes based on the 𝑣 value. Each color represents a 
set of frequencies exhibiting a similar power-performance trade-off. The clusters in the top (red 
and yellow) represent performance-focused configuration, while those in the bottom (blue and 
green) represent more power-focused.

For higher values of 𝑣 ( ≥ 2), we observe an increasing relationship among all the component 
frequencies. This pattern is consistent with an increasing relationship between performance and 
frequency. However, we observe complex configurations when we focus on power while trying 
to retain performance (lower 𝑣 ( ≤ 1) values). In Figure 21, the blue cluster shows that lower 
CPU frequencies correspond to medium and high memory frequency, while higher CPU 



frequencies map to low memory and GPU frequencies. This setup allows the system to retain 
performance of a single component while reducing power consumption of other resources.

Figure 21: Frequency Clusters at 𝐸𝐷𝑃(𝑣 = 0.5)

Typically, the default DVFS policies analyze the utilization of each resource independently and 
sets its frequency based on the defined policies. Here, we consider two policies: a performance 
policy, which sets all the resources to their maximum frequency to extract the maximum possible 
performance without considering the power requirement; and a more dynamic policy, on-
demand, which sets the frequency based on current utilization. This method allows us to reduce 
power consumption during idle periods, while meeting the performance requirements.



For different system requirements, such as power or performance we input the different 
frequency clusters shown in Figure 20 into our policy. As we observe in Figures 22 and 23, 
different frequency clusters result in either significant power savings (20%) from the most 
conservative system (policy_Pow), or minimal performance degradation (3%) while reducing 
power consumption by 45% in policy_Perf.

Figure 22: Comparing the Power and Performance of Our Policy with Existing Methods for 
SSSP

Figure 23: Comparing the Power and Performance of Our Policy with Existing Methods for 
glmark2



ANTICIPATED OUTCOMES AND IMPACTS

We have successfully met our research goal of achieving 10% or more power savings.  
Depending on the policy we ran, we saw savings as high as 45% even with added computing 
overhead of 6-11% from running our scripts. Since a 10% energy savings in ICT devices would 
significantly reduce their effect on the global climate footprint, we feel that our method has the 
potential to have an even greater impact on the climate than originally thought. Energy suppliers 
would appreciate this reduction as it would help add resilience to power grid outages through 
improved operation of mobile devices, satellites, and Internet of Things devices. In addition, our 
method could be used to increase the performance of systems while keeping their power 
consumption constant. In fact, our method could benefit Sandia’s Global Security and National 
Security Program by reducing energy consumption providing resilience to mobile sensing and 
military devices. Through its application to decision support and remote sensing systems, it 
could improve the performance of these systems possibly leading to more time to make critical 
decisions. We have also been looking at ways to integrate our method into already existing APIs 
that focus on power usage of systems giving users another avenue to modify system 
configuration to gain power savings.

Our research success will allow system wide optimal energy policies to be created that reduce 
the energy consumption of systems. This would have the impact of creating a more 
environmentally responsible energy footprint addressing S02 of the DOE’s science and energy 
goal. Additionally, it would have some application to NNSA’s crosscut 5 by providing a means 
of creating modern energy conscious IT systems. We plan to publish our results in a journal like 
the IEEE Transactions on Parallel and Distributed Computing and also plan to submit a full 
LDRD to further investigate a temporal analysis of application resource requirements for 
efficient scheduling and to develop a finer-grained DVFS policy for heterogeneous systems.

CONCLUSION

In this project, we studied the impact of operating frequencies of various components of SoCs on 
the performance of various benchmarks. To analyze impact, we ran variety of benchmarks which 
focused on either each component individually (being CPU, GPU, or memory-bound) or a more 
general workload which utilized all components. These benchmarks allowed us to break down 
the relationship among each component, while also providing an overview of the system-wide 
impact. We proposed a dependency graph which can provide us with clusters of optimal 
performance, while ensuring minimal wasted power. Across various benchmarks we do observe 
certain clusters (as shown in Table IV and VI) where lower and higher frequencies of each 
components map together, respectively, while observing a similar impact of power on 
performance. We can use our methods to design more energy aware clusters which account for 
power-performance trade-off. We also observed the disparity in the power and performance 



across various components, where changes in the GPU configuration provide more gains in 
power followed by memory and the CPU. These observations provide a foundational basis for 
designing system-wide DVFS policies, which can be used to make some application agnostic 
decisions for an energy-aware system. Future research may utilize these studies to evaluate a 
wider variety of workloads to verify our observation and design a DVFS governor which can 
decide an optimal operating state and devise an efficient transition strategy which ensures 
minimal energy waste.
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ADDENDUM:
Runtime Systems for Energy Efficiency in Advanced Computing Systems, 227331 
Curtis Madsen (6323), Tian Ma (6321), Professor Gul Agha (UIUC) 

Purpose, Approach, and Goal

Motivation: Energy consumed by computing systems has grown over the last 
decade. Current dynamic voltage and frequency scaling (DVFS) methods are 
designed to work on individual components and are unaware of other resource 
requirements and power demands of the complete system. 
Hypothesis: Parallelism in applications can be leveraged to develop latency aware 
fine - grained DVFS for heterogeneous systems reducing energy consumption . 
R&D Approach: Create state transition models which combine static information 
about application behavior with dynamic information about the operating 
environment. Estimate energy use by state transition time and learn the behavior 
of applications to predict transitions and optimize runtime energy efficiency. 
One Key Goal: Achieve energy savings of at least 10% over current DVFS methods. 

Representative Figure

We developed a system - wide DVFS policy that sits between the governors for 
each component and the kernel and modifies the frequencies of each 

component to obtain energy savings and better performance for the system.

Key R&D Results and Significance

Summarize your R&D 
Build dependency graph among all the components in the system: 
• Run benchmarks and collect utilization numbers for each component. 
• Characterize the interactions among different components and determine how their operating 

points impact performance, utilization, and energy. 
• Use this information to construct the dependency graph and cluster into equivalence classes. 
Use dependencies to design a system - wide governor to improve energy efficiency and quality of 
service of the system. 
• Each new policy is driven by one of the components (CPU, GPU, Memory) and the other 

components’ frequencies are modified based on the clustering. 

The result for the one key goal 
Depending on the policy we ran, we saw savings as high as 35% even with an added computing 
overhead of 6 - 11% from running our scripts. 

Lessons learned 
Using Python for scripting adds overhead and is not suitable for energy - efficient applications. Could 
use a different prototyping language like Bash. 
Attempted to implement governors for non - standard resources which is very difficult without source 
code. Should have started using scripts earlier. 

Follow - on plans/activities 
Clean up scripts to reduce overhead and make more generalized for multiple systems. 
Utilize approach to increase system performance while maintaining a specified power usage. 
Obtain funding from a CIS LDRD or the DOE Office of Science ASCR to target more mission applications. 

Impact of follow - on plans 
This work benefits Sandia’s Global Security and National Security Program by reducing energy 
consumption providing resilience to remote sensors, mobile devices, and military devices. 

Publications, awards, staff development & IP 
IEEE Transactions on Parallel and Distributed Computing (in preparation) 
Supported an early career employee, Curtis Madsen, who was also the PI.








