SAND2022-12636

SAND2022-12636

LDRD PROJECT NUMBER: 227331

LDRD PROJECT TITLE: Runtime Systems for Energy Efficiency in
Advanced Computing Systems

PROJECT TEAM MEMBERS:

Curtis Madsen (Sandia National Laboratories), Tian J. Ma (Sandia National
Laboratories),

Dipayan Mukherjee (University of lllinois at Urbana-Champaign), Gul Agha
(University of Illinois at Urbana-Champaign)

ABSTRACT

As heterogeneous systems become increasingly popular for both mobile and high-performance
computing, conventional efficiency techniques such as dynamic voltage and frequency scaling
(DVES) fail to account for the tightly coupled and varied nature of systems on a chip (SoCs). In
this work, we explore the impact of system unaware DVFS techniques on a mobile SoC under
three benchmark suites: Chai, Rodinia, and Antutu. We then analyze performance trends across
the suites to identify a set of consistent operating points that optimally balance power and
performance across the system. The consistent operating points are then constructed into a
dependency graph which can be leveraged to produce a more effective, SoC-wide governor.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

U.S. DEPARTMENT OF

Sandia National Laboratories YW ENERGY

L"R LABORATORY DIRECTED

al RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS

Power consumption is an important issue in the design of computing systems. In recent years,
there have been two developments which have created a need for energy aware computing: High
Performance Computing (HPC): new HPC cluster systems are designed to have a power cap [1],
[2] which allows the system to scale with the increasing demand, and Mobile Computing:
proliferation of battery driven mobile devices has given rise to the need for meeting ever
increasing demand for performance with a longer battery life, which requires focus on energy-
aware computing. Dynamic voltage and frequency scaling (DVFS) and Dynamic Duty Cycle
Modulation (DDCM) are highly effective techniques for reducing system power dissipation [1],
[3]. The key idea behind these techniques involves providing the system with just-enough speed
for task completion, thereby reducing energy consumption quadratically. In addition to its energy
saving characteristics, voltage and frequency modulation help in regulating the temperature of
the cores which helps reduce system failure [4].

DVFS has been an active area of research, and the work can be broadly categorized into three
categories [5]. The first category of work focuses on designing models to evaluate the power
consumption of various programs. This area of work helps designers understand the impact of
DVFS on various algorithms and helps software developers in designing efficient algorithms
which are cognizant of both performance and power. The second category of work focuses on
system-level design that tries to utilize system-level statistics of given resources from their
governors and decides the operating points for the resources. Finally, the third area involves
designing energy aware task scheduling, where based on the requirements of multiple processes
and multi-core systems, jobs are scheduled on different machines to ensure maximum
performance at minimum energy cost [6], [7].

Voltage Reguest

Frequency Reguest

Clock
Manager

Figure 1 Architecture Schematic of DVFS in Current Systems

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

R

DO

In current DVFS systems, all requests for state transitions are generated through the respective
governors and sent to the kernel, where they are serviced by the power management unit. A
schematic of this architecture is shown in Figure 1. The operating points of the resources (CPU,
GPU, Memory) are decided by the governor of that resource based on its state [8], unaware of
the requirements of other resources and the complete system level power demands. The lack of
cross-component awareness leads to sub-optimal policies and additionally affects the energy
efficiency and the quality of service (QoS) of the system [9].

To address this problem, we develop a holistic multi-component DVFS mechanism utilizing the
cross-component relationship among the resources. Our approach accounts for dynamically
changing input data when making power predictions and does so at the fine-grained granularity
of each operator. Achieving these objectives is challenging because there are no tools to measure
the power cost of each operator directly, and we do not have visibility into operator code to
understand its resource usage. Instead, we collect easily accessible device-level energy draw
information on the mobile device (i.e., system on a chip (SoC)) and concurrently monitor
changing composition of executing application operators to attribute measured power draw in a
time interval to the observed operators within that interval. A prediction model, which directly
maps operator execution times to their corresponding power use, is then trained using this data
and deployed on the mobile device to provide run-time predictions for power optimization
decisions. Using these results, we are able to build a dependency graph among components and
create power or performance equivalence classes that are used to intelligently modify the
frequencies of each component to achieve a desired power and performance for the whole
system.

In this work, we demonstrate that in a multi-component system of independent governors leads
to sub-optimal energy and performance for the system. We study the relationship of varying
operating points over different resources, which allows us to characterize the interactions among
components embedded in a modern SoC architecture. Our work can be used to set individual
component operating points as well as decide the transition path between points in order to
achieve power savings in the system with minimal impact to performance. Through our research
and development, we were able to achieve and exceed our goal of 10% power savings when
comparing our approach to traditional DVFS methods.

METHODOLOGY

We have two primary design goals: 1) identify the cross-component dependency of power
performance among resources, and 2) create a system-wide DVFS policy for efficient power-
performance behavior. The first step toward identifying the power models across each resource is
to understand the relationship among them and how the power and performance of individual
resources are intertwined. Secondly, we propose a method to identify the efficient and inefficient

L"R LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

zones across various components, and furthermore, provide an architecture for system-wide
DVES policy.

POWER MODEL

In modern resources, the power is composed of two components: static and dynamic power.
Static/leakage power is a result of an unwanted sub-threshold current (/;) in the transistor
channels, which is a direct result of transistor characteristics, and is found in almost all
transistor-based circuitry. Dynamic power is the more dominant component of the total power
and is impacted by the voltage and frequency setting of the resource as expressed below [6]:

P = denamic + Pstatic
denamic = CLVZf
Pstatic = ILV

where P is the total power consumed, P4y 18 the leakage power, and P gy pnqmic 18 the dynamic
power. C; and I; are constant values, V is the operating voltage, and f is the operating
frequency. While most modern systems follow the behavior expressed in the equations above,
some resources have slightly different behavior, such as memory systems which use the
following model:

Prem = EC LV2f X access_count + I,V

where access_count is the concurrent memory access made to the resource.

Voltage and the frequency are tightly coupled and have almost linear correlation (Figure 2), to
ensure safe operation of the devices. In modern systems each frequency is one-to-one mapped to
a specific voltage along the Safe Boundary, which allows us to modify the operating voltage by
changing the frequency. This relationship reduces the state space of our problem making it easier
to focus on the impact of operating frequency of one resource on another.

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

4 Safe Boundary
' | ¥ — W) "y S—

& Encrgy-efficient State
> | Energy-inefficient State
£ =) Dangerous State
B Fli--==-==n==ef
e ‘

- i
FOM-====nn== Wso sl 52
- :
] :
(R . N
VieastD Vieastl Vieasrd
Voltage
Figure 2: Diagram Depicting Safe Operating Point
DEPENDENCY GRAPH

Performance of resources is generally linearly correlated with the operating frequency of the
resource. An operating point in a multi-resource system is represented as a tuple of operating

frequencies, {fcpu, feru, fmem)-

Current DVFS policies for multi-resource systems do not consider the interaction among
resources in a tightly coupled system like SoCs, and the heterogeneous workload of modern
applications where each resource impacts the performance of others. Due to this interaction,
certain configurations can lead to less wasted power while still achieving similar performance.
We represent the dependency of operating points in a graphical structure (Figure 3), where
different colors represent different resources, and each node is an operating frequency.
Equivalence classes represent a collection of operating point which provides similar power-
performance characteristics. A different class represents system requirements such as high

&’RD LABORATORY DIRECTED
AN RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

performance or power efficiency. These dependency graphs will help developers decide the
optimal configuration based on QoS requirements and other operating constraints.

Equivalence Class
Figure 3: Schematic of an Example Dependency Graph

To design the dependency graph, we run the benchmarks for all possible configurations of
voltage and frequency of each component and collect the benchmark and utilization numbers for
each of the components. This allows us to characterize the interactions among different
components.

DVFS POLICY

As expressed in the dependency graphs, we utilize the relationship among resources to design a
system-wide holistic power management system. The various equivalence classes provide us
with a set of operating points to choose from, dependent on the system requirement and
operating constraints (such as low power mode or performance mode).

&’R LABORATORY DIRECTED
nl RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

EXR -
Governor
ven B e R
Governor
GPU =
Governor

Figure 4: Schematic of Our Proposed Power Management System

We implement this policy on top of existing resource-specific governors as shown in Figure 4.
Our DVFS policy adds a layer between existing resource-specific governors. We extract the
resource utilization values by using either system provided methods (e.g., proc files) or the APIs
provided by the resource specific governors. This model provides a global view of the system
and allows us to set the system configuration per the system-wide optimal setting.

RELATED WORK

As DVFS for heterogeneous systems is a fruitful research area, there are several works related to
our proposed project. GPU DVFS in isolation has been previously considered as GPUs consume
more power and have larger voltage ranges than CPUs [10]. To explore GPU DVFS, Nath and
Tullsen [10] present CRISP (Critical Stalled Path), an analytical tool used to understand how
frequency impacts GPU application performance. At the time, state-of-the-art CPU performance
frequency analysis tools split an application into two portions: pipelined computation and
memory fetches. These CPU-oriented tools make the assumption that performance of the former
scales with the frequency, while the latter does not, and uses this information to understand how
to scale the frequency given an application’s characteristics. CRISP is built on the understanding
that GPUs do not exhibit this behavior, as the computation in a GPU is highly overlapped with
outstanding memory requests. Therefore instead, CRISP splits a GPU application into the load
critical path and the compute/store path. Where the former is the longest string of dependent
loads which is overlapped with computation, while the latter is defined as the accumulation of
non-overlapped compute and store operations. These two portions are important to distinguish as
they are impacted by GPU frequency differently. This understanding of the GPU architecture

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

N
R

allows CRISP to predict performance within 4% of empirical measurement as frequency is
scaled.

Other works have looked into using DVFS as a means to reduce DRAM energy. This is
attractive as it has been found that DRAM contributes up to 40% of a server’s total energy
consumption: a consequence of architects historically focusing their efforts on the CPU as well
as the increased demand of memory bandwidth. Deng et al. [11] present MemScale, a scheme
which proposes both DVFS of the memory controller and dynamic frequency scaling (DFS) of
the physical DRAM chips. MemScale is developed using the concept of slack, defined as the
difference of a desired runtime provided by the user and the actual runtime when the frequency is
scaled. MemScale uses many performance counters to understand how the performance of an
application is impacted by the memory controller DVFS and memory DFS, with the goal of
minimizing the overall slack. MemScale is epoch-based, and every 5ms, the performance
counters are profiled and application performance is predicted. After profiling, the frequency and
voltage are scaled to reduce the slack of the application. While MemScale only alters the
frequency of the DRAM device, there are proposed techniques to also alter the voltage. Chang et
al. [12] propose Voltron, which aims to reduce the energy consumption of DRAM by reducing
the supply voltage below the DRAM standards while still correctly storing the data. Another area
of interest in memory DVEFS is the granularity at which operations can be done. Today’s systems
only support power management at the rank-level, which experiences frequent wake-ups from
low-power states due to the coarse granularity. GreenDIMM [13] is a proposed system which
allows the operating system to control the power state of DRAM at a sub-array granularity.

Work that is most similar to our project is a follow-on project to MemScale, called CoScale [14].
CoScale looks at the combined problem of CPU and memory DVFS, and shows that these
problems can not be looked at individually. For example, naively combining a CPU DVFS and
memory DVFS scheme ignorantly can create scenarios where the performance counters used to
control the DVFS schemes do not represent the actual application characteristics. CoScale
addresses this by using a single scheme, similar to that of MemScale, but controls the voltage
and frequency of both the CPU and memory. One issue with looking at both CPU and memory
DVFS is the search space is much larger than when looking at a single component. To address
this, the authors use a gradient search heuristic to search the space of CPU and memory voltage
and frequency.

While the area of DVFS for heterogenous systems has clearly been explored, no work has looked
at how CPU, Memory, and GPU frequency and voltage impact end-to-end application
performance. The interaction of voltage and frequency between all three components is very
important to understand to reduce the energy consumption of modern SoCs.

L"R LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS
RESULTS AND DISCUSSION

A. TEST PLATFORM

To explore the efficacy of current governors, we use the ODROID-XU4 Single Board Computer.
This board houses a Samsung Exynos 5422 SoC, and its specification is summarized in Table I.
The ODROID-XU4 importantly provides DVFS access and control over both CPUs, the GPU,
and the main memory. Our goal is to capture the impact that scaling each component’s frequency
has on several representative workloads. This process will help us identify where performance
degradation occurs precisely, construct a graph that captures those dependencies, and potentially
design a unified governor which avoids these shortcomings. Our system can run both Ubuntu
18.04 with Linux kernel 4.14 as well as Android 4.4.4 (v7.1) and odroidxu4-4.9.y. Both system
software configurations were used allowing us to run multiple benchmark suites.

Table 1: EXYNOS 5422 SPECIFICATIONS

Octa ARM Cortex-A15 Quad 2GHz and Cortex-A7

CPU Quad 1.3GHz

Mali-T628 MP6 (OpenGL ES 3.0/2.0/1.1 and

GPU OpenCL 1.1 Full profile)

2GB LPDDR3 RAM at 933MHz (14.9GB/s memory

Main Memory bandwidth)

B. BENCHMARKS

In order to generate an understanding of how frequency scaling impacts SoC performance, we
require a comprehensive evaluation of operating point efficacy under a variety of memory, CPU,
and GPU-bound workloads. To obtain this evaluation, we scaled the frequency of each
component while utilizing the AnTuTu benchmark suite. The AnTuTu benchmark suite is a
popular mobile benchmark suite, which provides raw component scores for CPU, GPU, and
Memory. AnTuTu also provides a User Experience (UX) score, which is an aggregate score
describing how the different component performances would impact user experience.

On top of AnTuTu, we wanted benchmarks that utilize the entire SoC for a single application. To
achieve this, we used the Rodinia benchmark suite [15], [16], a benchmark suite for
heterogeneous platforms. The Rodinia benchmark suite contains a large number of applications
with support for OpenCL and OpenMP, enabling applications to execute on the GPU, the CPU
and GPU, or multiple CPUs.

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

N
R

One gap in Rodinia is that applications execute either on the CPU or the GPU without cross-
device threading or collaboration. To examine scenarios where both the CPU and the GPU are
completing useful work simultaneously, we used the Chai benchmark suite [17]. Benchmarks in
Chai collaborate through data partitioning, fine-grain task partitioning, or coarse-grain task
partitioning.

Together, these three benchmarking approaches will provide data for system performance under
varied workloads, including CPU-only, GPU-only, and combined CPU-GPU. These workloads
consist of both memory and compute bound benchmarks.

C. ANTUTU

The AnTuTu benchmark suite provides a comprehensive analysis of our system. It provides a
detailed breakdown of the different operating resources’ performance metrics such as CPU,
GPU, Memory, and UX. This breakdown helps us observe the performance discrepancies in each
resource with its corresponding operating points against the overall performance score. AnTuTu
has different benchmark suites, which utilize a single resource bound task or a multi-resource
bound task which allows us to gauge the impact of operating points on cooperative and isolated
workloads.

We performed extensive testing with AnTuTu in Android OS at different CPU, GPU, and
Memory operating points. We varied the frequency of the big and little CPU from 1.2 - 2.0 GHz
and 1.0 - 1.4 GHz, respectively. For the memory, we varied the frequency from 165 - 933 MHz,
and for the GPU, the frequency was varied from 177 - 543 MHz. We observed high correlation
between performance of big and little core frequency; hence, we modified their frequency
together to reduce the number of possible configurations and to study the interaction across
different components more effectively.

C.1 FREQUENCY SWEEP

We observed a few interesting trends on the impact on performance due to memory and CPU
frequency. As shown in Figure 5, there are local maxima for performance while sweeping
memory frequencies dependent on the CPU frequency. The local maxima points shift towards
higher memory frequency as the CPU frequency increases which implies that higher CPU
frequency does not yield improved performance for lower memory frequency. We also observe
that memory frequency has a high impact on GPU performance, and lower memory frequency
can lead to saturation and power wastage for higher GPU frequency (Figure 6).

"R LABORATORY DIRECTED
AN RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

Impact of Memory Frequency

=] 100000 2000 00000 A00000 500000 [Zencei] TO0000 ECO000 SO0000 1000000
Memaory Frequency 2Fi]

— Lw Setting ——Med Setting —a— High Setting

Figure 5: Frequency Sweep for Memory

&’RD LABORATORY DIRECTED
nl RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

Impact of Memory on GPU Performance

G000

GPU Benchmark

3000

177 266 350 420 480 543
GPU Frequency [in MHz)

Low Memary — s—Mid Memory ———High Memory

Figure 6. Impact of Memory Frequency on GPU

In Figure 7, we analyze the memory performance scores with varying memory frequencies at the
two different CPU and three different GPU frequency levels. For low memory frequencies, we
observe identical scores across all CPU and GPU levels while at mid and high memory
frequencies, memory performance either stagnates or drops for different GPU frequency levels
across all CPU levels.

"R LABORATORY DIRECTED
nl RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

Memory Performance @ Low CPU

5000

Memory Score

200 400 GO0 800

Memory Frequencies (MHz)

w= GPU:Low == GPU:Mid == GPU:High

Memory Performance @ High CPU

Memory Score

200 400 GO0 00

Memory Frequencies (MHz)

== GPUILow == GPFUIMid == GPU:High

Figure 7: Memory Performance for Different CPU and GPU Settings

Figure 8 shows clusters of CPU performance scores for different CPU frequencies. We noticed
clusters in the graph where the CPU performs efficiently or inefficiently: red boxes denote

L"R LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

inefficient regions while green boxes denote efficient regions. From this analysis, we noticed that
lower CPU frequencies can yield better CPU performance than a higher CPU setting in some
cases. This behavior can be attributed to different GPU and memory frequencies for each data

point.

These results help us in developing a dependency graph, like the one shown in Figure 3, which
encapsulates the effect of operating points on the performance of the system. In the next section,
we study the power consumption at different operating points and its impact on overall
performance which allows us to analyze the power-performance trade-offs that are dependent on
the system and applications’ requirements.

CPU Frequency vs. CPU Performance Score

2200000
1800000
_H
&
= 1600000 - ™ sese | & cooemm
=
(-8
“ 1400000
1200000 o o I-- o =m| oo
1000000

20000 25000 30000 35000 40000 45000

CPU Performance Score

Figure 8: CPU Performance Scores at Different CPU Configurations

C.2 POWER PERFORMANCE ANALYSIS

One of the primary goals of DVFS is to reduce the operating power. Therefore, we studied power
performance characteristics of the Odroid-XU4 in an attempt to understand if there are
inefficiencies in operating power and performance for different configurations. To achieve this,
we ran all benchmarks at all possible configurations and noted the peak power consumption by
each benchmark suite.

We observe that power and performance do not have a strictly positive relationship. These
results imply a complex dependency among power and performance leading to efficient and
inefficient operating zones based on the system wide configurations. This phenomenon is

&’RD LABORATORY DIRECTED
AN RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

demonstrated in Figures. 9, 10, and 11 where efficient zones are represented by blue and
inefficient zones are represented by red. These results are consistent with findings observed in
the previous section where GPU and memory performance show saturation at various operating
points. In general, we observe that if any of the resources are operating at one extreme while the
others are at the opposite extreme, there exist regions of wasted energy without significant
performance gains.

CPU Power-Performace

CPU Benchmark
[2]
S
8
&

0 5 10 15 20 25
CPU Power (W)

Figure 9 Power and Performance of CPU

"R LABORATORY DIRECTED
AN RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

Memory Power-Performance

5000 . :
4000 o "
.
2000 ;; { _.;".
.«

[2 a 6 8 10 12 14
Memory Power (W)

Memory Benchmark
ik
3
(=]

Figure 10: Power and Performance of Memory

GPU Power-Perfomance
9000

B000 1] [3

GPU Benchmark
(] . L o e |
[=] L=1] o (=] (=7
|2 2 8 B B
.
L
L]

=
=

wPE, D

i} 2 4 1 8 10 12 14 16
GPU Power (W)

1000

Figure 31: Power and Performance of GPU

L "RD LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

To further understand this relationship, we calculated the Spearman Correlation of the
benchmark performance for each resource with the operating point of all other resources. This
analysis, in Table II, shows that memory frequency impacts performance of each component
significantly, while CPU and GPU frequency impact only their own performance. These
relationships are due to the architecture design; the CPU and GPU systems are both dependent
on a unified memory which can cause stalls resulting in wasted cycles and loss of performance.
Based on these numbers, we observe a general trend: to improve performance we first should
increase memory frequency and then increase other frequencies. From the power perspective, the
GPU provides the most gain for performance per power consumption across two extreme
operating points: (1.65x) followed by memory (1.51x) and then CPU (0.8x).

Table 2: ANTUTU SPEARMAN CORRELATION

MempPerf CPUPerf GPUPerf
MemFreq 0.921 0.632 0.776
CPUFreq 0.152 0.737 0.070
GPUFreq -0.130 0.041 0.538
D. RODINA

The Rodinia benchmark suite [15] is a compute-intensive benchmark suite for heterogenous
computing platforms. We chose Rodinia as it has a very strict division of labor between the CPU
and the GPU, where the GPU performs all of the computation while the CPU performs file 10,
memory allocation, etc. This was a desired characteristic to contrast to the Chai benchmark suite,
which utilizes both the CPU and the GPU to collaborate in computation. Not all applications in
Rodinia were able to run on the ODROID-XU4 platform, and thus, we used the following subset
of applications: Pathfinder, KMeans, NW, Hotspot3D, Backprop, and Streamcluster.

D.1 FREQUENCY SWEEP

We swept the big CPU, little CPU, GPU, and memory frequencies on the ODROID-XU4 to
understand the effect frequency scaling has on the selected Rodinia applications. The big CPU
frequency was varied from 1.2 - 2.0 GHz, the little CPU frequency was varied from 1.0 - 1.4
GHz, the GPU frequency was varied from 177 - 600 MHz, and the memory frequency was
varied from 633 - 933 MHz. For these sweeps, all applications were either CPU bound, Mixed
CPU-GPU bound, or Mixed CPU-Mem bound. Three examples can be seen in Figures 12, 13,
and 14, which show the sweeping results for the NW, Pathfinder, and StreamCluster
applications, respectively. As one can see, the NW application is solely CPU bound as it
observes a 1.31x performance improvement when scaling the CPU frequency, while only a 1.18x

%5
DO

and 1.14x performance improvement when scaling the GPU and memory frequencies,
respectively. Figure 13 shows StreamCluster, which we classify as Mixed CPU-Mem bound as
we see both a 1.16x and 1.19x performance improvement when increasing the memory and CPU
frequencies, respectively, while scaling GPU frequency only achieves a 1.05x performance
improvement. Lastly, Figure 14 shows Pathfinder, which we classify as Mixed CPU-GPU bound
as it sees a performance improvement of 1.84x when increasing the GPU frequency and a 1.29x
performance improvement when increasing CPU frequency, while only achieving a 1.09x
performance improvement when scaling memory frequency.

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

P
R

-
L] [1
-

e (4]

LY Fregquency

L Wpis Msrreory il Madiom CF £ ML Mamony B T - N0 S M
-

Figure 42:F requency Swéeﬁ for NW

#
-
S
Tt

@

v CP - R M by ¢
[TE= Wi

Figure 53: Frequency Sweep for StreamCluster

L"R LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

']
-
-
#® ¥ BN
L]

B s

G Fredquesnoy

L i ML M v W
L]

Figure 64: Frequency Sweep for Pathfinder

We have three interesting observations from this data. The first is that increasing CPU frequency
always produces a non-trivial performance improvement. We hypothesize that this is because all
applications are performing similar CPU operations such as memory allocation, file 10, etc.
which clearly benefits from increasing CPU frequency. The second observation is that while we
don’t see a single application as being solely GPU bound or memory bound, we observe
significant performance improvements when increasing either GPU or memory frequency for
mixed bound applications. The third observation is that we never see the performance impact
from memory frequency scaling to be the most significant, and it is always overshadowed by
scaling either the CPU or the GPU frequency. We hypothesize that because the Rodinia
benchmark suite offloads all computation to the GPU, these benchmarks are relatively
insensitive to increases in DRAM access latency due to the GPU’s ability to hide memory
latencies behind massive parallelism.

D.2 CORRELATION ANALYSIS

To greater understand the performance impact of sweeping each component’s frequency, we
calculated the Spearman Correlation between the application latency and the frequency of each
component. A negative Spearman Correlation between a frequency and the performance means
that increasing the frequency of that components results in a decrease in the latency of the
application. Additionally, the magnitude of the Spearman Correlation corresponds to the strength
of the relationship between the frequency and latency. Table III shows the Spearman Correlation
for each component for every Rodinia benchmark analyzed. Our first observation is that all
component frequencies have a negative Spearman Correlation with the application latency for

L"R LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

every application. This might seem obvious, but in the other benchmark suites there are scenarios
where increasing a component’s frequency actually degrades performance. We hypothesize this
is due to the strict division of work in the Rodinia benchmarks, which is not seen in either Chai
or AnTuTu. Our second observation is that the Spearman correlation perfectly aligns with our
classification of CPU bound and mixed bound applications via the magnitude of the
corresponding Spearman Correlation. The third observation we can make from this data is that
the CPU frequency has an overall greater affect than the GPU and memory frequencies on
application performance. This is very surprising as one would assume because these are all GPU
workloads that tuning the GPU frequency would have the greatest effect. However, for all of
these applications, the CPU must perform file 10 to retrieve the input data, perform memory
allocation, and perform transfers both to and from the GPU accessible address space, as well as
interpret the results. Clearly, these operations benefit from increasing CPU frequency, and are
consistent across all applications.

Table 3: RODINIA SPEARMAN CORRELATION

GPU CPU Mem
Total -0.36 -0.58 -0.2
KMeans -0.70 -0.65 -0.055
NW -0.33 -0.83 -0.37
Pathfinder -0.83 -0.45 -0.15
StreamCluster -0.18 -0.80 -0.53
HotSpot3D -0.23 -0.91 -0.17
BackProp -0.26 -0.85 -0.41

D.3 CLUSTERING ANALYSIS

One of our primary goals is to use this exploration to inform a DVFS scheme as to how
frequency scaling impacts heterogenous SoCs. An issue that arises when designing a DVFS
scheme for SoCs is the large design space as the number of SoC components increases. For
example, our frequency sweep was over 63 unique permutations across four components which
additionally introduce complexity on how each frequency impacts application performance. We
hypothesize that while there are a large number of frequency permutations, we can find a few
key frequency groups which have a similar impact on performance, regardless of application. On
top of that, we hypothesize that we can cluster frequency groups together that lead to similar
performance characteristics.

We utilize k-means clustering to cluster the performance of each application into four clusters.
We then examine the frequency groups that contribute to each cluster, and search for frequency
groups that are in the same cluster across all applications. Interestingly, we were able to find at

L"R LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

least one frequency group that was in the same cluster for all applications. This shows that,
despite applications being impacted by the different component frequencies, we can use these
frequency groups to create an application-agnostic control over application performance and
energy. These results can be seen in Table IV, where Cluster 0 is the lowest performing cluster
and Cluster 3 is the highest performing cluster. As one can see, the most important frequency to
tune is the CPU, as mentioned in our previous results. Another interesting observation is that
there are many frequency groups which consistently are in the highest performing cluster. This
means that we can select the frequency group in this cluster which consumes the lowest power,
while still achieving similar performance. We hope to utilize a clustering-based statistical
analysis similar to this to develop a DVFS scheme in the Linux governor to control the big CPU,
the little CPU, the GPU, and the memory frequencies in tandem.

Table 4: RODINA GENERATED FREQUENCY GROUPS

GPU CPU Mem
Cluster 0 177 Mhz 1.2 Ghz 633 Mhz
Cluster 1 266 Mhz 1.2 Ghz 933 Mhz
350 Mhz 1.2 Ghz 933 Mhz
Cluster 2 350 Mhz 1.6 Ghz 825 Mhz
Cluster 3 420 Mhz 2.0 Ghz 825 Mhz
480 Mhz 2.0 Ghz 933 Mhz
543 Mhz 2.0 Ghz 933 Mhz
600 Mhz 2.0 Ghz 933 Mhz
420 Mhz 2.0 Ghz 933 Mhz
480 Mhz 2.0 Ghz 933 Mhz
543 Mhz 2.0 Ghz 933 Mhz
600 Mhz 2.0 Ghz 933 Mhz

E. CHAI

Unlike other benchmark suites, the Chai benchmark suite [17] contains collaborative benchmarks
with kernels that execute on both the CPU and the GPU simultaneously. This allows us to
explore the impact of frequency scaling across the SoC when the entire SoC is under load.
Unlike the Rodinia benchmarks, we expect to see a variety of performance trends across
benchmarks. We ran as many of the Chai benchmarks as would compile and execute on our
evaluation platform. Our selected subset for analysis include: Breadth-First Search (BFS), Image
Histogram (Input Partitioning) (HSTI), Image Histogram (Output partitioning) (HSTO), In-place

L"R LABORATORY DIRECTED
R RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

Transposition (TRNS), and Single-Source Shortest Path (SSSP). These applications collaborate
through task partitioning (SSSP and BFS) and data partitioning (TRNS, HSTI, and HSTO).

E.1 GPU FREQUENCY SWEEP

To form a basic understanding of application behavior as hardware frequencies are changed, we
perform a sweep of both the GPU and the CPU frequencies for each of the benchmarks. We
leverage the ability to change the CPU and the GPU frequencies on the fly in Linux to manually
tweak frequencies. We then run each benchmark and report timing and performance data. To
smooth out the resulting data, we run each benchmark under each setting six times and report the
average of each performance metric. We sweep across all possible values of GPU frequency
(177 - 600 MHz) and evaluate at three different CPU frequencies — low, medium, and high. The
low CPU frequency sets the big and little CPU cores at 1.2 GHz and 1 GHz, medium at 1.6 GHz
and 1.2 GHz, and high at 2.0 GHz and 1.4 GHz, respectively. Looking across benchmarks, we
notice three trends of behavior as we scale frequency parameters:

1) CPU-bound: The CPU-bound benchmarks (BFS and HSTI) demonstrate little
performance improvement from increasing GPU frequency but do demonstrate
performance improvement from increasing CPU frequency. As seen in Figure 15,
there is no point where increasing GPU frequency provides a better performance
improvement than that gained from increasing CPU frequency. Moreover, clocking
the GPU at a higher frequency has little impact on performance and decreases system
efficiency by consuming additional power. When running these benchmarks, a well-
performing governor should prioritize CPU frequency increases and GPU frequency
decreases to optimize performance.

%5
DO

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

P
R

WHERE INNOVATION BEGINS

._ Low . PAadasm = 'ﬂr\.
L] [] - L] L L] -
0 s
L] L]] L] L L]
E:-:'
]
E
3
o
o
1 TTE+08 1 GEEDE 3 E0E-08 #_20ED8 & BOE-CE LEL EDOE+0

GPU Freguency

Figure 75: GPU Frequency Sweep for HSTI

2) GPU-bound: A foil to the CPU-bound benchmarks, GPU-bound benchmarks (TRNS)
demonstrate performance improvement from increasing GPU frequency and little
performance improvement from increasing CPU frequency. As seen in Figure 16,
there is no point where increasing CPU frequency provides a meaningful increase to
performance. A well-performing governor, should therefore prioritize increasing GPU
frequency and decreasing CPU frequency to perform optimally. We also note that
even for this GPU-bound benchmark, there is performance saturation as we further
increase GPU frequency, suggesting that an optimal operating point may not be
running the GPU at max settings.

&’RD LABORATORY DIRECTED
nl RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

0 Chai TRNS GPU Freguency Sweep

@ Low @ Medivm @ High

— 2
Ew b
i °
L)
3]
L -
0
Q
Q
1 TTE+D8 DELELDE 3 E0E-08 & 008 & B0E-08 E&3E08 £ 00E+3E

G Freguendy

Figure 86: CPU Frequency Sweep for TRNS

3) Mixed-bound: Finally, the mixed-bound applications (SSSP and HSTO) demonstrate
behavior that changes depending on the current operating point. As seen in Figure 17,
these benchmarks exhibit the greatest performance improvement from first increasing
GPU frequency and then increasing CPU frequency. There is performance saturation
once CPU and GPU frequencies reach a certain threshold, suggesting that running at
max settings provides the same performance at a power loss.

20 Chai HSTO GPU Fre quency c.h'.'.'-:":"[‘!‘
- @ Low @ Medum @ Hgh

5 L]
0
[]
= L L]
E. » L L1
[3 - : . L] -
ﬁ u L])
]
o
1 77E08 JEEE=0E 3 EOE=08 4 20E=08 4 E0E=0E L a3E0E EOOE=08

P Frigputnty

Figure 97: GPU Frequency Sweep for HSTO

L"R LABORATORY DIRECTED
AN RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS
E.2 MEMORY FREQUENCY SWEEP

In addition to sweeping across CPU and GPU frequencies, we leveraged the SoC’s ability to
over- and under-clock the memory frequency to explore the impact of memory frequency on
performance at a variety of operating points. For most applications, changing memory frequency
monotonically increases performance. There are points at a particular energy or power budget
where increasing memory frequency will provide a larger performance increase than increasing
GPU or CPU frequency, but a larger performance gain can be had by increasing CPU or GPU
frequency if power is not a concern. Other applications demonstrate interesting behavior as
memory frequencies are swept. For instance, HSTO demonstrates operating points where
running the CPU and the GPU at lower frequencies but increasing the memory frequency
provides a higher performance than increasing the CPU and the GPU frequencies as seen in
Figure 18. Notice that at 825 MHz memory frequency, running with a medium CPU frequency
and low GPU frequency outperforms running with a high CPU frequency and low GPU
frequency. As memory frequency increases, the high CPU frequency operating point
outperforms the medium CPU frequency operating point. Unlike with the GPU and the CPU
frequencies, there is no clear-cut classification for application behaviors across memory
frequencies.

HETD M Frgusncy Saeep
W Lol i MedGL ol IrighCLaC Loalied. § MedQllsdl § FighDMedT § LoelEighl Mg Ciriagil
" Mg
— —= m— —
¥ e
- T
-\-\'-\-
-\-\'-\.
e
-
a .
- e
&
= "
= -
L ' |
IR
L
» -

Figure 108: Memory F. re.c.]uén"cy Sweep for HSTO

L"R LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

E.3 CLUSTERING

Throughout this exploration, our goal is to find operating points of equivalent performance to
cluster into a single operating point. Clustering these equivalent operating points enables the
governor to select the most efficient state at the desired performance level. Transitions between
clusters can then be reduced from the entire state space to a constrained state space. State
changes can then demonstrate DVFS changes across the entire SoC rather than a single
component. We begin this clustering process by examining equivalent clusters for each
application at a time. To derive equivalent performance clusters, we employ KNN clustering on
the performance data. To select the number of clusters, we employ the elbow method and
identify that four clusters is optimal as shown in Figure 19. Higher cluster identification number
indicates higher cluster performance.

The Elbow Method showing the optimal k

0.175 A

0.150 A

0.125 A

0.100 A

0.075 A

Distortion

0.050 A

0.025 A

S

Ea T IV ¢
0 OOO . AR
T T T T

2.5 5.0 7.5 10.0 12.5 15.0 17.5
k

Figure 119: Plot Showing Computation of Optimal k Using the Elbow Method

While this clustering approach is well suited for identifying performance points for each
individual application, it is ill-suited at deriving a generalized set of operating points. In an effort
to generalize this analysis to a broader class of applications, we explore cross-application trends.
To accomplish this, we identify operating points that consistently appear in performance classes
and tie those together. Unsurprisingly, there are few consistent operating points within clusters

L"R LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT

WHERE INNOVATION BEGINS

due to the heterogeneous behavior when compared to benchmarks in Rodinia as seen in Table V.
If we increase our tolerance to deviation between groups to allow for up to one application to
disagree with the cluster, we see a more versatile set of clusters as shown in Table VI. Although
certain trends exist across applications, there is no overarching set of clusters that apply well to
all applications. Therefore, designing a consistently well-performing governor is challenging
when running a diverse set of applications. Rather than design a single, all-encompassing
governor, a better approach would involve designing a “smart-governor” that changes based on
the current workload. Exploration of this concept is left for future work. Moreover, our
evaluation fails to account for power usage at each operating point when executing Chai.
Without these power numbers, our analysis only captures one view of the overall system.

Table 5: CHAI GENERATED FREQUENCY GROUPS

GPU CPU Mem
Cluster 0 177 Mhz 1.2 Ghz 1.2Ghz 633 Mhz
177 Mhz 728 Mhz
Cluster 1
Cluster 2
Cluster 3 600 Mhz 2.0 Ghz 933 Mhz
600 Mhz 2.0 Ghz 825 Mhz
Table 6: CHAI GENERATED FREQUENCY GROUPS
GPU CPU Mem
Cluster 0 177 Mhz 1.2 Ghz 1.2Ghz 633 Mhz
177 Mhz 1.6Ghz 1.2Ghz 825 Mhz
177 Mhz 633 Mhz
177 Mhz 728 Mhz
Cluster 1 177 Mhz 1.6Ghz 825Mhz
177Mhz 1.6Ghz 933Mhz
Cluster 2 420 Mhz 2.0 Ghz 633 Mhz
420 Mhz 1.6 Ghz 825 Mhz
Cluster 3 600 Mhz 2.0 Ghz 933 Mhz
600 Mhz 2.0 Ghz 728 Mhz
600 Mhz 1.6 Ghz 933 Mhz
420 Mhz 2.0 Ghz 933 Mhz
420 Mhz 2.0 Ghz 825 Mhz
600 Mhz 2.0 Ghz 825 Mhz

&’RD LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS
F. MULTI-COMPONENT DVFS POLICY COMPARISON

Given our analysis, we utilize power and performance data across all benchmarks to construct
frequency clusters which provide similar power and performance characteristics. We create the
frequency clusters by using k-means clustering on an energy-delay product (EDP(v)) metric:

EDP(v) = z power, X performance;

r € Resources

where power,. represents the power consumed by resource r, and performance, is the
corresponding performance value (which could be benchmark score or completion time). The
parameter v allows us to define system constraints. A value v < 2 shows that power is a more
important metric than performance, while v > 2 represents a more performance focused system.

All_EDF(Z) cluster

Cluster CPUBI CPUSmall Mem GPU AllEDP(1 U Mem GPU All_EDR0.5]

543 17 12 543 1325286

2} 543 543 198811663
o 2 14 933 177 197867863
a 3 i4 543 350 174807515
o 17 12 933 543 172378422 3 177 233724576
165 F 14 177 164301 o o 14 1 933 543 1.53791816 3 L7 1z 933 543 209644149
165 2 14 543 1551258 o o 2 14 543 177 151879552 E ir 1z EEE] 50 1.54657308
433 17 11 543 1548782 [:] a 533 350 1.51500065 3 543 1.B4TAE11E
33 7 12 177 1548111 o
233 7 1z 350 1521018 o
188 2 i4 350 1531463 [:]
543 17 12 50 133N o
o
]

Figure 20: Different Clusters for v=2,1, 0.5

Figure 20 shows that cluster composition changes based on the v value. Each color represents a
set of frequencies exhibiting a similar power-performance trade-off. The clusters in the top (red
and yellow) represent performance-focused configuration, while those in the bottom (blue and
green) represent more power-focused.

For higher values of v (= 2), we observe an increasing relationship among all the component
frequencies. This pattern is consistent with an increasing relationship between performance and
frequency. However, we observe complex configurations when we focus on power while trying
to retain performance (lower v (< 1) values). In Figure 21, the blue cluster shows that lower
CPU frequencies correspond to medium and high memory frequency, while higher CPU

6
DO

frequencies map to low memory and GPU frequencies. This setup allows the system to retain
performance of a single component while reducing power consumption of other resources.

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

™~
R

Cluster CPUBIg CPUSmall Mem GPU All_EDP(0.5)

3 2 14 543 177 2.23724676
3 1.7 1.2 933 543 2.09644149
3 1.7 1.2 933 350 1.94657308
3 543 1.84746116

Figure 21: Frequency Clusters at EDP(v = 0.5)

Typically, the default DVFS policies analyze the utilization of each resource independently and
sets its frequency based on the defined policies. Here, we consider two policies: a performance
policy, which sets all the resources to their maximum frequency to extract the maximum possible
performance without considering the power requirement; and a more dynamic policy, on-
demand, which sets the frequency based on current utilization. This method allows us to reduce
power consumption during idle periods, while meeting the performance requirements.

DOR

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

For different system requirements, such as power or performance we input the different
frequency clusters shown in Figure 20 into our policy. As we observe in Figures 22 and 23,
different frequency clusters result in either significant power savings (20%) from the most
conservative system (policy Pow), or minimal performance degradation (3%) while reducing
power consumption by 45% in policy Perf.

1.5

1.0

Performance

0.5

0.0
ondemand

B Performance [l Power

20
15
3
1.0 ‘g
o
05
0.0
perrformance Our policy_Perf Our policy_Pow
Chai:SSSP
Figure 22: Comparing the Power and Performance of Our Policy with Existing Methods for
SSSP
B Performance [Power
25 3
20
2
3 15
]
E
E 10
5
0

ondemand

Power(W)

Our policy_Perf Our policy_Pow

perrformance

gimark2

Figure 23: Comparing the Power and Performance of Our Policy with Existing Methods for

glmark2

"RD LABORATORY DIRECTED
N RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS
ANTICIPATED OUTCOMES AND IMPACTS

We have successfully met our research goal of achieving 10% or more power savings.
Depending on the policy we ran, we saw savings as high as 45% even with added computing
overhead of 6-11% from running our scripts. Since a 10% energy savings in ICT devices would
significantly reduce their effect on the global climate footprint, we feel that our method has the
potential to have an even greater impact on the climate than originally thought. Energy suppliers
would appreciate this reduction as it would help add resilience to power grid outages through
improved operation of mobile devices, satellites, and Internet of Things devices. In addition, our
method could be used to increase the performance of systems while keeping their power
consumption constant. In fact, our method could benefit Sandia’s Global Security and National
Security Program by reducing energy consumption providing resilience to mobile sensing and
military devices. Through its application to decision support and remote sensing systems, it
could improve the performance of these systems possibly leading to more time to make critical
decisions. We have also been looking at ways to integrate our method into already existing APIs
that focus on power usage of systems giving users another avenue to modify system
configuration to gain power savings.

Our research success will allow system wide optimal energy policies to be created that reduce
the energy consumption of systems. This would have the impact of creating a more
environmentally responsible energy footprint addressing S02 of the DOE’s science and energy
goal. Additionally, it would have some application to NNSA’s crosscut 5 by providing a means
of creating modern energy conscious IT systems. We plan to publish our results in a journal like
the IEEE Transactions on Parallel and Distributed Computing and also plan to submit a full
LDRD to further investigate a temporal analysis of application resource requirements for
efficient scheduling and to develop a finer-grained DVFS policy for heterogeneous systems.

CONCLUSION

In this project, we studied the impact of operating frequencies of various components of SoCs on
the performance of various benchmarks. To analyze impact, we ran variety of benchmarks which
focused on either each component individually (being CPU, GPU, or memory-bound) or a more
general workload which utilized all components. These benchmarks allowed us to break down
the relationship among each component, while also providing an overview of the system-wide
impact. We proposed a dependency graph which can provide us with clusters of optimal
performance, while ensuring minimal wasted power. Across various benchmarks we do observe
certain clusters (as shown in Table IV and VI) where lower and higher frequencies of each
components map together, respectively, while observing a similar impact of power on
performance. We can use our methods to design more energy aware clusters which account for
power-performance trade-off. We also observed the disparity in the power and performance

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

R

across various components, where changes in the GPU configuration provide more gains in
power followed by memory and the CPU. These observations provide a foundational basis for
designing system-wide DVFS policies, which can be used to make some application agnostic
decisions for an energy-aware system. Future research may utilize these studies to evaluate a
wider variety of workloads to verify our observation and design a DVFS governor which can
decide an optimal operating state and devise an efficient transition strategy which ensures
minimal energy waste.

REFERENCES

[1] P. Czarnul, J. Proficz, and A. Krzywaniak, “Energy-aware high- performance computing:
Survey of state-of-the-art tools, techniques, and environments,” Scientific Programming, vol.
2019, pp. 1-19, 2019.

[2] R. F. Barrett, S. Borkar, S. S. Dosanjh, S. D. Hammond, M. A. Heroux, X. S. Hu, J. Luitjens,
S. G. Parker, J. Shalf, and L. Tang, “On the role of co-design in high performance computing,”
in Transition of HPC Towards Exascale Computing - Selected Papers from the High
Performance Computing Workshop, Cetraro, Italy, June 25-29, 2012, ser. Advances in Parallel
Computing, E. H. D’Hollander,

J. J. Dongarra, I. T. Foster, L. Grandinetti, and G. R. Joubert, Eds., vol. 24. IOS Press, 2012, pp.
141-155. [Online]. Available: https://doi.org/10.3233/978-1-61499-324-7-141

[3] S. Bhalachandra, A. Porterfield, S. L. Olivier, and J. Prins, “An adaptive core-specific
runtime for energy efficiency,” 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 947-956, 2017.

[4] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and D. J. Kerbyson, “Investigating the interplay
between energy efficiency and resilience in high performance computing,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2015, Hyderabad, India,
May 25-29, 2015. IEEE Computer Society, 2015, pp. 786—796. [Online]. Available:
https://doi.org/10.1109/IPDPS.2015.108

[5] G. von Laszewski, L. Wang, A. J. Younge, and

X. He, “Power-aware scheduling of virtual machines in dvfs-enabled clusters.” in
CLUSTER. IEEE Computer So- ciety, 2009, pp. 1-10. [Online]. Available: http://dblp.uni-
trier.de/db/conf/cluster/cluster2009.htmlLaszewskiWYH09

[6] V. A. Korthikanti and G. Agha, “Analysis of parallel algorithms for energy conservation in
scalable multicore architectures,” in ICPP 2009, International Conference on Parallel Processing,
Vienna, Austria, 22-25 September 2009. IEEE Computer Society, 2009, pp. 212-219.

[7] G. D. Costa and J.-M. Pierson, “Dvfs governor for hpc: Higher, faster, greener,” in 2015 23rd
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing,
2015, pp. 533-540.

[8] P. Czarnul and P. Ros’ciszewski, “Optimization of execution time under power consumption
constraints in a heterogeneous parallel system with gpus and cpus,” in Distributed Computing

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

and Networking, M. Chatter- jee, J.-n. Cao, K. Kothapalli, and S. Rajsbaum, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 66—80.

[9]J. Haj-Yahya, M. Alser, J. Kim, A. G. Yag likc,1, N. Vijaykumar,

E. Rotem, and O. Mutlu, “Sysscale: Exploiting multi-domain dynamic voltage and frequency
scaling for energy efficient mobile processors,” in Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, ser. ISCA *20. IEEE Press, 2020, p. 227—
240. [Online]. Available: https://doi.org/10.1109/ISCA45697.2020.00029

[10] R. Nath and D. Tullsen, “The crisp performance model for dynamic voltage and frequency
scaling in a gpgpu,” in Proceedings of the 48th International Symposium on Microarchitecture,
ser. MICRO-48. New York, NY, USA: Association for Computing Machinery, 2015, p. 281—
293. [Online]. Available: https://doi.org/10.1145/2830772.2830826

[11] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Memscale: Active low-
power modes for main memory,” in Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: Association for Computing Machinery, 2011, p. 225-238. [Online].
Available: https://doi.org/10.1145/1950365.1950392

[12] K. K. Chang, A. G. Yag'likc,1, S. Ghose, A. Agrawal, N. Chatterjee,

A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, “Understanding reduced-voltage
operation in modern dram devices: Experimental characterization, analysis, and mechanisms,”
Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 1, jun 2017. [Online]. Available:
https://doi.org/10.1145/3084447

[13] S. Lee, K.-D. Kang, H. Lee, H. Park, Y. Son, N. S. Kim,

and D. Kim, “Greendimm: Os-assisted dram power management for dram with a sub-array
granularity power-down state,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 131-142. [Online]. Available:
https://doi.org/10.1145/3466752.3480089

[14] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and

R. Bianchini, “Coscale: Coordinating cpu and memory system dvfs in server systems,” in
Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-45. USA: IEEE Computer Society, 2012, p. 143—154. [Online].
Available: https://doi.org/10.1109/MICRO.2012.22

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,” in 2009 IEEE
International Symposium on Workload Characterization (IISWC), 2009, pp. 44—-54.

[16] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and

K. Skadron, “A characterization of the rodinia benchmark suite with comparison to
contemporary cmp workloads,” in IEEE International Symposium on Workload Characterization
(IISWC’10), 2010, pp. 1-11.

R

&’RD LABORATORY DIRECTED
AN RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

[17]J. Go'mez-Luna, I. E. Hajj, L.-W. Chang, V. Garc'1a-Floreszx, S. G. de Gonzalo, T. B.
Jablin, A. J. Pen"a, and W.-m. Hwu, “Chai: Collabo- rative heterogeneous applications for
integrated-architectures,” in 2017 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2017, pp. 43-54.

ORD

ADDENDUM:

Runtime Systems for Energy Efficiency in Advanced Computing Systems, 22
Curtis Madsen (6323), Tian Ma (6321), Professor Gul Agha (UIUC) :

Purpose, Approach, and Goal

Motivation: Energy consumed by computing systems has grown over the last
decade. Current dynamic voltage and frequency scaling (DVFS) methods are
designed to work on individual components and are unaware of other resource
requirements and power demands of the complete system.

Hypothesis: Parallelism in applications can be leveraged to develop latency aware
fine-grained DVFS for heterogeneous systems reducing energy consumption

R&D Approach: Create state transition models which combine static information
about application behavior with dynamic information about the operating
environment. Estimate energy use by state transition time and learn the behavior
of applications to predict transitions and optimize runtime energy efficiency.

One Key Goal: Achieve energy savings of at least 10% over current DVFS methods.

Representative Figure

We developed a systemrwide DVFS policy that sits between the governors for
each component and the kernel and modifies the frequencies of each
component to obtain energy savings and better performance for the system.

R&D Summary (Methods, Results and Discussions)

Key R&D Results and Significance

Summarize your R&D
Build dependency graph among all the components in the system:
. Run benchmarks and collect utilization numbers for each component.
. Characterize the interactions among different components and determine how the|
points impact performance, utilization, and energy.
Use this information to construct the dependency graph and cluster into equivalence classes.
Use dependencies to design a system -wide governor to improve energy efficiency and quality of
service of the system.
. Each new policy is driven by one of the components (CPU, GPU, Memory) and the other
components’ frequencies are modified based on the clustering.

The result for the one key goal
Depending on the policy we ran, we saw savings as high as 35% even with an added computing
overhead of 6-11% from running our scripts.

Lessons learned

Using Python for scripting adds overhead and is not suitable for energy -efficient applications. Could
use a different prototyping language like Bash.

Attempted to implement governors for non -standard resources which is very difficult without source
code. Should have started using scripts earlier.

Follow- on plans/activities
Clean up scripts to reduce overhead and make more generalized for multiple systems.
Utilize approach to increase system performance while maintaining a specified power usage.

Obtain funding from a CIS LDRD or the DOE Office of Science ASCR to target more mission applications.

Impact of follow - on plans
This work benefits Sandia’s Global Security and National Security Program by reducing energy
consumption providing resilience to remote sensors, mobile devices, and military devices.

Publications, awards, staff development & IP
|EEE Transactions on Parallel and Distributed Computing (in preparation)
Supported an early career employee, Curtis Madsen, who was also the PI.

To save energy, DynamicVoltage and Frequency Scheduling (DVFS) is implemented on many current devices:
* DVFSis a power management technigue used to adjust the voltage and frequency of a computing device's processor to conserve

energy when the component is idle

* Modern DVFS can be run at different operating points on a per-component basis?
* However, transitions are performed instantaneously without consideration for other components?, which can lead to loss of energy

Clock transitions only
after voltage change

otage oot

Clock

time

Clock adapts to
changing voltage —

Voltage

Clock

time

Y

Figare showing that energy s wasted when transitions ase performed instantaneously without segasd for other components and changing voltages

Our approach determines equivalence classes of operating point groups amaong different
companents and parallelizes DVFS requests to better adapt the frequencies of each componen

To achieve this, we built dependency graphs between components by running benchmarks for
all possible configurations of voltage and frequency for each component and by collecting the
benchmark and utilization numbers for each run allowing us to characterize the interactions

amaong different components

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

Equivalence Class
Fgure depicting determining the equivalence classes froma
THE 019 B647174 dependancy graph
etians ar Campters, 1 March 2019, dai: 1001 109TC 2018 2874476

(1) B. Acwm etal Fine-Crained Energy Efficiency Using Per-Core DVFS w
(2)) Fettes etal. Tnmamie Valtage and Frageency Sealing in NoC s wil

pSystem . 2019 0G50 . dod - 1001 109 TGS
ement Learming Technigees * in JEEE Tran

‘ R\ LABORATORY DIRECTED
R

ESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

R&D Summary (Methods, Results and Discussions)

Utilizing the AnTuTu, Chai, and Rodinia benchmarks, we were able to analyze dependencies between different
companents when their frequencies are modified

Impact of Mermory on GPU Performance & Chai $55P GPLU Frequency Sweep
Sax L
. @ low @ Medum @ Hgh
o Wasted :
naa Pesfonmance .
. -
" s : ""-\H.\-‘.] 5
E saa _ e . 2 ; : '] .
oo e ’ ' '
—————~ i e
0 m
. Saturation Point
a
17T 108 i 43 AW 543
G Freguency i W)
1.TE+08 1HEEHR ASOE+0R 4. 20608 4 B0E+0R SA3E-08 6 NDE+0R
v MNTCry i Mpmry o bilgh beTory P Prequescy
Plots deplcting the impact of frequency changes of one component on another's performance
Combining these analyses, we were able to see how the frequency of each [| MemPFeri | CPUPerf | GFUPerf | 1
companent impacted the performance of the other components MemFreq 0.921 0.632 0.776
We tried multiple clustering options based on various methods and parameters: | CPUFreq 0,152 0,737 0,070
+ Power-based: We clustered operating points based on power consumption GPUFreq -0.130 0.041 0.538
+ Performance: Operating peints were clustered based on the performance score Taitle showing the impact of ane comaonent’s frequency on

the parformance of the other components
+ Power-perf: We used multi-dimensional clusters, such as DERSCAN

+ Energy-Delay Product{v): We used energy-delay product with v determining the balance of power and performance

We settled on a state transition policy based on the system-wide resource utilization and efficiency requirement v and implemented
this policy using scripts allowing for frequency madifications in parallel

| R&D Summary (Methods, Results and Discussions)

Parformance and Powes Performance and Pawer Parformance and Powar
W Fetsrrcs W Fowe W Pecorawce [Powes W et W) Powsr
£ 0 n 3 L) 1
15 = "
Fom 2 z
3 15 1=
]
“ : II
as ' '
os
s 1
i an 2 a 113 [
swaras rraTancs [= Parkarasie O Py Eaderand FataTmros ==
L gk e S R

Plats comparing the performance and power usage of a power-saving policy, ahigh performance policy, and our policy
In testing aur policy against existing DVFS policies, we found that we were often able to achieve similar performance to high
performance policies but with power usage closer to power-saving policies

We often observed energy savings around 15-20%, but in some cases, we observed an energy savings of 35% even though our
scripts (written in Python) added an overhead of about 6-11% to the computation 1

Lessons Learned:

+ It is difficult to modify the DVFS policy at the kernel level for components where we don't have source code

* \We spent a fair bit of time attempting to make these medifications directly but found it easier (and still very effective] to change the
frequency with scripts making these requests

+ The overhead from running Python code is not trivial though we were still able to see great gains despite this overhead

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

PN
R

Project Legacy

Key Technical Accomplishment
+ Achieved greater than 10% (in some cases 35%) power savings over existing DVFS methods

This work benefits Sandia’s Global Security and National Security Program by reducing energy consumption providing
resilience to remote sensors, mobile devices, and military devices.

* Worked with Professor Gul Agha, an Academic Alliance professor at University of lllinois Urbana-Champaign

* Discussed application of our power saving methods to decision support systems with members of center 6300

» Communicated with the Power API* Team to learn about how our methods might be applied to their workloads

* Encouraged by IAT member to submit full LDRD to the CIS call in A

We plan to submit a full CIS LDRD in FY24 to further develop our approach for application to mobile sensing missions.

= Redesign our scripts to run on decision support sy ardware and focus on both power savings and performance

Il determine hardware specifications and software APls available in current systems by end of 2022 |

C will implement a mode where performance is optimized for a desired power usage by early 2023

We wish we could have produced software that would automatically perform the frequency clustering and
equivalence class computation for any given system. We would have also liked to convert the scripts to something
that would run with less overhead such as Bash scripts.

(1) E.E. Grawtet al. “Standardizing Power Moustermyg and Control at Exascale,” in Comgnater, vol. 49, wo. 10, pp, 3846, Oct, 2016, des: 10,1109 2016 308

| LDRD Project Metrics
Presentations and Publications
* |EEE Transactions on Parallel and Distributed Computing (in preparation)
Intellectual Property

* Requires further evaluation and demonstration of utility; however, algorithm shows promise as being applicable on
extending battery life of mobile devices

Tools and Capabilities
+ Developed a suite of Python scripts that can be fed a collection of clustered frequency equivalence classes for each

component in a heterogeneous system to produce and run a policy that will automatically adjust the frequencies to
obtain greater performance and power savings

Staff Development

¢ This LDRD supported an early career employee, Curtis Madsen, who was also the Pl on the project
Awards

* None

LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

R

Backup Slides

When analyzing the performance and power usage of each component, we identified
cases where each component either underperformed or overperformed given the
power used for different frequency values of the other components

CPU Pawer-Performace GPU Power-Perfomance Memory Power-Performance
" » a - -) . _\I
-~ - = * - 2 / -t LH
v z 6 = "~
o E E 4
= - = b et . ll_:lﬂf- .
- N X 3 -

e)
. .

Plots showing where companents parformed poory at higher power usage (orangs regions| and whene components had
great performance at lower power usage (blue regions) forvarying frequencies of the other system components

Backup Slides

Different clustering options resulted in combinations of frequencies being placed in
different equivalence classes as shown in the example below

[177, 1.4, 165 o [177. 1.4, 185] (1]
[350, 1.8, 165] o [350, 1.4, 165] (1]
[543, 1.4, 165] i)

137, 1.7, 16%] 1 [543, 1.4, 165] o
1350, 1.7, 165] i [177, 1.4, 543] [1]
[543, 1.7, 165] i 1177, 1.4, 933] 0
177, 1.4, 543] Fl [350, 1.4, 543] 0
1177, 1.4,933] 2

[250, 1.4, 543] 3 [350, 1.4, 933] o
[250, 1.4, 933] 2 [543, 1.4, 543] Q0
1543, 1.4, 543] i [543, 1.4, 933] 1]
E‘;:. ;j' e;:;g : [177, 1.7, 165] 1
{350, 2.0, 165] 2 LT D i
[543, 2.0, 165] 3 [177. 1.7, 543] i
[177, 1.7, 543] 3 [543, 1.7, 543] 1
[177, 1.7, 933) 3 1177, 1.7, 933] 2
1350, 1.7, 543 3

[350, 1.7, 933] 4 [543, 1.7, 933] 2 |
[543, 1.7, 5a3] a [177, 2.0, 165] 3
[543, 1.7,933] 3 {350, 2.0, 165] 3
[177, 2.0, 543] : [543, 2.0, 165] 3
177, 2.0,933) 4

(350, 2.0, 543) a [177, 2.0,543] E]
[350, 2.0,933] a [177, 2.0, 933] 4
[543, 2.0, 5a3) a [543, 2.0, 933] 4
[543, 20,933 a

Power based cluster
Performance based cluster

