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Physics-Based Reduced Order Modelling (ROM)

Real life system

Virtual 
Representation

Complex Dynamics

Nonlinear behaviour

Parametric dependency on:
• Geometric features
• Material properties
• Environmental conditions
• Operational conditions
• Excitation 

Capture underlying dynamics

Reproduce physical behaviour

Retain parametric dependencies 

Efficient evaluation 

Reduced Order Model 
( ROM )

High fidelity 
Finite Element model
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Physical Interpretation:
Dynamic response under any parametric 
state spans low-dimensional subspace S 

Real life system

Dynamic structural response

Try to extract components representing the 
solution manifold S

Problem Statement
Physics-Based Reduced Order Modelling (ROM)
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Assuming a general a nonlinear, parametric, dynamical system: 

Parametric dependency on k parameters denoted by:

Relevant notation:
M is the system mass matrix u is the response time history
f is the vector of external loads g are the nonlinear, state-dependent internal forces

Problem Statement
Projection-Based Reduction
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The goal of parametric ROM is to generate a low-dimensional, equivalent system such that the underlying 

physics along with the parametric dependencies of interest are further retained.

Galerkin Projection Basis

Problem Statement
Projection-Based Reduction
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Algorithmic Framework

The full-order, high fidelity finite element model depends on a parametric input state.

The parametric states are first sampled. The respective parameters may represent:
• system properties: yield stress, hysteretic damping coeffs.
• excitation traits: amplitude of ground motion, frequency content

Step 1: Parametric input states

Notation:
: Full-order dimension
: Number of training samples
: Number of simulated timesteps
: Mass matrix
: External forcing
: Response solution

Step 2: Time Integration of Full Model

For each parametric state:

➢ Assemble system matrices
stiffness K / mass M / damping C / Excitation f

➢ Evaluate the time domain response (integration)
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Step 1: Parametric input states

Training / Offline Phase

Notation:
: Full-order dimension
: Number of training samples
: Number of simulated timesteps
: Mass matrix
: External forcing
: Response solution

Step 2: Time Integration of Full Model

Step 3: Assemble matrices and evaluate Equations of Motion

Nonlinear terms
includes stiffness and damping

Step 4: Compute Residual on Equations and “predict” correction 

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

Problem Statement
Algorithmic Framework
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POD - Projection-based Reduction

Assemble POD Basis

As a next step, to evaluate the pROM :

• Assemble the full-order matrices of the validation parametric state

• Assemble a suitable basis representing the solution subspace (Interpolation / Clustering)

• Project the system matrices on the reduced dimension

• Integrate the reduced order matrices forward in time to evaluate the dynamic response

• Map the reduced response back to full coordinates

Each training point has a
projection basis.

Proper Orthogonal Decomposition

Problem Statement
Algorithmic Framework

# principal components
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POD - Projection-based Reduction

Assemble POD Basis Proper Orthogonal Decomposition

Problem Statement
Bottlenecks/Limitations

Limitations:

➢ POD is a linear operator
Linearization in neighbourhood of stable points is assumed to address 
nonlinearities

➢ Accuracy for new parametric states relies on clustering or interpolation
between POD bases



Click to edit Master title styleProblem Statement
Algorithmic Framework

Step 1: Parametric input states

ROM Evaluation / Online Phase
Step 2: Time Integration of ROM

Step 3: Assemble matrices and evaluate Equations of Motion

Step 4: Compute Residual on Equations and “predict” correction 

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices
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Step 1: Parametric input states

ROM Evaluation / Online Phase
Step 2: Time Integration of ROM

Step 3: Assemble matrices and evaluate Equations of Motion

Step 4: Compute Residual on Equations and “predict” correction 

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

Problem Statement
Bottlenecks/Limitations

Nonlinear terms
still scale with full dimension
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Step 2: Time Integration of ROM

Step 3: Assemble matrices and evaluate Equations of Motion

Nonlinear terms
still scale with full dimension

Step 4: Compute Residual on Equations and “predict” correction 

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

➢ The evaluation of the nonlinear terms still 
scales with the full order dimension.

➢ For every solution increment we need to:

• Project displ./vel. back to full-order

• Evaluate nonlinear terms

• Update forces and stiffness matrix

• Project updated matrices back to 
reduced-order coordinates.

This back-and-forth projection is a major 
computational bottleneck.

Especially in large scale systems 
where time integration savings cannot outweigh

the projection & evaluation.

To address this, we rely on hyper-reduction,
a second-tier approximation of the nonlinear 

contributions.
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Bottlenecks/Limitations

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

➢ Back & forth projection to update nonlinear terms 
compromises efficiency

➢Hyper-reduction is introduced

Several alternatives available 
(ECSW, DEIM, GNAT, EQM) 

ECSW: Sparse evaluation of full-order nonlinear 
terms based on energy contributions coupled 
with weighting scheme

DEIM: Additional POD-based reduction coupled 
with selection scheme

✓ Hyper-reduction is essential for efficiency 

❖ Introduces an additional source of error that usually 
outweighs the POD projection error

=> Accuracy bottleneck/threshold for the ROM
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Reconstruction Error Minimization

Tackle projection-based reduction error
=> Replace POD with AE-driven process

Argumentation: 
POD is a linear operator / Accuracy relies on linearization assumptions

➢ Employ mapping techniques based on nonlinear (feature) transformations
➢ Explore potential nonlinear kernels 
➢ Check if orthogonality conditions need to be retained

=> Improve pROM accuracy

• Initial approaches yield questionable results

• Additional bottleneck on how to propagate ROM 
dynamics after projection

=> Further and deeper research is needed
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Data-driven Mapping for Hyper-Reduction

Address ROM’s nonlinear mapping limitations
 Replace Hyper-Reduction with data-driven surrogates

Argumentation: 
Hyper-Reduction guarantees efficiency however is the largest error source of the pROM 

➢ Couple POD basis assembly process with data-driven method to learn the nonlinear mapping directly in ROM coordinates

➢ Every iteration of the training state contributes nonlinear mapping training data

=> Thousands of data available for a single training realization

➢ Parametric dependencies on the nonlinear law might be explored as a next step

+ Potentially substantial improvement in efficiency

+ Achieve real-time evaluations

- Potential trade-off with accuracy

- Parametric dependency is challenging



Click to edit Master title styleNumerical Validation
Case study description

Two-story shear frame with nodal connections
modeled employing hysteretic links

Multisine stochastic ground motion excitation

Hysteretic links response model

➢ Total restoring force:

➢ Bouc-Wen equation with degradation/deterioration effects:

Characteristics of the Bouc-Wen links:
: Smoothness and shape of hysteresis curve
: Degradation/Deterioration effects
: Linear/Hysteretic contribution weighting
=> Parametric dependencies of the hysteretic links

Benchmark example featured in:
• Vlachas K. et al. "A local basis approximation approach for nonlinear parametric model order reduction."

Journal of Sound and Vibration 502 (2021): 116055.
• Vlachas K. et al. " Two-story frame with Bouc-Wen hysteretic links as a multi-degree of freedom

nonlinear response simulator." Workshop on non-linear system identification benchmarks (2021)
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Data-driven Mapping for Hyper-Reduction

Detailed Task Formulation

Input: 

• Reduced-Order Displacements in current iteration (and previous ones) 

• Reduced-Order Force terms in previous iteration(s)

• Reduced-Order Stiffness terms in previous iteration(s)

Output:

• Reduced-Order Force terms in current iteration

• Reduced-Order Stiffness terms in current iteration

Address ROM’s nonlinear mapping limitations
 Replace Hyper-Reduction with data-driven surrogates

Argumentation: 
Hyper-Reduction guarantees efficiency however is the largest error source of the pROM 
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Network details and potential improvements

Neural Network Details

➢ 1D (Temporal) Convolution layers

➢ Spatial local correlations ignored => Assumes only time correlations

➢ Activation function: CELU, Tanh

➢ Train / Validation ratio: 0.75

➢ Temporal width: 8

➢ Dropout: 0.01

➢ Scaling: Normalization/ Minimum=0, Maximum=1

➢ Kernel size = 3

➢ Batch size = 64 / Epochs = 10000

➢ Adaptive learning rate with overfitting patience enabled

➢ Network size: ~500,000 parameters

Potential improvements:

✓ Increase temporal width parameter

✓ Improve post-processing and error diagnostics

✓ Explore the trade-off between deep CNNs and efficiency

✓ Explore MLP network potential
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Absolute errors distribution

Internal Forces F Stiffness Matrix K
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Relative errors distribution

Internal Forces F Stiffness Matrix K
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Error visualization in stiffness matrix
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Prediction visualization in stiffness matrix



Click to edit Master title styleNumerical Validation
Prediction visualization in internal forces
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Prediction visualization in internal forces
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Prediction visualization in internal forces
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ROM Performance and Generalization / Outlook

Hyper-Reduction Based POD-ROM vs Data-driven assisted POD-ROM

Accuracy performance of the pROM

Median Error = ~2% vs ~20%

Max Error = 5% vs 25%

Efficiency performance of the pROM (Evaluation in GPU)

Average speed-up factor = ~7 vs ~50

Parametric dependency treatment

One hyper-reduction scheme per POD cluster / Approximately 3 NN models per cluster 

Suffers from error propagation

=> Improvement by training in sequences

Remarkably greater efficiency

=> Explore deeper networks

Generalization needs improvement

=> Include dependency as input variable=> Ongoing Research 


