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Problem Statement
Physics-Based Reduced Order Modelling (ROM)

»
High fidelity Representation
Finite Element model

Real life system Reduced Order Model
(ROM)
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Problem Statement
Physics-Based Reduced Order Modelling (ROM)

y

Physical Interpretation:
Dynamic response under any parametric
l state spans low-dimensional subspace S

solution manifold S
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Problem Statement
Projection-Based Reduction

Assuming a general a nonlinear, parametric, dynamical system:

M(p)u(t) + g (u(t), u(t),p) = £(¢, p)

u(t) e R", M(p) € R"*" f(t,p) € R", g (u(t),u(t)) € R”

Parametric dependency on k parameters denoted by: P = [pl, ...,pk]T - Q (& Rk

Relevant notation:
M is the system mass matrix u is the response time history
fis the vector of external loads g are the nonlinear, state-dependent internal forces

& Computers and Information in Engineering Conference
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Problem Statement
Projection-Based Reduction

The goal of parametric ROM is to generate a low-dimensional, equivalent system such that the underlying
physics along with the parametric dependencies of interest are further retained.

M, (p;)t;(t) + g (u(t),u(t),p;) = f:(t, p;)

M. (p;) € R™", g, (u(t). i(t), p;) € R (¢, py) € B

Galerkin Projection Basis

|7 < n|
u(t) = V(p; Jus (1) M.(p,) =¥ (p,)TM(p,)V(p,)

fr(pj) V(pJ)Tf( apj) gfr(pj) — V(pj)Tg (u(t)a ﬁ(t)a pj)

& Computers and Information in Engineering Conference
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Problem Statement
Algorithmic Framework

[4)]
=
o g Step 2: Time Integration of Full Model Notation:
oc )
"gg \v/t,“ = [07 Nt] 7 : Full-order dimension
v Qo N: Number of training samples
@K O ¢ : Number of simulated timesteps
CcCo N
OE-E O M : Mass matrix
N&E f :External forcing
,g.E Step 1: Parametric input states O U : Response solution
HRER
— Vpk, k € [1, NS] ” For each parametric state: )
o e
c =
U'—g e O » Assemble system matrices
=
m ' D= stiffness K / mass M / damping C / Excitation f
Ug @ O \_ » Evaluate the time domain response (integration) Y
=i O
65
m I—U% E— Ghe full-order, high fidelity finite element model depends on a parametric input state. )
c
>~ (AL
—_—C X The parametric states are first sampled. The respective parameters may represent:

* system properties: yield stress, hysteretic damping coeffs.
* excitation traits: amplitude of ground motion, frequency content

\_
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Problem Statement
Algorithmic Framework

Training / Offline Phase

Step 2: Time Integration of Full Model

. Nonlinear terms
Vtia (S [07 N t] /1 includes stiffness and damping
—

Step 3: Assemble matrices and evaluate Equatyz(ns of Motion
Step 1: Parametric input states > M(p)u(t,,;) T Si (u(ti)’ u(ti)’ p) - f(ti’ p) >
¥pi, k € [1, N, u(t) € R, M(p) € R, £(t, p) € R", g (u(t), (1)) € R"

|—¢

International Design Engineering Technical Conference
& Computers and Information in Engineering Conference

IDETC-CIE 2021

Notation: Step 4: Compute Residual on Equations and “predict” correction
Ng: Full-order dimfar?sion ’Lf R; (ur(ti)) > tol => 10, (tz)
71 : Number of training samples
Ny: Number of simulated timesteps |—¢
MV : Mass matrix - | -
f : External forcing Step 5: Employ updated solution to re-assemble nonlinear terms & matrices
11 : Response solution U(ti) => gi(u(tz‘); ll(ti), p)

The American Society of Mechanical Engineers

ASME®



Ll
7
J

N
O
(N
LL
o
9
—
LLI
=

@
o
c
Q
|
Q
o
c
o
QO
©
e
c
e
o
[
[9)]
c
=
[
[
<
[*)]
c
L
c
Lz
1]
Q
(a]
E
c
o
=
©
=
e
(]
]
I=

& Computers and Information in Engineering Conference

Problem Statement
Algorithmic Framework

POD - Projection-based Reduction

Assemble POD Basis

r
u(t)

A 4

.

Proper Orthogonal Decomposition

Vp)u(t) U=ut)..ulty)] = WERT

Each training point has a ]
projection basis. J

VEW@:\VV(:,lzk) “

As a next step, to evaluate the pROM :

* Assemble the full-order matrices of the validation parametric state

* Assemble a suitable basis representing the solution subspace (Interpolation / Clustering)
*  Project the system matrices on the reduced dimension
* Integrate the reduced order matrices forward in time to evaluate the dynamic response
*  Map the reduced response back to full coordinates

~N

J

\

# principal components

The American Society of Mechanical Engineers
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Problem Statement
Bottlenecks/Limitations

POD - Projection-based Reduction

4 R

Assemble POD Basis Proper Orthogonal Decomposition

u(t) =Vp)w(t) U=u).ulty)]=WER?

A 4

V=W, =W(,1:k) )

[Limitations: \

» POD is a linear operator
Linearization in neighbourhood of stable points is assumed to address —
nonlinearities

& Computers and Information in Engineering Conference
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» Accuracy for new parametric states relies on clustering or interpolation

k between POD bases j
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Problem Statement
Algorithmic Framework

ROM Evaluation / Online Phase

Step 2: Time Integration of ROM

Vtzaz = [OyNt]
L

y
Step 3: Assemble matrices and evaluate Equations of Motion

M,.(p)u,(t;) + gri(u(t:), a(t;), p) — fe(ti,p) = 0
Mr(pj) S RTXTagr (u(t)7 ﬁ<t)7pj) < Rr? fr(ta pj) eR’

|—¢

Step 4: Compute Residual on Equations and “predict” correction

if Ri(un(t;)) > tol => i, (t;)
|_¢

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices
{i(t;) = Vig(t;)
u(t;) => gi(u(t;),u(t;), p)

Step 1: Parametric input states

dp., v ¢ [1, Ng]

International Design Engineering Technical Conference
& Computers and Information in Engineering Conference

IDETC-CIE 2021
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Problem Statement
Bottlenecks/Limitations

ROM Evaluation / Online Phase

Step 1: Parametric input states

dp., v ¢ [1, Ng]

Step 2: Time Integration of ROM

Vt,“’], c [O’ N. t] Nonlinear terms
|

still scale with full dimension

v
Step 3: Assemble matrices and evaluate Equatw
M, (p)ur(t:) + : = £ (ti;,p) =0

gri(u(ti)vu(ti)ap) ti,p
M, (p;) € R™", g, (u(t),u(t),p;) € R", f(t,p;) € R

|—¢

Step 4: Compute Residual on Equations and “predict” correction

if Ri(un(t;)) > tol => i, (t;)
|_¢

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices
{i(t;) = Vig(t;)
u(t;) => gi(u(t;),u(t;), p)
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Problem Statement
Bottlenecks/Limitations

[4)]
=
2o
EE Step 2: Time Integration of ROM -
% c > Nonlinear terms > Th luati fth i il
§0 Vi, 1 € 0, Ny] still scale with full dimension ¢ evaluation of the nonlinear terms st
‘ Co | o scales with the full order dimension.
@ = v
Lo
CD_:\:CJ g Step 3: Assemble matrices and evaldate Equations of Motion Q » For every solution increment we need to:
o 2 .. AT PR i . ioct di ]
N;'—E o M, (P)Ur (tz) i (u(ti) ’ u(ti), p) I f, (ti, p) -0 Project displ./vel. back to full-order
== e R e e e e e e LT 'r . * Evaluate nonlinear terms
@S . : . )
L] g.f_j M, (p;) € R""", g (u(?),u(t),p;) € R", £ (t,p;) €R *  Update forces and stiffness matrix
( E’g — * Project updated matrices back to
: = 2 Step 4: Compute Residual on Equations and “predict” correction reduced-order coordinates.
m—
‘0O . ~ ,," . . q q q
( ) 25 1 f Rz (uT (ti )) > tol => a, (t@) This back-and-for.th projection is a major
I_E g computational bottleneck.
= L 4 s
23
LLls 2 Step 5: Employ updated solution to re-assemble nonlinear terms & matrices Especially in large scale systems
c E I P
D E 8 : ﬁ (tz ) — Vﬁr (tz ) I // where time integr.atign savings can.not outweigh
= I . : W the projection & evaluation.
! 17 — A11(+:) 11(+-
Lou(t) =>gi(alt:),ult:),p) i . .
: I To address this, we rely on hyper-reduction,
I
! I
L

v : S :
gri — g a second-tier approximation of the nonlinear
—————————————————————————————— -l Contributions.
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Problem Statement
Bottlenecks/Limitations

» Back & forth projection to update nonlinear terms
compromises efficiency

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

» Hyper-reduction is introduced

=>Several alternatives available
(ECSW, DEIM, GNAT, EQM)

]
N
~

-~
S—’
|
V
0Q
-,
—
|
f—==
~
-~
~——
r
—
~~
-~
N
i=
N’

—ECSW: Sparse evaluation of full-order nonlinear
terms based on energy contributions coupled
with weighting scheme

F §

—DEIM: Additional POD-based reduction coupled
with selection scheme

v" Hyper-reduction is essential for efficiency

& Computers and Information in Engineering Conference
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K/

%+ Introduces an additional source of error that usually
outweighs the POD projection error

=> Accuracy bottleneck/threshold for the ROM
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Working Approaches

Reconstruction Error Minimization

ﬁckle projection-based reduction error
=> Replace POD with AE-driven process

Argumentation:

» Explore potential nonlinear kernels
» Check if orthogonality conditions need to be retained

\ => Improve pROM accuracy

POD is a linear operator / Accuracy relies on linearization assumptions

» Employ mapping techniques based on nonlinear (feature) transformations

J

Additional bottleneck on how to propagate ROM

Initial approaches yield questionable results

dynamics after projection

=> Further and deeper research is needed

The American Society of Mechanical Engineers
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Working Approaches
Data-driven Mapping for Hyper-Reduction

mdress ROM'’s nonlinear mapping limitations
= Replace Hyper-Reduction with data-driven surrogates

Argumentation:
Hyper-Reduction guarantees efficiency however is the largest error source of the pPROM

» Every iteration of the training state contributes nonlinear mapping training data
=> Thousands of data available for a single training realization

Q Parametric dependencies on the nonlinear law might be explored as a next step

» Couple POD basis assembly process with data-driven method to learn the nonlinear mapping directly in ROM coordinates

~

/

l_l

+ Potentially substantial improvement in efficiency
+ Achieve real-time evaluations
- Potential trade-off with accuracy

- Parametric dependency is challenging

The American Society of Mechanical Engineers
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Numerical Validation
Case study description

Two-story shear frame with nodal connections
modeled employing hysteretic links

>
~N

Multisine stochastic ground motion excitation

Hysteretic links response model

}|
(A
\

» Total restoring force:

N

R = Riinear + Rhysteretic = aku + (1 — Of)kz LY
» Bouc-Wen equation with degradation/deterioration effects: _____________ =
. Au—v(t)(Blulz|z[* " — yalz?) TACT
‘T n(t) AT

t Direction of motion
v(t) =1.0+due(t), n(t) =1.040,e(t), €(t) = / Zuot
0
Characteristics of the Bouc-Wen links:
,3 e A, W : Smoothness and shape of hysteresis curve

IDETC-CIE 2021

International Design Engineering Technical Conference

ASME

& Computers and Information in Engineering Conference

dv,0y :Degradation/Deterioration effects Benchmark example featured in: . _ _
. . 3 3 i i * Vlachas K. et al. "A local basis approximation approach for nonlinear parametric model order reduction."
a, k : Lmear/Hysteretlc contribution weighting Journal of Sound and Vibration 502 (2021): 116055.
=> Parametric dependencies of the hysteretic links + Vlachas K. et al. " Two-story frame with Bouc-Wen hysteretic links as a multi-degree of freedom

nonlinear response simulator." Workshop on non-linear system identification benchmarks (2021)
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Numerical Validation
Data-driven Mapping for Hyper-Reduction

r

Address ROM’s nonlinear mapping limitations
— Replace Hyper-Reduction with data-driven surrogates

Argumentation:

Hyper-Reduction guarantees efficiency however is the largest error source of the pROM

Detailed Task Formulation

Input:

*  Reduced-Order Displacements in current iteration (and previous ones)
*  Reduced-Order Force terms in previous iteration(s)

*  Reduced-Order Stiffness terms in previous iteration(s)

Output:
*  Reduced-Order Force terms in current iteration
*  Reduced-Order Stiffness terms in current iteration

S Ue€ R16,(t—k):t
S F ¢ Rlﬁ,(t—k):(t—l)
S K e R16X16,(t—k):(t—l)

 F ¢ R19!
R16X16,1

The American Society of Mechanical Engineers
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Numerical Validation
Network details and potential improvements

Neural Network Details

1D (Temporal) Convolution layers

Spatial local correlations ignored => Assumes only time correlations
Activation function: CELU, Tanh

Train / Validation ratio: 0.75

Temporal width: 8

Dropout: 0.01

Scaling: Normalization/ Minimum=0, Maximum=1
Kernel size =3

Batch size = 64 / Epochs = 10000

Adaptive learning rate with overfitting patience enabled
Network size: ~500,000 parameters

YVVVVYVVYVYVYVYYVYY

Potential improvements:

v' Increase temporal width parameter

Improve post-processing and error diagnostics

Explore the trade-off between deep CNNs and efficiency

AN

Explore MLP network potential

The American Society of Mechanical Engineers
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Numerical Validation
Absolute errors distribution

Internal Forces F

Distribution of Absolute error
= 2.34e + 05,0 = 3.72¢ + 05, min = 2.91e + 00, max = 4.92¢ + 06

12000 ~

10000 A

8000

Counts

6000 +

4000

2000

Counts

Value

Stiffness Matrix K

Distribution of Absolute error
p=3.0le + 05,0 = 8.31e + 05, min = 6.56¢ — 02, max = 3.78¢ + 07

250000

200000 -

150000 +

100000

50000

0.0 0.5 1.0 1.5 2.0

Value

2.5 3.0 3.5

%107
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Numerical Validation
Relative errors distribution

Internal Forces F

Distribution of Normalised Absolute error
u=921e — 03,0 = 1.46e — 02, min = 1.14e — 07. max = 1.93e — 01

12000 A

10000 A

8000

Counts

6000 A

4000 -

2000 A

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Value

0.200

Stiffness Matrix K

Distribution of Relative error

= 2.56e + 01,0 = 1.29¢ + 03, min = 9.27¢ — 06, max = 4.31e + 05

250000

200000

100000

50000 -

100000

200000 300000 400000
Value
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Numerical Validation
Error visualization in stiffness matrix
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Numerical Validation

Prediction visualization in stiffness matrix
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Prediction visualization in internal forces
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Numerical Validation
Prediction visualization in internal forces
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Numerical Validation
Prediction visualization in internal forces
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Concluding Remarks
ROM Performance and Generalization / Outlook

Hyper-Reduction Based POD-ROM vs Data-driven assisted POD-ROM

Accuracy performance of the pROM
Median Error = ~2% vs ~20%

Max Error =5% vs 25%

Efficiency performance of the pROM (Evaluation in GPU) -
I

Average speed-up factor = ~7 vs “50 =========== !

Parametric dependency treatment

One hyper-reduction scheme per POD cluster / Approximately 3 NN models per cluster

Suffers from error propagation
-

=> Improvement by training in sequences

Remarkably greater efficiency

=> Explore deeper networks

=> 0Ongoing Research

Generalization needs improvement

=> Include dependency as input variable
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