
Business Sensitive Information

Kokkos Tools

The Kokkos Team

September 3, 2021

SAND2021-10556PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2

Speaker Intro

• Work for Sandia
– Application Performance Team

• Worked for LLNL for a while

• Help multiphysics code teams leverage research efforts

• Make prototypes to answer “how the heck will we ______ on this weird architecture?”

3

What is the Kokkos Tools effort?

• Kokkos aims to provide a unified interface to a variety of hardware and programming
models

• Kokkos Tools does the same, but for tooling

• Current mature capability areas
– Profiling
– Autotuning

• Exploratory
– Compilers
– IDE integrations
– Debuggers David Poliakoff:

Profiling tools,
Debuggers,
Autotuning,
IDEs,
Dog facts

Drew Lewis:
Compilers

4

Why Kokkos Tools?

• “Toolchain-per-architecture” undesirable • Tooling with Kokkos Semantics, not C++

• In C++: “void
Kokkos::Impl::cuda_parallel_launch_local
_memory<Kokkos::Impl::ParallelFor<_GL
OBAL__N__49_tmpxft_00004d6b_00000
000_7_integrator_nve_cpp1_ii_28abe736
::InitialIntegrateFunctor,
Kokkos::RangePolicy<>,
Kokkos::Cuda>>(_GLOBAL__N__49_tmpxf
t_00004d6b_00000000_7_integrator_nve
_cpp1_ii_28abe736::InitialIntegrateFunct
or”

• In Kokkos:
“IntegratorNVE::initial_integrate”

NVIDIA nsys

AMD Rocprof

5

Design/Goals

• Don’t have “tool-enabled builds,” always enable tools. Turning them on or off should be a
runtime decision

– Necessitates zero or very low overhead when not in use (we achieve this)

• No versioned tool-side headers

• Function-pointer callback-based system. On Unix, we dlopen a tool library and fill out
function pointers from it

– Comparing those function pointers to nullptr is very fast

• Events we track
– Kernels, Regions, Metadata, Memory alloc/free (including Views), DualView operations

• Events we will soon track
– Using a View in a kernel

6

How do I integrate these into my Kokkos code?

Instrumentation “built-in” to Kokkos Core

./my_application [run with no tool]

./my_application --kokkos-tools-library=/path/to/tool.so [run with a tool]

KOKKOS_PROFILE_LIBRARY=/path/to/tool.so ./my_application [run with a tool]
No recompilation, just add a command
line argument!

7

Where to get Tools that support this?

• Kokkos Tools repo
– git@github.com:kokkos/kokkos-tools
– Simple tools to do simple tasks, builds are trivial (just type “make”)

• Caliper
– git@github.com:LLNL/caliper
– More complicated, more powerful. I (David P) tend to prototype functionality here
– UVM Profiling, SPOT performance tracking

• APEX
– git@github.com:khuck/xpress-apex
– Developed out of University of Oregon, popular with many ORNL users
– Supports profiling a wide variety of programming models, and autotuning
– Handles asynchronous tasks, unlike many other tools
– Slices, dices, juliennes fries

mailto:git@github.com:kokkos/kokkos-tools
mailto:git@github.com:LLNL/caliper
mailto:git@github.com:khuck/xpress-apex

Simple Tools

9

Why Simple Tools?

• Suppose DOE was purchasing new architectures with new toolchains at an incredible clip
– I know, it’s inconceivable

• Do we really have to learn a toolchain per architecture for simple tasks?
– No

Space-time Stack:
where am I spending
time and memory?

10

Space-Time Stack: Dead simple, highly useful tool

• For this part, I recommend using your own Kokkos code. If you don’t have one, though, try
the “instances” example in the examples repo

• Running is extremely complicated:
– Set KOKKOS_PROFILE_LIBRARY to [examples install dir]/lib64/kp_space_time_stack.so
– Run your program

11

Space-time-stack: continued

12

Simple Tools: Advanced Mode

13

Finding fences
KOKKOS_PROFILE_LIBRARY=./lib64/kp_space_time_stack.so
./bin/instances_begin --kokkos-tools-args=--separate-devices

14

Fixed

15

Note: the only fences are Tool fences

Autotuning

17

Why autotune?

The last 10-15% of performance in a Kokkos app comes from setting a few tuning
knobs. These need to be maintained per:

Hardware: Intel, AMD, and NVIDIA GPU
Programming models: Serial, OpenMP, OpenMPTarget, CUDA, HIP, SYCL, Threads,
HPX
Compilers: NVCC, Clang, GCC, vendor clang variants

How do you feel about maintaining that many heuristics?

Heuristics aren’t feasible moving forward

18

Requirements: what can’t we do?

• Recall from Profiling:
– No recompilation
– Applications can’t fail if tools aren’t available
– No third-party dependencies in Kokkos

• Good news: there are many good tuning technologies in ECP we can use

• Bad news: there are too many good tuning technologies in ECP to pick one

• Answer: abstraction through a callback interface

Need to support a variety of tools, ECP has depth in this
area

19

Based on our original tuner: Christian trott
• How does the Trott Tuner think about things like sparse matrix vector product?

– What do I need to tune?
•An implementation
•Team sizes for my team policies

– What might affect my choice?
•Number of rows in the matrix
•Sparsity
•Backend I’m using

– What options are valid?
•Maybe a set, maybe a range?

– Our autotuners need the information Christian has, provided formally

Need to support a variety of tools, ECP has depth in this
area

20

App workflow: typical

In most cases, code changes very little

21

App workflow: advanced
Tell the tool what it’s tuning

int? float?
categorical? ordinal? interval? ratio?

Tell the tool about feature values, and set
a default configuration

Ask tool to overwrite the configuration

Use the configuration in kernels

Tell the tool we’re done

While app not done

22

SPMV sees speedups

Graph courtesy of Artemis team from LLNL and UO

Speedups on hand-tuned kernels. Reproduced with multiple
tools

Caliper

24

Caliper: a Performance Analysis Toolbox

• Developed at Lawrence Livermore National Lab

• https://software.llnl.gov/Caliper/

• Significantly more than a Kokkos Tool, but a great Kokkos Tool

• KOKKOS_PROFILE_LIBRARY=/path/to/libcaliper.so

• Configuration
– Set Caliper environment variables
– Or use prebaked configs
– “--kokkos-tools-args=config,” or “CALI_CONFIG=config”
– Generally, add “profile.kokkos” to a config to get Kokkos profiling

David Boehme: “the Caliper man”

https://software.llnl.gov/Caliper/
https://software.llnl.gov/Caliper/BuiltinConfigurations.html

25

Simple timing

26

Okay, so it does the space-time-stack? Why Caliper?

• In addition to simple timings, Caliper supports an unbelievable array of profiling
capabilities

– Often the first place we prototype functionality

• Tech not discussed here
– SPOT: performance tracking utility, see whether you’re helping or harming the performance of a

codebase as you develop it
– Hatchet: slice and dice your calltrees, calculate which parts of a program are speeding up or slowing

down
– CurIOs: IO profiling

• There are entire Caliper trainings available

27

UVM Profiling: a Caliper case study

28

What can we see?

• ./bin/uvm_caliper ./bin/uvm_begin

• “uvm_caliper” just sets environment variables

29

Typical optimization path

• Understand Kokkos Utilization (SpaceTimeStack)
– Check how much time in kernels
– Identify HotSpot Kernels

• Run Memory Analysis (MemoryEvents)
– Are there many allocations/deallocations - 5000/s is OK.
– Identify temporary allocations which might be able to hoisted

• Identify Serial Code Regions (SpaceTimeStack)
– Add Profiling Regions
– Find Regions with low fraction of time spend in Kernels

• Dive into individual Kernels
– Use connector tools to analyze kernels.
– E.g. use roof line analysis to find underperforming code.

C++ Compilers 

31

Clang-Tidy with Kokkos Knowledge

Apps teams have been very positive about what compiler
based tools can accomplish

Current Checks:
• Implicit this
• Ensure Kokkos function

• Code at: https://github.com/kokkos/llvm-project
• SIAM poster at: poster-link
• Tool tutorial at: youtube-link

What we did:
Augmented ClangTidy, a LLVM/Clang based static
analysis tool, with knowledge of Kokkos semantics
to detect bugs early in the development cycle.

https://github.com/kokkos/llvm-project
https://figshare.com/articles/poster/Static_Analysis_for_Kokkos_Via_ClangTidy/14099237/1
https://youtu.be/MH6zFYGw0HU?t=5664

32

Early Bug Detection Saves Time and Money

Credit: Software Engineering at Google (p. 35).
O'Reilly Media.

We want to detect bugs as early as possible

Code with an easy to introduce bug

Our compiler tool warning the user about the bug, literally as they type.

The sooner a bug is
detected the easier
and cheaper it is to fix

33

But generic code is hard (not just for Kokkos)

C++ templates make it very hard to use the compiler to check the validity of generic code.

We can check correctness for concrete types,
but generic types like View<T> are hard to impossible to check in real time

We have two possible ideas to solve this problem for Kokkos, which we will investigate in the future:
1. User provides a pragma or hint about what type we should use to check the code with
2. Use C++20 concepts to provide checking for known Kokkos types

Improve C++ tooling for our application teams

Skylos

35

“Kokkos Sanitizers” + IDE integration

• Kokkos has semantics
– Semantics that can be violated

• DualView

36

DualView: the bottomless bit of footguns

37

Debugging

38

IDE Integration

39

Questions?

• kokkosteam.slack.com

• dzpolia@sandia.gov

• Kokkos more broadly: crtrott@sandia.gov

mailto:dzpolia@sandia.gov

