Ekokkos

Kokkos Tools

\ EXASCAHALE
\) I—) COMPUTING

PHOMEERE

The Kokkos Team

Sandia
vatoral Argonne &
September 3, 2021 Laboratories

% OAK RIDGE reeser?]f

. BERKELEY LAB
National Laboratory

ya
. Los Alamos

MATIONAL LABORATORY
ELT. 1443

Lawrence Berkeley
Mational Laboratory

l U A T«
AT\~

.S. DEPARTMENT OF Offlce Of
National Nuclear Security Administration

EN ERG I Science
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned

subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

P¥ Speaker Intro
ha

e \Work for Sandia

— Application Performance Team
e Worked for LLNL for a while
e Help multiphysics code teams leverage research efforts

 Make prototypes to answer “how the heck will we on this weird architecture?”

:: What is the Kokkos Tools effort?

e Kokkos aims to provide a unified interface to a variety of hardware and programming
models

» Kokkos Tools does the same, but for tooling

e Current mature capability areas
— Profiling

— Autotuning

e Exploratory

— Compilers

— IDE integrations

— Debuggers David Poliakoff: Drew Lewis:
Profiling tools, Compilers
Debuggers,
Autotuning,

P IDEs,
E\(\g\)F’ SER Dog facts

® Why Kokkos Tools?

e “Toolchain-per-architecture” undesirable e Tooling with Kokkos Semantics, not C++

e |In C++: “void

NVIDIA nsys

Record | Save Load | resuls son

= COPY [pad D9

0

. : '1?39; Paa esa_signal_wail_ stacouina fisa_signal_wai besa_signal_wait_ralaved hsa_sigal_wakl u

17101

b N Lol dacoi N (P Sy ™ ol dedi N

AMD Rocprof

Kokkos::Impl::cuda_parallel_launch_local
_memory<Kokkos::Impl::ParallelFor<_GL
OBAL _N_ 49 tmpxft_00004d6b 00000
000 _7 integrator_nve_cppl_ii 28abe736
::InitialintegrateFunctor,
Kokkos::RangePolicy<>,
Kokkos::Cuda>>(_ GLOBAL__N_ 49 tmpxf
t 00004d6b 00000000 7 integrator _nve
_cppl_ii_28abe736::InitialintegrateFunct

7

or

In Kokkos:
“IntegratorNVE::initial_integrate”

~~r .
K Design/Goals

e Don’t have “tool-enabled builds,” always enable tools. Turning them on or off should be a
runtime decision

— Necessitates zero or very low overhead when not in use (we achieve this)
e No versioned tool-side headers

e Function-pointer callback-based system. On Unix, we dlopen a tool library and fill out
function pointers from it

— Comparing those function pointers to nullptr is very fast

e Events we track

— Kernels, Regions, Metadata, Memory alloc/free (including Views), DualView operations

e Events we will soon track

— Using a View in a kernel

: How do | integrate these into my Kokkos code?

Kokkos: :Tools: :pushRegion("my_region");
Kokkos: :View< x> my_view("my_view",100);

Kokkos::parallel_for("my_kernel",RP(0,5),KOKKOS_LAMBDA (i){});
Kokkos::Tools: :popRegion();

Instrumentation “built-in” to Kokkos Core

/my_application [run with no tool]
/my_application --kokkos-tools-library=/path/to/tool.so [run with a tool]

KOKKOS PROFILE LIBRARY=/path/to/tool.so ./my_application [run with a tool]

No recompilation, just add a command
line argument!

: Where to get Tools that support this?

» Kokkos Tools repo
— git@github.com:kokkos/kokkos-tools

— Simple tools to do simple tasks, builds are trivial (just type “make”)

e Caliper
— git@github.com:LLNL/caliper
— More complicated, more powerful. | (David P) tend to prototype functionality here

— UVM Profiling, SPOT performance tracking

e APEX
— git@github.com:khuck/xpress-apex

— Developed out of University of Oregon, popular with many ORNL users
— Supports profiling a wide variety of programming models, and autotuning
— Handles asynchronous tasks, unlike many other tools

—_Slices, dices, juliennes fries

N\
E\(C\)p expscaLe
\.- FFFFFFF

mailto:git@github.com:kokkos/kokkos-tools
mailto:git@github.com:LLNL/caliper
mailto:git@github.com:khuck/xpress-apex

Simple Tools

—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

: Why Simple Tools?

e Suppose DOE was purchasing new architectures with new toolchains at an incredible clip

— | know, it’s inconceivable

* Do we really have to learn a toolchain per architecture for simple tasks?

— No

ECP

EXASCALE
COMPUTING

PROJECT

BEGIN KOKKOS PROFILING REPORT:

DEVICE ID: Cuda device 256, instance Global Instance

TOTAL TIME: ©.0993753 seconds

TOP-DOWN TIME TREE:

<gverage time> <percent of total time> <percent time in Kokkos> <percen
kernels per second> <number of calls> <name> [type]

|-> 7.27e-02 sec 73.2% 96.4% 0. 7% 9.66e+15 200 edit_step [region]
> 7.01e-02 sec 7€ 100. D.0% ------ 200 edit [reduce]

I I |-> 3.76e-04 sec 0.4% : pi 400 Kokkos::Tools: :invok

file Tool Fence [fence]

I [-> 5.77e-04 sec 0.6% 0.0% 0.0% ------ 800 Kokkos::Tools::invoke_ko

Tool Fence [fence]

| - 2 sec 24.4% 100.0% % ------ 200 decrease_temp [for]

I [-> 2.26e-02 sec 22.7% 0.0% 0.0% 400 Kokkos::Tools::invoke_k

e Tool Fence [fenc

|-> 5.560e-04 sec 0.6% 0.0% 0.0% ------ 800 Kokkos::Tools::invoke_kokkos

1 Fence [fence]

|-> 3.25e-04 sec 0.3% 0.0% 0.0% ------ 1 Kokkos::View<...>::View: fence

Space-time Stack:
where am | spending
time and memory?

: Space-Time Stack: Dead simple, highly useful tool

e For this part, | recommend using your own Kokkos code. If you don’t have one, though, try
the “instances” example in the examples repo

e Running is extremely complicated:

— Set KOKKOS_PROFILE_LIBRARY to [examples install dir]/lib64/kp_space_time_stack.so
— Run your program

TOP-DOWN TIME TREE:

|<average time> <percent of total time> <percent time in Kokkos> <percent MPI imbalance> <remainder> <
| kernels per second> <number of calls> <name> [type]

|-> 6.01e+00 sec 28.0% 100.0% @.0% 200000 "temperature_two_mirror"="

="temperature_two" [copy]

I | -> sec 1.5% 0.0% @.0% 400000 Kokkos: :deep_copy: copy between contiguous views, p

ost deep copy fence [fence]

: Space-time-stack: continued

KOKKOS HOST SPACE:

MAX MEMORY ALLOCATED: 125.0 kB
ALLOCATIONS AT TIME OF HIGH WATER MARK:
50.0% temperature_one_mirror
50.0% temperature_two_mirror

KOKKOS CUDA SPACE:

MAX MEMORY ALLOCATED: 309.3 kB
ALLOCATIONS AT TIME OF HIGH WATER MARK:
20.7% Kokkos: :InternalScratchSpace
20.7% Kokkos: :InternalScratchSpace
20.2% temperature_one
20.2% temperature_two

: Simple Tools: Advanced Mode

Kokkos: :DefaultExecutionSpace root_space;

auto i1nstances = Kokkos: :Experimental: :partition_space(root_space, 1, 1);
view_type temperature_fieldl(, data_size);
view_type temperature_field2(, data_size);

auto fl_mirror = Kokkos::create_mirror_view(temperature_fieldl);
auto fZ2_mirror = Kokkos::create_mirror_view(temperature_field2);
(int x = 0; X < repeats; ++x) {
Kokkos: :parallel_for(

Kokkos: :RangePol1icy<Kokkos: :DefaultExecutionSpace>(instances[0], 0,
data_size),
KOKKOS_LAMBDA(int 1) { temperature_fieldl(i) -= s)

Kokkos: :deep_copy(fl_mirror, temperature_fieldl);

® Finding fences

KOKKOS_PROFILE_LIBRARY=./lib64/kp space_time stack.so
/bin/instances_begin --kokkos-tools-args=--separate-devices

DEVICE ID: Cuda device 256, instance Global Instance

TOTAL TIME: 27.2033 seconds

TOP-DOWN TIME TREE:

<average time> <percent of total time> <percent time in Kokkos> <per

kernels per second> <number of calls> <name> [type]

|-> 7.58e+00 sec 27.9% 100.0% 0.0% 200000 "temperature_two_mi
| |-> 3.03e-01 sec 1.3% 0.0% @.0% 200000 Kokkos: :deep_copy:
re view equality check [fence]

| |-> 3.43e-01 sec 1.3% 0.0% 0.0% 200000 Kokkos: :deep_copy:
ost deep copy fence [fence]

Fixed

F 3

Kokkos: :DefaultExecutionSpace root_space;
auto instances = Kokkos::Experimental: :partition_space(root_space, 1, 1);
view_type temperature_fieldl(, data_size);
view_type temperature_fieldZ(, data_size);
auto fl_mirror = Kokkos::create_mirror_view(temperature_fieldl);
auto fZ_mirror = Kokkos::create_mirror_view(temperature_field2);
(int x = 0; X < repeats; ++x) {

Kokkos: :parallel_for(
, Kokkos: :RangePolicy<Kokkos: :DefaultExecutionSpace>(instances[?], @, data_size),
KOKKOS_LAMBDA(int 1) { temperature_fieldl(1) -= s 1)
Kokkos: :deep_copy(instances[?], fl_mirror, temperature_fieldl);

: Note: the only fences are Tool fences

DEVICE ID: Cuda device 256, instance Global Instance
TOTAL TIME: 21.1043 seconds

TOP-DOWN TIME TREE:
<average time> <percent of total time> <percent time in Kokkos> <percent MPI
imbalance> <remainder> <kernels per second> <number of calls> <name> [type]

|-> 5.12e+00 sec 24.3% 100.0% @.0% 200000 "temperature_one_mirror"="te

mperature_one" [copy]
|-> 5.11e+00 sec 24.2% 100.0% 0.0% 200000 "temperature_two_mirror"="te

mperature_two" [copy]
|-> 2.00e+00 sec 9.5% 0.0% 0.0% 800000 Kokkos: :Tools: :1nvoke_kokkosp_c

allback: Kokkos Profile Tool Fence [fence]

Autotuning

—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

F 3

Why autotune?

The last 10-15% of performance in a Kokkos app comes from setting a few tuning
knobs. These need to be maintained per:

Hardware: Intel, AMD, and NVIDIA GPU

Programming models: Serial, OpenMP, OpenMPTarget, CUDA, HIP, SYCL, Threads,
HPX

Compilers: NVCC, Clang, GCC, vendor clang variants

How do you feel about maintaining that many heuristics?

Heuristics aren’t feasible moving forward

F 3

Requirements: what can’t we do?

e Recall from Profiling:
— No recompilation
— Applications can’t fail if tools aren’t available
— No third-party dependencies in Kokkos

e Good news: there are many good tuning technologies in ECP we can use
e Bad news: there are too many good tuning technologies in ECP to pick one

e Answer: abstraction through a callback interface

Need to support a variety of tools, ECP has depth in this

area

F 3

Based on our original tuner: Christian trott
 How does the Trott Tuner think about things like sparse matrix vector product?

— What do | need to tune?

e An implementation

e Team sizes for my team policies
— What might affect my choice?

e Number of rows in the matrix

e Sparsity

e Backend I’'m using
— What options are valid?

e Maybe a set, maybe a range?
— Our autotuners need the information Christian has, provided formally

Need to support a variety of tools, ECP has depth in this
area

F 3

HHHHHHH

App workflow: typical

Kokkos: :TeamPolicy<> policy(number of rows,
Kokkos: :AUTO,
Kokkos: :AUTO) ;

Kokkos: :parallel for(policy, /** ... */);

In most cases, code changes very little

CCCCCCCCC

EEEEEEE

: App workflow: advanced

Tell the tool what it's tuning
int? float?
categorical? ordinal? interval? ratio?

Tell the tool about feature values, and set
a default configuration

Ask tool to overwrite the configuration

While app not done

Use the configuration in kernels

Tell the tool we're done

F 3

ECP

SPMV sees speedups

EXASCALE
COMPUTING
PROJECT

Minimum Execution Time (ms)

120 A . =
~®- Expert Heuristic -
100 -3 Artemis-Expert Heuristic =
k- Artemis Rt
1-'."
80 - .
- A
60 N l". A
. A
| - s
40 . A
o A
20 -) A
ITE L AT 4
-|||III*::‘- ---- Y
0 i F " 1 I 1 I I
100 200 300 400 500 600

Number of Non-Zero Values (millions)

Graph courtesy of Artemis team from LLNL and UO

Speedups on hand-tuned kernels. Reproduced with multiple

tools

Caliper

—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

: Caliper: a Performance Analysis Toolbox

* Developed at Lawrence Livermore National Lab

e https://software.llnl.gov/Caliper/

e Significantly more than a Kokkos Tool, but a great Kokkos Tool
 KOKKOS_PROFILE_LIBRARY=/path/to/libcaliper.so

e Configuration
— Set Caliper environment variables

— Or use prebaked configs

"

— “--kokkos-tools-args=config,” or “CALI_CONFIG=config”

— Generally, add “profile.kokkos” to a config to get Kokkos profiling

David Boehme: “the Caliper man”

https://software.llnl.gov/Caliper/
https://software.llnl.gov/Caliper/BuiltinConfigurations.html

Py
-

Simple timing

(base) [dzpolia@kokkos-dev-2 tool-playground]$./bin/instances_begin --kokkos-tools-args="

runtime-report(profile.kokkos)" --kokkos-tools-library=./11b64/1l1ibcaliper.so 2>&1 | tee ca

liper_log
Path
process_tempZ2

Kokkos: :Tools: :invoke_~~kos Profile Tool Fence
Kokkos: :deep_copy: copy~~s, post deep copy fence
Kokkos: :deep_copy: copy~~pre view equality check
process_templ

Kokkos: :Tools: :invoke_~~kos Profile Tool Fence
Kokkos: :Tools: :invoke_k~~kkos Profile Tool Fence
Kokkos: :Cudalnternal: :i1~~on space initialization

Time (E)

SO WkF DM WWE N

.254843
.943062
. 728552
.842599
.281627
.943634
.590091
.000030

Time (I) Time % (E) Time % (I)

S W kFE OO WWEO

.197905
.943002
. 728552
. 842599
.225261
.943634
.590091
.000030

/

S O W oo ~NOY W

. 960957
.635536
.976248
. 189634
.011071
6366006
. 7183006
.000056

11.596493
3.635536
6.976248
7.189634

11.0470677
3.636606
6.718306
0.000056

: Okay, so it does the space-time-stack? Why Caliper?

 In addition to simple timings, Caliper supports an unbelievable array of profiling
capabilities

— Often the first place we prototype functionality

e Tech not discussed here

— SPOT: performance tracking utility, see whether you’re helping or harming the performance of a
codebase as you develop it

— Hatchet: slice and dice your calltrees, calculate which parts of a program are speeding up or slowing
down

— CurlOs: 10 profiling

e There are entire Caliper trainings available

: UVM Profiling: a Caliper case study

(int x = 0; x < repeats; ++x) {
Kokkos: :parallel_for(
, Kokkos: :RangePol1icy<Kokkos: :Cuda>(?, data_size),

KOKKOS_LAMBDA(int i) { temperature(i) -= 5 3);
Kokkos: :Tools: pushReglon();

((x % output_interval) == 0) {
double temperature_sum =
Kokkos: :parallel_reduce(

, Kokkos: :RangePolicy<Kokkos: :Serial>(¥, data_size),
KOKKOS_LAMBDA(int 1, double &contrib) {
contrib += temperature(i);

b

j
Kokkos: : Sum<double>(temperature_sum));
std: :cout <<

<< temperature_sum << std::endl;

: What can we see?

e ./bin/uvm_caliper ./bin/uvm_begin

e “uvm_caliper” just sets environment variables

Path
edit_step
edit
Kokkos: :Tools: :invoke~~0s Profile Tool Fence

decrease_temp
Kokkos: :Tools: :invoke_~~kos Profile Tool Fence
Kokkos: :Tools: :invoke_k~~kkos Profile Tool Fence

alloc. label#cupti.fault.addr cupti.uvm.kind inclusive#sum#cupti.u

temperature
temperature
temperature
temperature
temperature

temperature
temperature

DtoH
DtoH
DtoH
HtoD
HtoD

HtoD
DtoH

1310720
1310720
1310720
1310720
1310720

6553
6553

: Typical optimization path

e Understand Kokkos Utilization (SpaceTimeStack)
— Check how much time in kernels
— Identify HotSpot Kernels

e Run Memory Analysis (MemoryEvents)
— Are there many allocations/deallocations - 5000/s is OK.

— ldentify temporary allocations which might be able to hoisted

e |dentify Serial Code Regions (SpaceTimeStack)
— Add Profiling Regions

— Find Regions with low fraction of time spend in Kernels

e Dive into individual Kernels
— Use connector tools to analyze kernels.

— E.g. use roof line analysis to find underperforming code.

C++ Compilers ®

—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

Clang-Tidy with Kokkos Knowledge

F 3

What we did:
Augmented ClangTidy, a LLVM/Clang based static
analysis tool, with knowledge of Kokkos semantics
to detect bugs early in the development cycle.

Current Checks:
* Implicit this
Ensure Kokkos function

Code at: https://github.com/kokkos/llvm-project
« SIAM poster at: poster-link
* Tool tutorial at: youtube-link

- Apps teams have been very positive about what compiler
E\(\C\\)P based tools can accomplish

FFFFFFF

https://github.com/kokkos/llvm-project
https://figshare.com/articles/poster/Static_Analysis_for_Kokkos_Via_ClangTidy/14099237/1
https://youtu.be/MH6zFYGw0HU?t=5664

K

Early Bug Detection Saves Time and Money

Code with an easy to introduce bug

#include <Kokkos_Core.hpp>
struct S {
. int 1 = 1;
The sooner a bug is void captures_this() {
: Kokkos :: parallel for(
[detected the casier 15, KOKKOS_LAMBDA(int _) { printf("The value of i is: %i", i); });
2| and cheaper it is to fix }
L
Our compiler tool warning the user about the bug, literally as they type.
#include <Kokkos_Core.hpp>
Concept ~ Design Development Testing ~ Commit Integration Production struct S {
int 1 = 1;
Figure 1-2. Timeline of the developer workflow void captures_this() {
::parallel_for(
Credit: Software Engineering at Google (p. 35). (int _) { printf("The value of i is: %i", i); });
O'Reilly Media.

= We want to detect bugs as early as possible
E\(\Q\F’

PROJECT

K

But generic code is hard (not just for Kokkos)

C++ templates make it very hard to use the compiler to check the validity of generic code.

ter plate<typename T>
auto foo(T const &t){
do_thing(t)f

t.print();
t.result();

We can check correctness for concrete types,
but generic types like View<T> are hard to impossible to check in real time

We have two possible ideas to solve this problem for Kokkos, which we will investigate in the future:
1. User provides a pragma or hint about what type we should use to check the code with
2. Use C++20 concepts to provide checking for known Kokkos types

Improve C++ tooling for our application teams

Skylos

—
\\ EXASCALE
) COMPUTING
\ PROJECT
S

: “Kokkos Sanitizers” + IDE integration

e Kokkos has semantics

— Semantics that can be violated

e DualView

: DualView: the bottomless bit of footguns

update_on_gpu_2015(DV& in) A
b #ifdef
s #endif
Kokkos::parallel_for(
"update_on_gpu_2015",
Kokkos: :RangePolicy<DeviceExec>(@, in.extent(0)),
KOKKOS_LAMBDA (i) {
in.d_view(i) += 5.0;
});
b #ifdef
#endif

update_on_host_2021(DV& in) {

main(argc, argv) {
Kokkos::initialize(argc, argv);
{
Kokkos: :DualView< %, target_space> dv("dv'", 1000);
init_on_gpu_2015(dv);
s #1f > 2020
E\(E\)P e undate on host 2021(dv):

~~7 .
A Debugging

skylos.py > ...

testing_rules = [
SequenceRule|([DeviceAccess,
KleeneStar(Negation(OrRule([DeviceAccess,DualViewModifyRule()1))),
KleeneStar(Negation(DualViewSyncRule())),
HostAccess],
[0,1,2,3],
gpu, modify, sync, cpu :

Error: no DualView modify and sync call between a GPU and Host kernel

Note: GPU kernel is here:
Note:
Not
Note: CPU kernel is here:

it format(gpu.kernel,gpu.source_file, gpu.source_line, "No modify event" if not n
),

(this will be unreliable if no modify event was detected, fix that first

PROBLEMS (21 QUTPUT TERMINAL DEBU(SO -+
g bash

Error: no DualView modify and sync call between a Host and GPU kernel %2 watch Tas

Note: CPU kernel update_on_host_2021 is here: /Users/dzpolia/src/kokkos/exam

ple/query_device/query_device.cpp:132,
Note: No modify event
Note: No sync event (this will be unreliable if no modify event was detected

, Tfix that first)
Note: GPU kernel update_on_gpu_2015 is here: /Users/dzpolia/src/kokkos/examp

le/query_device/query_device.cpp:119

51042027 :webview-view-sample dzpolia$ []

—_—
\ EXASCALE
) COMPUTING
\ PROJECT . T . ST L

Py

IDE Integration

SKYLOS

init_on_gpu_2015 /Users/dzpolia/sr...
update_on_hc jnijt_on_gpu_2015 -
update_on_gpu_2015 /Users/dzpo...
dualview.modify /root/kokkos/exam...
dualview.sync /root/kokkos/exampl...

tk /Users/dzpolia/src/kokkos/exampl...

query_device.cpp X 18!

device >

103

query_device.cpp > @ init_on_gpu_2015<DV>(DV &)
Kokkos::parallel_for(
"init_on_gpu_2015",
Kokkos: :RangePolicy<DeviceExec>(0,
KOKKOS_LAMBDA(int i) {
in.d_view(i) = 5.0;
});
#ifdef FIXED

#endif
}

4 Questions?
ha

e kokkosteam.slack.com

e dzpolia@sandia.gov

e Kokkos more broadly: crtrott@sandia.gov

mailto:dzpolia@sandia.gov

