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Abstract—Interest in the application of DC Microgrids to
distribution systems have been spurred by the continued rise
of renewable energy resources and the dependence on electric
loads. However, in comparison to AC systems, the lack of natural
zero crossing in DC Microgrids makes the interruption of fault
currents with fuses and circuit breaker more difficult. DC faults
can cause severe damage to voltage-source converters within few
milliseconds, hence, the need to quickly detect and isolate the
fault. In this paper, the potential for Machine Learning (ML)
multi-class classifiers to identify fault type and fault resistance
in a DC Microgrid is explored. The ML algorithms are trained
using simulated fault data recorded from a 750 Vpc Microgrid
modeled in PSCAD/EMTDC. The performance of the trained
algorithms are tested using real fault data gathered from an
operational DC Microgrid located on the Kirtland Air Force
Base. The result shows that ML algorithms can detect fault with
100% accuracy, determine the fault type with 100% accuracy,
and estimate the fault resistance with 99% accuracy. By per-
forming a self-learning monitoring and decision making analysis,
protection relays equipped with ML algorithms can quickly
detect and isolate faults to improve the protection operations
on DC Microgrids.

Index Terms—DC Microgrids, fault detection, machine learn-
ing, support vector machines, neural network, decision tree.

I. INTRODUCTION

The increasing emergence of DC loads and generation
sources together with advances in power electronic technolo-
gies in modern power networks has prompted investigation
into the potential benefits and application of DC Microgrids
[1]-[8]. Most modern electronic circuits require a DC power
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supply, and distributed energy resources such as solar panels
and batteries generate DC power. The application of DC
microgirds as power sources for telecommunication stations
[1], data centers [2] and electric vehicle systems [7] have been
explored. The increased efficiency, safety of power electronics
component and simplicity in the operation have all contributed
to the advances of DC Microgrids.

DC Microgrids are potentially sensitive to disturbances and
faults due to low inertia and converter behaviors. Disturbances
on DC systems are usually due to input power variations,
fluctuations in loads, temporary faults and communication
failures/delays [9]. Protecting the DC Microgrid from these
disturbances is a major challenge mainly because it is more
difficult to interrupt fault current with fuses and circuit break-
ers as there is no zero crossing of current in DC systems. Addi-
tionally, because of the presence of power electronics switches,
DC fault currents are associated with a high magnitude and a
peak that is sustained for multiple milliseconds. Such large
currents can cause severe damage to the components of
converters [10]. Hence, fast detection and isolation of faults
in a DC Microgrid is critical. In literature, several protection
schemes for DC systems have been studied. This includes
overcurrent protection, high-speed differential schemes, rate
of change of current, undervoltage protection [11]-[15]. In
recent years, studies have examined how machine learning
(ML) based protection schemes can improve fault detection
in AC systems [16], [17], but these protection schemes have
not been adequately examined on DC Microgrids.

In [18], hidden markov model were proposed to discriminate
between nominal transient behavior and DC arc fault behav-
ior across a variety of conditions. Support Vector Machines
(SVM) was implemented to detect faults in DC systems in [19]
and [20]. These studies have presented successful and high
accuracy performance results, however, they have primarily
used data from only simulated models of DC systems for fault
classification.
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By utilizing real data gathered from an actual DC Microgrid,
this paper explores the potential for ML algorithms embedded
in a protective relay to identify and classify faults. Five
different algorithms were used to classify fault data based on
fault type and fault resistance. The ML algorithms are trained
using simulated data from PSCAD and their performance
is tested using the data gathered from an operational DC
Microgrid.

The rest of this paper is organized as follows: Section
II introduces the ML classification algorithms examined for
DC fault classification in this paper. The details of the DC
power system model used is described in Section III. Section
IV explains the distribution of the training and testing data.
Section V presents the result of the study and Section VI gives
a conclusion.

II. MACHINE LEARNING ALGORITHM

ML is a potential tool for intelligent fault detection because
of its effective pattern recognition capability as well as its
adaptability in systems with versatile operating conditions.
There are two types of learning, supervised and unsupervised
learning. In supervised learning, the algorithm learns the
mapping function of the input to the output data provided.
Meanwhile, in unsupervised learning, there is only an input
data and the algorithm learns the underlying structure or
distribution of the data. The following supervised classification
algorithms are considered in this paper;

A. Support Vector Classifier

The Support vector classifier (SVC) method classifies events
with the help of a linear or non-linear function. It is based on
an estimation of the most appropriate function for separating
data. The SVC method aims at finding a special linear line
separating between classes. There is a possibility to draw
this line more than once during the classification. The SVC
identifies the farthest line to both classes, and thus maximum
error tolerance is determined. Upon identification of training
data and the border line, test data is classified based on their
places in reference to the border [21].

B. Bernoulli Naive Bayes

Naive Bayes (NB) methods are a set of supervised learn-
ing algorithms based on application Bayes’ theorem with
the “naive” assumption of conditional independence between
every pair of features given the value of the class variable
[22]. Bernoulli NB implements the naive Bayes training and
classification algorithms for data that is distributed according
to multivariate Bernoulli distributions.

C. Decision Trees

Decision Trees (DT) are a non-parametric supervised learn-
ing method used for classification and regression. It predicts
the value of a target variable by learning simple decision rules
inferred from the data features. A tree can be seen as a piece-
wise constant approximation [22].
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Fig. 1: ETL-KAFB DC Microgrid.

D. Nearest Centroid

The Nearest Centroid (NC) classifier is a simple classifi-
cation algorithm that represents each class by the centroid of
its members. It is based on the assumption that the distances
between the samples belonging to the same class should be
minimal. NC calculates the center (centroid) of each class and
then assigns the unknown sample to the class which centroid
is the closest [23].

E. Multi-layer Perception

Multi-layer Perception (MLP) is a supervised neural net-
work model that trains using back propagation [22]. It consists
of at least three layers: an input layer, a hidden layer, and
an output layer. The output from the MLP structure depends
on the weighted sum of its input pattern [24]. This concept
of weighted sum can also be applied in every layer. MLP is
sensitive to feature scaling.

III. POWER SYSTEM MODEL

This research effort uses the Emera Technologies Kirtland
Airforce Base (ETL-KAFB) DC Microgrid located at the
South-eastern part of Albuquerque, New Mexico. The ETL-
KAFB DC Microgrid consists of a hierarchical, modular power
electronics-based interface at each node that contains power
conversion, control, protection and storage. The DC Microgrid
serves nine nanogrids (NG) which includes a residential area
of six duplex buildings, a community center, a gathering space
and laboratory facilty as shown in Fig. 1. Each of the NGs
include a load, a PV system, a Battery Energy Storage System
(BESS) and a DC-to-DC converter to integrate the NG to the
rest of the Microgrid. The size of the PV system in each
NG varies from 5 kW to 13 kW while the size of the BESS
are 9kWhr. The Microgrid is operated at a bipolar voltage of
+375Vpe. A fault emulator installed at the gathering space
of the Microgrid. The fault emulator can introduce fault of
various impedance values between poles or a pole and ground
on the Microgrid bus. The fault is actuated via a contactor.
Fault data is collected at two locations on the Microgrid. The
first batch of data is collected from a scope connected at node
A, and the second batch from a scope connected to node B.



800 T : T . T . : =
PP

PPG |1
NPG

600 |

400 £

200

of

-200 -

Veltage (V)

400 F
600

-800

L . L i L . L . J
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Time (Sec)

-1000 -
0

Fig. 2: Simulation data: 1.0 € positive pole to ground fault.

Additionally, the Emera DC Microgrid is modeled in
PSCAD/EMTDC software package. Several faults conditions
are simulated and the fault data from node A and node B are
recorded. The simulation data gathered from PSCAD is used
as training data, while the real data gathered from the field is
used as the testing data for the ML classification algorithms.

A. Fault conditions

In this paper, positive pole to ground (PPG) and negative
pole to ground (NPG) faults with three different fault resis-
tances, (F)) were considered:

e Fault 1: PPG fault with F;. = 1.0 ohms
e Fault 2: NPG fault with F. = 1.0 ohms
o Fault 3: PPG fault with F}. = 500 ohms
o Fault 4: NPG fault with F;. = 500 ohms
o Fault 5: PPG fault with F}. = 1000 ohms
e Fault 6: NPG fault with F}. = 1000 ohms

B. Training Data

Using the PSCAD model of the DC Microgrid, six dif-
ferent fault conditions are simulated. The fault is applied at
the location of the fault emulator shown in Fig. 1. Voltage
measurement are recorded from node A and node B for each
fault scenario. The total length of the simulation is 1 second,
with a time step of 2.5us. Fig. 2 shows a plot of the voltages
measured at the node A after a PPG fault with a fault resistance
(F}) of 1.0 ohms is applied. The fault is applied at ¢ = 0.5 sec.
The measured data from the PSCAD simulation is used as the
training data on the ML classification algorithms to identify
and classify faults in the system.

C. Testing Data

To test the ML classification algorithms, real data gathered
from the Microgrid is used as testing data. For the first batch
of data gathered from node A, fault conditions 1, 2, 4, and 5
were considered. For the second batch of data gathered from
node B, fault conditions 1, 2, 3, and 4 were considered. The
total length of the data is 1 second with a time step of 1 us.
The plot of the voltages measured at the node A after a 1.0
2 PPG fault is applied is shown in Fig. 3.
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Fig. 3: Real data: 500 Q2 negative pole to ground fault.

TABLE I: Data distribution by fault type

Data Fault Type

Type No Fault | PPG | NPG
DI: Training data (Node A) 50% 25% | 25%
D2: Training data (Node B) 50% 25% 25%
D3: Testing data (Node A) 20% 35% | 45%
D4: Testing data (Node B) 50% 25% | 25%

IV. DATA ANALYSIS

The simulation data generated 2.4 million data points for
each measurement node which includes 400,000 points for
each of the 6 fault scenario listed above. From the field, the
real data gathered has a total number of 4 million data points
for each measurement node. The distribution of the data by
fault type is shown in Tab. I while the distribution of the data
by their fault type and fault resistance i.e. fault 1 through 6
(F1 to F6) is shown in Tab. II.

A. Feature/Data Input

The measured voltage from the PSCAD simulation data, and
the captured voltage measurement from the real data can be
reduced to three components, the PPG, NPG, and pole to pole
(PP) voltages. Each of the three components were provided
as individual features to the ML classification algorithms to
classify the data based on fault type and fault resistance. Each
feature is then transformed such that the absolute values are
mapped in the range of [0,1], i.e. the maximal absolute value
is 1.0.

B. Evaluation Metrics

The performance of each of the ML classification algorithms
is evaluated with a confusion matrix by comparing the pre-
dicted and actual outcomes. This format allows for the review
of true positive, false positive, true negative and false negative.
In addition, an accuracy score is also computed as the ratio
of the number of correct prediction to the total number of
prediction. The accuracy score ranges from 0O to 1. The higher
the score, the more accurate the classification.
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TABLE II: Data distribution by fault type and fault resistance

Predicted label

(b) Bernoulli NB

Data Fault Type and Resistance

Type | No Flt F1 F2 F3 F4 F5 Fé6

D1 50% 8.3% 8.3% 8.3% 8.3% 83% | 83%

D2 50% 8.3% 8.3% 8.3% 8.3% 83% | 83%

D3 20% 22.5% | 22.5% 0% 22.5% | 12.5% 0%

D4 50% 125% | 12.5% | 12.5% | 12.5% 0% 0%
V. RESULTS

To explore the potential of ML algorithms in classifying DC
faults based on fault type and fault resistance, the simulation
data from PSCAD is used in training all five algorithms
described in Section II. The performance of these algorithms
in classifying the faults are tested with the real data from the
actual DC power system.

A. Fault type classification

First, the ML models are used to classify the fault data
into three categories: No fault (NF), PPG fault and NPG fault.
Fig. 4 shows the performance of all five ML algorithms in
classifying the data based on their fault type. Out of the
five classifiers, the SVC, nearest centroid and the multi-layer
perception accurately classified the data based on fault type.

B. Fault type and Fault resistance classification

The SVC, NC and the MLP algorithms accurately classified
the data based on the fault type. These three classifiers are
used to classify the data based on both the fault type and fault
resistance. The data is classified into 5 labels: No fault, 1 ohm
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PPG fault, 1 ohm NPG fault, 500 PPG fault and 500 ohm
NPG fault. Fig. 5, shows the performance of the classifiers in
classfying the data based on the fault type and fault resistance.

Table III shows the accuracy score for each ML classifier. In
classifying by fault type, the SVC, NC and MLP classifiers had
a score of at least 0.99. When classifying by fault resistance,

only the MLP classifier performed accurately with a perfect
score of 1.0.

VI. CONCLUSIONS

In this paper, the potential for machine learning classifiers
embedded in a protective relay to identify and classify fault
in a DC Microgrid is explored. A variety of algorithms such
as SVC, NB, DT, NC, and MLP are applied on data gathered
from an actual DC Microgrid. The fault data is classified based
on fault type and fault resistance. The SVC, NC and MLP
algorithms can detect fault and classify the fault type with
100% accuracy. Among all the algorithms presented in this
paper, the MLP algorithm had the best performance in classi-
fying the fault based on both the fault type and fault resistance

TABLE III: Accuracy Score of ML Classifiers

ML Node A Accuracy score Node B Accuracy score
Classifier || Fault type | Fault Res. Fault Type | Fault Res.
SvC 1.00 0.75 1.00 0.75
NB 0.48 0.48 0.75 0.74
DT 0.80 0.77 0.49 0.25
NC 0.99 0.94 1.00 0.94
MLP 0.99 0.99 1.00 1.00
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Fig. 5: Confusion matrix showing the ML classification based on fault type and fault resistance

with an accuracy of 99%. Machine learning algorithms, when
deployed inside a protective relay can accurately detect and
classify faults in DC Microgrids.
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